47,185 research outputs found

    Cancer Biology

    Get PDF
    This chapter in Cancer Concepts: A Guidebook for the Non-Oncologist focuses on DNA mutations that cause cancer, abnormal regulation of cell growth and death, and metastasis. Updated March 2016 version posted March 28, 2017.https://escholarship.umassmed.edu/cancer_concepts/1005/thumbnail.jp

    Bladder Cancer Biology

    Get PDF

    Colorectal Cancer Biology

    Get PDF
    Colorectal cancer is a common disease, affecting millions worldwide and represents a global health problem. Effective therapeutic solutions and control measures for the disease will come from the collective research efforts of clinicians and scientists worldwide. This book presents the current status of the strides being made to understand the fundamental scientific basis of colorectal cancer. It provides contributions from scientists, clinicians and investigators from 20 different countries. The four sections of this volume examine the evidence and data in relation to genes and various polymorphisms, tumor microenvironment and infections associated with colorectal cancer. An increasingly better appreciation of the complex inter-connected basic biology of colorectal cancer will translate into effective measures for management and treatment of the disease. Research scientists and investigators as well as clinicians searching for a good understanding of the disease will find this book useful

    Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology.

    Get PDF
    Inflammation and autophagy have emerged as prominent issues in the context of proteoglycan signaling. In particular, two small, leucine-rich proteoglycans, biglycan and decorin, play pivotal roles in the regulation of these vital cellular pathways and, as such, are intrinsically involved in cancer initiation and progression. In this minireview, we will address novel functions of biglycan and decorin in inflammation and autophagy, and analyze new emerging signaling events triggered by these proteoglycans, which directly or indirectly modulate these processes. We will critically discuss the dual role of proteoglycan-driven inflammation and autophagy in tumor biology, and delineate the potential mechanisms through which soluble extracellular matrix constituents affect the microenvironment associated with inflammatory and neoplastic diseases

    In memory of Marcos Vidal (1974-2016)

    Get PDF
    With the untimely death of Marcos Vidal, we have lost a good friend and a creative, brilliant colleague who made important contributions to the field of cancer biology through fruit fly research. Marcos began his research into Drosophila at Ross Cagan's laboratory in 2003, first at Washington University in St Louis and later at Mount Sinai Hospital in New York. In 2009 Marcos was appointed as Research Group Leader at the Beatson Institute for Cancer Research in Glasgow

    Cancer Biology Data Curation at the Mouse Tumor Biology Database (MTB)

    Get PDF
    Many advances in the field of cancer biology have been made using mouse models of human cancer. The Mouse Tumor Biology (MTB, "http://tumor.informatics.jax.org":http://tumor.informatics.jax.org) database provides web-based access to data on spontaneous and induced tumors from genetically defined mice (inbred, hybrid, mutant, and genetically engineered strains of mice). These data include standardized tumor names and classifications, pathology reports and images, mouse genetics, genomic and cytogenetic changes occurring in the tumor, strain names, tumor frequency and latency, and literature citations.

Although primary source for the data represented in MTB is peer-reviewed scientific literature an increasing amount of data is derived from disparate sources. MTB includes annotated histopathology images and cytogenetic assay images for mouse tumors where these data are available from The Jackson Laboratory’s mouse colonies and from outside contributors. MTB encourages direct submission of mouse tumor data and images from the cancer research community and provides investigators with a web-accessible tool for image submission and annotation. 

Integrated searches of the data in MTB are facilitated by the use of several controlled vocabularies and by adherence to standard nomenclature. MTB also provides links to other related online resources such as the Mouse Genome Database, Mouse Phenome Database, the Biology of the Mammary Gland Web Site, Festing's Listing of Inbred Strains of Mice, the JAX® Mice Web Site, and the Mouse Models of Human Cancers Consortium's Mouse Repository. 

MTB provides access to data on mouse models of cancer via the internet and has been designed to facilitate the selection of experimental models for cancer research, the evaluation of mouse genetic models of human cancer, the review of patterns of mutations in specific cancers, and the identification of genes that are commonly mutated across a spectrum of cancers.

MTB is supported by NCI grant CA089713

    The Interplay among PINK1/PARKIN/Dj-1 Network during Mitochondrial Quality Control in Cancer Biology: Protein Interaction Analysis

    Get PDF
    PARKIN (E3 ubiquitin ligase PARK2), PINK1 (PTEN induced kinase 1) and DJ-1 (PARK7) are proteins involved in autosomal recessive parkinsonism, and carcinogenic processes. In damaged mitochondria, PINK1's importing into the inner mitochondrial membrane is prevented, PARKIN presents a partial mitochondrial localization at the outer mitochondrial membrane and DJ-1 relocates to mitochondria when oxidative stress increases. Depletion of these proteins result in abnormal mitochondrial morphology. PINK1, PARKIN, and DJ-1 participate in mitochondrial remodeling and actively regulate mitochondrial quality control. In this review, we highlight that PARKIN, PINK1, and DJ-1 should be regarded as having an important role in Cancer Biology. The STRING database and Gene Ontology (GO) enrichment analysis were performed to consolidate knowledge of well-known protein interactions for PINK1, PARKIN, and DJ-1 and envisage new ones. The enrichment analysis of KEGG pathways showed that the PINK1/PARKIN/DJ-1 network resulted in Parkinson disease as the main feature, while the protein DJ-1 showed enrichment in prostate cancer and p53 signaling pathway. Some predicted transcription factors regulating PINK1, PARK2 (PARKIN) and PARK7 (DJ-1) gene expression are related to cell cycle control. We can therefore suggest that the interplay among PINK1/PARKIN/DJ-1 network during mitochondrial quality control in cancer biology may occur at the transcriptional level. Further analysis, like a systems biology approach, will be helpful in the understanding of PINK1/PARKIN/DJ-1 network.Peer reviewedFinal Published versio

    Predictive genomics: A cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data

    Full text link
    We discuss a cancer hallmark network framework for modelling genome-sequencing data to predict cancer clonal evolution and associated clinical phenotypes. Strategies of using this framework in conjunction with genome sequencing data in an attempt to predict personalized drug targets, drug resistance, and metastasis for a cancer patient, as well as cancer risks for a healthy individual are discussed. Accurate prediction of cancer clonal evolution and clinical phenotypes will have substantial impact on timely diagnosis, personalized management and prevention of cancer.Comment: 5 figs, related papers, visit lab homepage: http://www.cancer-systemsbiology.org, Seminar in Cancer Biology, 201
    corecore