We study the effects of droplet finite size on the structure of nanogel
particles synthesized by random crosslinking of molecular polymers diluted in
nanoemulsions. For this, we use a bead-spring computer model of polymer-like
structures that mimics the confined random crosslinking process corresponding
to irradiation- or electrochemically-induced crosslinking methods. Our results
indicate that random crosslinking under strong confinement can lead to unusual
nanogel internal structures, with a central region less dense than the external
one, whereas under moderate confinement the resulting structure has a denser
central region. We analyze the topology of the polymer networks forming nanogel
particles with both types of architectures, their overall structural
parameters, their response to the quality of the solvent and compare the cases
of non-ionic and ionic systems