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Proteoglycan neofunctions: Regulation of inflammation and 
autophagy in cancer biology

Liliana Schaefer1, Claudia Tredup1, Maria A. Gubbiotti2, and Renato V. Iozzo2

1Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, 
Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany

2Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling 
Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA

Abstract

Inflammation and autophagy have emerged as prominent issues in the context of proteoglycan 

signaling. In particular, two small, leucine-rich proteoglycans, biglycan and decorin, play pivotal 

roles in the regulation of these vital cellular pathways and, as such, are intrinsically involved in 

cancer initiation and progression. In this minireview we will address novel functions of biglycan 

and decorin in inflammation and autophagy, and analyze new emerging signaling events triggered 

by these proteoglycans, which directly or indirectly modulate these processes. We will critically 

discuss the dual role of proteoglycan-driven inflammation and autophagy in tumor biology, and 

delineate the potential mechanisms through which soluble ECM constituents affect the 

microenvironment associated with inflammatory and neoplastic diseases.

Graphical Abstract

We critically asses the role of two small, leucine-rich proteoglycans, biglycan and decorin, in 

inflammation and autophagy. The signaling axes of these two proteoglycans are operative during 

various stages of cancer initiation and progression. Moreover, we discuss the dual role of 

proteoglycan-driven inflammation and autophagy in tumor biology, and offer unique roles for 

these molecules as potential therapeutic agents.
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Introduction

For decades, the two closely related small, leucine-rich proteoglycans (SLRPs), biglycan and 

decorin, have been considered as rather structural elements of the extracellular matrix 

(ECM). For example, biglycan has long been regarded as an important factor for bone 

mineralization and decorin originally gained recognition for its role in the regulation of 

collagen fibrillogenesis [1]. However, this paradigm shifted when biglycan and decorin were 

identified as functional signaling molecules, particularly in the context of inflammation and 

autophagy regulation. As these processes play a crucial role both in the initiation and 

progression of tumorigenesis, and as these proteoglycans distinguish themselves further as 

dynamic players in cell signaling, it has become apparent that biglycan and decorin, and 

their downstream signaling effectors, might represent druggable therapeutic targets for the 

treatment of malignant disease. The role of syndecan and heparanase, two key players in 

cancer progression, is also covered in this thematic minireview series [2,3].

In this review, we provide an inclusive and critical assessment of the roles of biglycan and 

decorin in autophagy as well as in inflammatory signaling pathways, with a strong emphasis 

on their functions in the setting of cancer. We will further evaluate the intricate connection 

between these endogenous matrix constituents and both normal and pathological cellular 

activity to provide insight into future options for the treatment of cancer and other diseases 

where inflammation is predominant.
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Matrix regulation of endothelial cell autophagy and tumor cell mitophagy

Neovascularization is a long-standing hallmark in the context of cancer progression as the 

growth of new blood vessels allows the tumor proper to acquire necessary nutrients to 

enlarge and metastasize. As such, the advent of anti-angiogenic compounds has opened a 

new era of cancer treatment and the development of next-generation angiogenesis inhibitors 

remains a popular basis for chemotherapeutic drug design. Though a variety of 

pharmacologic agents have been engineered to target this process, an important discovery 

revealed that the ECM harbors an endogenous angiostatic factor in the class I small, leucine-

rich proteoglycan, decorin [4]. Initial studies have demonstrated the ability of decorin to 

regulate collagen fibrillogenesis, thereby establishing a function for decorin in the 

preservation of the structural integrity of ECM [5–9]. Subsequent work has revealed that 

decorin plays a much more active role by regulating key cellular processes through its 

aptitude for binding to different receptor tyrosine kinases (RTKs) and modifying 

downstream signaling pathways [10–20]. In tumor cells, decorin acts primarily through the 

hepatocyte growth factor (HGF/Met) and epidermal growth factor receptor (EGFR) 

signaling axes to decrease the expression of the pro-angiogenic factors, vascular endothelial 

growth factor A (VEGFA) and hypoxia-inducible factor 1-α (HIF-1α), while 

simultaneously increasing the expression of thrombospondin-1 [11,21], a powerful anti-

angiogenic protein [22], and tissue inhibitor of metalloproteinases-3 (TIMP3) [11,21], a key 

regulator of ECM turnover [11,21] (Fig. 1). The cumulative effect of these changes of the 

tumor secretome creates an anti-angiogenic and, subsequently less metastatic, tumor 

microenvironment.

Though decorin can alter the cellular milieu by controlling the secretion of angiogenic 

factors from tumor cells themselves, more recent work has uncovered a novel mechanism 

where decorin attenuates tumor progression by directly targeting the tumor 

microenvironment rather than acting solely on the tumor proper. A unique screen of 

orthologous tumor xenografts capable of differentiating between human and mouse gene 

expression revealed an increase in the tumor suppressor gene, paternally expressed gene 3 

(Peg3), in decorin-treated animals compared to vehicle-treated controls [23]. Interestingly, 

this decorin-evoked gene induction occurs only in the tumor stroma and not in the tumor 

itself [23]. Given this information, a more detailed analysis of Peg3 expression in tumor-

supporting cells upon decorin treatment revealed that Peg3 plays a role in mediating 

endothelial cell autophagy, the accumulation of cytoplasmic contents in double-membrane 

structures, which are eventually degraded via lysosomal machinery [24,25]. Mechanistically, 

decorin acts as a partial agonist for vascular endothelial growth factor receptor 2 (VEGFR2), 

the main receptor responsible for facilitating the angiogenic response in endothelial cells, 

resulting in a signaling cascade culminating in Peg3-dependent canonical autophagy 

involving the standard autophagic intermediates, Beclin 1 and microtubule-associated light 

chain protein 3 (LC3) [13,17] (Fig. 1). Decorin also competes with VEGFA, the canonical 

ligand of VEGFR2, to hinder angiogenesis [26]. As VEGFR2 is specifically expressed on 

endothelial cells, it is plausible that the anti-angiogenic property of decorin is linked to its 

induction of autophagy exclusively in the tumor vasculature. These findings are the first to 

link a soluble extracellular proteoglycan to the induction of the catabolic process of 
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autophagy and expose a novel function for matrix molecules to regulate the lysosomal 

degradation pathway.

Regarding the aforementioned decorin-mediated alteration of thrombospondin-1 secretion 

by tumor cells, it appears that thrombospondin-1 is surfacing as an important autophagic 

signaling molecule. For example, thrombospondin-1 inhibits RAS-positive tumor cell 

growth via autophagic induction [27]. On the contrary, studies blocking the function of 

CD47, the main thrombospondin-1 receptor, show a paradoxical increase in autophagic 

activity [28]. Thus, the ability of thrombospondin-1 to modulate autophagy appears to be 

quite complex, but may be important for putting together more pieces of the puzzle to 

understand better the ability of decorin to inhibit neovascularization.

Also of importance is the recent discovery that decorin is an autophagy-inducible 

proteoglycan [12,16] where nutrient deprivation and chemical inhibition of mammalian 

target of rapamycin (mTOR) signaling augment its expression both in vitro in fibroblasts as 

well as in vivo in cardiac tissue. In addition, Dcn−/− mice exhibit diminished cardiac 

autophagy vis-à-vis wild-type mice following a fasting challenge [12], validating the 

importance of decorin as a pivotal control center for the regulation of this catabolic process 

[16]. As pro-autophagic stimuli increase decorin expression, it is possible that the ability to 

modulate decorin levels in the tumor stroma may be a novel method for targeting 

neovascularization in the setting of cancer. Furthermore, in order to connect the processes of 

tumor progression and autophagy, a worthy hypothesis may be that, in the absence of 

decorin, lower levels of autophagy promote a pro-tumorigenic microenvironment.

In contrast, biglycan, another class I SLRP that shares the most structural homology with 

decorin [29,30], possesses pro-angiogenic properties through its ability to bind VEGFA and 

activate VEGFR2 signaling [31]. Additionally, when overexpressed in colon cancer cells, 

biglycan upregulates VEGFA leading to increased angiogenesis and tumor growth through 

activation of the extracellular signal-regulated kinase (ERK) pathway [32]. Therefore, the 

capacity to modulate angiogenesis appears to be specific to each respective proteoglycan, 

even within closely related members of the same family. Whether biglycan-mediated 

angiogenesis is related to autophagy remains to be seen. Interestingly, biglycan inhibits the 

angiostatic effects of endostatin [30]. As endostatin is a potent autophagic inducer in 

endothelial cells through the modulation of α5β1 integrin signaling culminating in increased 

Beclin 1 expression [30], it is possible that biglycan may inhibit autophagy by diminishing 

endostatin activity.

Like biglycan, perlecan, a large, basement membrane proteoglycan, exhibits pro-angiogenic 

properties [33–45]. Specifically, through its heparan sulfate side chains, the N-terminal 

domain I of perlecan sequesters and presents VEGFA and fibroblast growth factors (FGFs) 

to their respective receptors resulting in enhanced angiogenesis [46–51]. Importantly, mice 

that have been genetically designed without the heparan sulfate attachment site display 

diminished angiogenesis and compromised wound healing, presumably due to impairment in 

the juxtaposition of growth factors with their signaling receptors [52,53]. Along with its pro-

angiogenic properties, perlecan also appears to be anti-autophagic as a recent notable 

discovery illustrates that conditional Heparan sulfate proteoglycan 2−/− (Hspg2−/−) mice 
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display enhanced autophagy in skeletal muscle [54] where they exhibit less mTOR activity 

than wild-type cohorts.

We note that perlecan is a multi-modular proteoglycan, where different domains serve 

different functions [55]. For example, while its N-terminal domain is pro-angiogenic, its C-

terminal fragment, endorepellin, embraces properties very similar to those of decorin, where 

it is capable of restricting endothelial cell migration, capillary morphogenesis, and 

angiogenesis [35]. Indeed, previous studies demonstrate that endorepellin exclusively targets 

the tumor vasculature, resulting in decreased tumor growth [56]. In addition, endorepellin is 

able to initiate autophagy in endothelial cells utilizing a mechanism comparable to that of 

decorin, as both work through the Peg3-signaling axis to induce the pro-autophagic 

intermediates Beclin 1 and LC3 [57]. As both endorepellin and decorin exhibit the capability 

to induce autophagy as well as inhibit tumorigenesis through their actions in the tumor 

microenvironment, it is again likely that one mechanism by which this occurs is via 

suppression of angiogenesis through autophagic degradation of the vasculature. In fact, 

recent work suggests that the angiostatic mechanism of endorepellin is directly linked to 

autophagic induction [58]. Specifically, endorepellin inhibits vessel sprouting in ex vivo 
aortic ring assays, which can be blocked by inhibiting autophagy via the adenosine 

monophosphate kinase (AMPK) inhibitor, compound C [58]. Therefore, as decorin follows 

this same mechanistic paradigm, it is likely that it too reduces tumor neovascularization via 

an autophagic mechanism. Interestingly, endorepellin interacts with endostatin [35], the 

aforementioned potent pro-autophagic matrix protein. As this interaction diminishes 

endostatin’s ability to reduce angiogenesis in endothelial cells, it may also prevent 

autophagic induction by either protein via a competitive binding mechanism.

Taken together, it appears that a distinct network is arising in the ECM that is important for 

the regulation of normal cell homeostasis as well as to counteract dysregulation of 

homeostasis in the tumor microenvironment. In vivo, it seems that there exist intricate 

feedback loops to allow for the induction and suppression of both autophagy and 

angiogenesis in response to environmental cues. Preliminary evidence for this stems from 

the observation that anti-angiogenic proteoglycans, like decorin [4], seem to be pro-

autophagic and vice versa. As an aberration of either process can be detrimental to normal 

physiology, these pathways may become deregulated following some sort of insult or 

environmental stressor, leading to the onset of cancer. Continued deregulation may 

contribute to the progression of cancer and eventually to metastasis. As we continue to 

examine the signaling capabilities of these proteoglycans, we will gain a better perspective 

about the changes in the tumor microenvironment that lead to metastasis and how they are 

related to proteoglycan function or dysfunction. Furthermore, this knowledge will provide 

new management options for cancer where mimetics of endogenously occurring matrix 

components can be utilized for a safer, more efficacious treatment regimen than existing 

options.

Curtailing cancer progression: Targeting the tumor proper

Though we have focused mainly on detailing the actions of decorin and related 

proteoglycans in the tumor stroma, we must acknowledge that decorin, which is biologically 
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active as a monomer [59], also engages directly with the tumor proper via its interaction 

with a variety of RTKs abundant on the surface of different types of cancer cells [60–62]. 

One of the best-known decorin/RTK interactions is that between decorin and the EGFR 

resulting in p21-mediated cell cycle arrest, apoptosis, and diminished angiogenesis [63–65] 

(Fig. 1). Furthermore, decorin allows for EGFR to be degraded via caveolin-mediated 

endocytosis [66]. In addition, decorin antagonizes ErbB2/4 and platelet-derived growth 

factor (PDGF) signaling, both resulting in decreased tumor growth [67–69].

As described above, decorin interacts with the HGF/Met receptor to reduce angiogenesis by 

modifying the tumor secretome [70] (Fig. 1). In the tumor parenchyma, this same interaction 

results in an attenuation of β-catenin and Myc signaling, thereby directly inhibiting tumor 

growth [71] (Fig. 1). Notably, the decorin/Met interaction in triple-negative breast carcinoma 

cells evokes tumor cell mitophagy via the tumor suppressor, mitostatin [72] (Fig. 1). This 

decorin-evoked mitophagy likely comes as a consequence of mitochondrial depolarization 

and is the first documentation that decorin can regulate catabolism in cancer cells. Thus, it is 

likely that some of decorin’s anti-tumorigenic activity comes through its interference with 

proper oxidative phosphorylation resulting in an energy imbalance in the setting of cancer. 

Furthermore, loss of mitostatin results in the inability of decorin to suppress VEGFA [72], 

coupling the ability of decorin to act simultaneously in the tumor microenvironment and the 

tumor proper.

Canonical autophagy in tumor cells in response to decorin stimulation has been recently 

reported in glioma cells, where decorin-mediated autophagic induction contributes to a 

reduction in cellular migration [73]. Though this is the first report of decorin-induced 

autophagy directly in cancer cells, it is likely that tumor cells that possess the proper 

receptors and subsequent signaling machinery also undergo autophagy in response to 

decorin treatment. For example, recent studies posit that inhibition of EGFR signaling 

results in autophagic induction [74]. As decorin is a potent ligand of EGFR, it is probable 

that tumor cells over-expressing this receptor, such as A431 squamous carcinoma cells or 

A549 lung carcinoma cells, respond with canonical autophagy instead of, or in concert with, 

mitophagy when challenged with decorin. Nevertheless, as our lab has demonstrated the 

necessity of Peg3 for decorin-mediated autophagy in endothelial cells, it would be 

unsurprising if decorin induces autophagy only in few tumor types as many cancers possess 

little to no endogenous Peg3 [75,76].

Again, despite being in the same family, biglycan takes on different functions in the context 

of tumor signaling. In fact, several tumor types, including colon and pancreatic cancer, 

express biglycan at higher levels than normal tissue substantiating the idea that biglycan is 

pro-tumorigenic as well as pro-angiogenic [77–79]. For instance, upregulation of biglycan in 

gastric cancer mechanistically promotes invasion and migration of these cells via 

phosphorylation and consequent activation of the focal adhesion kinase (FAK) signaling 

pathway [80]. In colon cancer cells, depletion of biglycan results in decreased proliferation 

and p21-mediated cell cycle arrest [32]. In addition, biglycan is capable of inhibiting 

apoptosis in these colon cancer cells by regulating p38 MAPK signaling [32]. Moreover, 

though its ability to augment Wnt/β-catenin signaling has only been explored in bone, some 

of the pro-tumorigenic effects of biglycan may also be attributed to its ability to amplify 
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Wnt/β-catenin signaling as well as its ability to interact with LDL-receptor related protein 6 

(LRP6) [81]. Interestingly, autophagy attenuates Wnt-signaling, suggesting a potential link 

between biglycan and this catabolic process in cancer [82]. Also, though direct alterations of 

signaling pathways via biglycan are largely responsible for increased tumorigenesis, a 

secondary mechanism may be the ability of biglycan to modify the biophysical properties of 

the matrix itself. For example, as biglycan modifies FAK-signaling, it is likely that some of 

the increased invasiveness and tumor progression resulting from biglycan overexpression 

may come as a result of increased matrix stiffness, thereby facilitating the migration of 

cancer cells to increase metastasis.

Though the function of autophagy in cancer is controversial, it is emerging as an important 

therapeutic target. Whether it should be enhanced or inhibited appears to be context-

dependent as in some cases autophagy is beneficial for reducing tumor growth and in others 

it seems necessary for cancer cell survival. Regardless, as both decorin and biglycan are 

major players in the inhibition and progression of tumorigenesis, parsing out the mechanism 

behind modulation of the autophagic pathway by them and other matrix constituents is 

critical for comprehending how to best fine-tune novel treatment strategies. Though the role 

of decorin in autophagy as it pertains to cancer is much more well-established than that of 

biglycan, it is very probable that biglycan will develop into a remarkable player in this 

signaling pathway in the future. Thus, we must focus our efforts on discovering more of the 

intricacies of these signaling regimes to hone our understanding of matrix regulation of 

tumor initiation and metastasis.

Complexity of biglycan signaling: Pro-inflammatory and danger signals

Besides its function as a structural molecule, the small leucine-rich proteoglycan biglycan 

can be either proteolytically released from the ECM upon tissue stress and injury or de novo 
synthesized by activated macrophages and resident cells [83]. In its soluble form, biglycan 

acts as a signaling molecule and endogenous ligand of the Toll-like receptors (TLR)-2 and -4 

on the surface of macrophages. This biological interaction autonomously triggers sterile 

inflammation and potentiates pathogen-mediated inflammation via a second TLR that is not 

involved in pathogen sensing [83–85]. Mechanistically, by engaging TLR2 and TLR4, 

biglycan rapidly activates p38, ERK, and NF-κB signaling pathways. This leads to the 

synthesis and secretion of pro-inflammatory cytokines and chemokines, such as interleukin 

(IL)-1β, tumor necrosis factor (TNF)-α, chemokine (C–C motif) ligand (CCL)2, chemokine 

(C-X-C motif) ligand (CXCL)1, CXCL-2, CXCL13, and CCL5 [83,84,86,87] (Fig. 2). This 

process initiates modulation of the immune environment and facilitates the recruitment of 

leukocytes to the site of inflammation.

The use of a transient transgenic mouse model in which biglycan is overexpressed in the 

liver under the albumin promoter and then released into the circulation has been instrumental 

for the deeper understanding of biglycan signaling in vivo [87]. This model has elucidated 

that soluble biglycan uses TLR2/4 signaling pathways, involving the adaptor molecule 

myeloid differentiation primary response 88 (MyD88), for the recruitment of neutrophils and 

macrophages while it regulates the infiltration of T cells exclusively through TLR4 and the 
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adaptor molecule TIR-domain-containing adapter-inducing interferon-β (TRIF) [87,88] 

(Fig. 2).

Moreover, biglycan organizes a multi-receptor crosstalk between TLR2/4 and the purinergic 

receptor, P2X7 [85]. By clustering TLR2/4 and P2X7, biglycan triggers the activation of 

caspase-1 through the NOD-like receptor protein 3 (NLRP3) inflammasome with 

subsequent release of mature IL-1β and IL-18 in a reactive oxygen species (ROS)- and heat 

shock protein (HSP)-90-dependent manner [85]. As a consequence, biglycan-deficient mice 

show improved survival in LPS-induced sepsis and less severe inflammation in both models 

of sterile inflammatory renal injury and LPS-induced sepsis, as monitored by decreased 

levels of active caspase-1 and therefore of mature IL-1β [83,85,89] (Fig. 2).

Thus, under pathological conditions soluble biglycan in its intact form, containing protein 

core and glycosaminoglycan (GAG) chain(s), and some biglycan fragments act as potent 

danger signals that mimic response to Gram-positive (via TLR2) and negative (via TLR4) 

pathogens [90]. While it is well established that the interaction of biglycan with TLR2 and 

the TLR4/MD2 complex occurs via protein core [83,84] the exact binding motifs are still 

under investigation. Interestingly, for the induction of TLR-dependent signaling the protein 

core of biglycan and at least one GAG side chain are required. Neither biglycan protein core 

nor GAG chains alone are capable of inducing TLR-dependent signaling and a 

proinflammatory response [83]. Therefore, it is conceivable that GAG chains of biglycan 

might be involved in the interaction with co-receptors and adaptor molecules of TLR2 and 

TLR4.

Proteolytic release of biglycan ensures a rapid inflammatory response to tissue stress or 

injury without the need for the de novo synthesis of biglycan. Several proteolytic enzymes 

such as bone morphogenetic protein-1 (BMP-1) [91], various matrix metalloproteinases 

(MMPs) [92] and a disintegrin and metalloproteinase with thrombospondin motifs 

(ADAMTS) and serine protease Granzyme B (GrB) have been shown to cleave biglycan. For 

details on biglycan degrading enzymes and cleavage of biglycan please refer to the recent 

review [93]. The fragments of biglycan acting as danger signals and proteinases involved in 

their generation are not identified yet. As biglycan protein core together with GAG side 

chain(s) trigger a proinflammatory response, it is tempting to speculate that not all of the 

generated biglycan fragments will be capable of binding to TLR2 and TLR4. Therefore, a 

proper inflammatory signal is secured by a very fast, de novo synthesis of biglycan in 

stimulated macrophages followed by additional synthesis in resident cells.

Biglycan tightly controls the severity of the inflammatory response

A novel mechanism has emerged wherein biglycan fine-tunes IL-1β production and restores 

immune homeostasis [89]. By using TLR2/4, biglycan triggers ROS generation in 

macrophages through NADPH oxidases (NOX) 1 and 4, thereby enhancing the expression 

and secretion of IL-1β. To impede this self-induced pro-inflammatory response, biglycan 

also triggers the synthesis and activation of NOX2 through selective TLR4 signaling 

pathways. While biglycan-mediated TLR4/TRIF signaling leads to the induction of Nox2 
mRNA expression, induction of TLR4/MyD88 signaling is required for activation of NOX2. 
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Activated NOX2 inhibits biglycan-mediated IL-1β synthesis [89]. It is tempting to speculate 

that these mechanisms of self-limiting inflammation are involved under physiological 

conditions to fine-tune IL-1β levels and could be therapeutically harnessed to treat 

inflammatory diseases.

However, there is strong evidence for beneficial effects of biglycan deficiency and pro-

inflammatory effects of biglycan overexpression in various inflammatory diseases [93,94]. 

In fact, under pathological conditions biglycan stimulates the expression of HSP70 by 

selective utilization of TLR2. HSP70 binds to NOX2 thereby inducing its proteasomal 

degradation. This interaction consequently impairs the inhibitory function of NOX2 on 

IL-1β expression, promoting pro-inflammatory effects of biglycan (Fig. 2). Accordingly, in a 

mouse model of sterile renal inflammation, the lack of biglycan in Nox2-deficient mice is 

protective of hyperinflammation as well as massive macrophage infiltration, leading to less 

severe kidney damage [89].

Thus, these data describe how danger signals control the severity of the inflammatory 

response, by utilizing multi-receptor signaling, selective induction of TLR2 and TLR4 

signaling pathways, adaptor molecules and downstream events such as ROS production. The 

discovery of the dual role of biglycan in inflammation will open new prospects for 

therapeutic intervention. It is likely that selective inhibition of biglycan-TLR2- or biglycan-

TLR4 signaling could be a new therapeutic approach in inflammatory diseases. 

Alternatively, the stabilization of biglycan-mediated NOX2 expression or activation might 

represent a novel pharmacological avenue to overcome inflammation without interfering 

with physiological TLR signaling.

Biglycan stabilizes HIF-2α and evokes erythropoiesis

Recently, a novel function of biglycan has been discovered in a transgenic mouse model in 

which biglycan was constitutively overexpressed. Surprisingly, chronic increase in 

circulating biglycan leads to elevated hemoglobin concentrations, hematocrit values, and 

enhanced iron binding capacity, leading essentially to a clinical picture identical to 

secondary polycythemia [95]. Mechanistically, soluble biglycan induces polycythemia by 

triggering the hepatic and renal expression of erythropoietin (Epo), a key regulator of 

erythropoiesis. This occurs exclusively via TLR2 and involves biglycan-mediated 

stabilization of HIF-2α, most likely through a hypoxia-independent pathway [95].(Fig. 3). 

This information provides a new link for biglycan in the regulation of inflammation via 

stabilizing HIF-2α, a crucial trigger of pro-inflammatory cytokines, in macrophages [96]. 

Furthermore, these findings are in line with previous reports that biglycan selectively 

interacts with TLRs and their adapter molecules to achieve diverse biological outcomes 

[87,89]. While the clinical relevance of these findings has not been shown yet, it is 

conceivable that biglycan may critically impact tumorigenesis and cardiovascular disease by 

enhancing HIF-2α abundance and triggering secondary polycythemia.
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Inflammatory biglycan signaling in tumor cell biology

Despite growing evidence for a relationship among innate immunity, inflammation, and 

tumor development, the mechanisms responsible for this association are not well-defined 

[97,98]. Although inflammation is a beneficial and essential mechanism in tissue injury and 

pathogen defense, it requires a rapid clearance of inflammatory cells [99]. Imbalance of 

inflammation resolution leads to infiltration of immune cells, which may generate large 

amounts of cytokines, chemokines, and ROS resulting in tissue damage and chronic 

inflammation, thus contributing to tumor initiation and progression [100]. Furthermore, the 

inflammatory microenvironment is considered a hallmark in each stage of tumor 

development [98].

Taking into account the intimate involvement of biglycan in inflammation, it is not 

surprising that the overexpression of biglycan is associated with a variety of human 

malignancies, such as pancreatic adenocarcinoma [101,102], colon cancer [102], ovarian 

cancer [103] intrahepatic cholangiocarcinoma [104], gastric cancer [80], esophageal 

squamous cell carcinoma [105], and melanoma [106]. Moreover, biglycan is involved as a 

regulator of tumorigenesis [60], a prognostic marker for cancer progression and survival 

[107], and a target for colon cancer diagnostics and treatment [108]. It is conceivable that 

biglycan triggers tumorigenesis directly via TLR2/4-NF-κB- and P2X7-NLRP3-caspase-1-

signaling or indirectly via downstream mediators such as pro-inflammatory cytokines, NOX 

enzymes, ROS, HIF-2α, Epo and VEGF [30,77,83,85,86,89,95] (Figs. 2 and 3). Indeed, 

there is mounting evidence that activation of TLR2 and TLR4 leads to cancer progression 

due to increased tumor cell proliferation, resistance to apoptosis, increased production of 

growth factors (e.g. TGF-β, VEGF) and of pro-inflammatory cytokines [109–111]. 

Downstream of TLR2/4, the adaptor molecule MyD88 and its oncogenically-active mutant 

forms, are considered mediators of tumorigenesis in various cancers [112]. Beyond that, 

there is no doubt that constitutive activation of NF-κB and MAPK pathways cause chronic 

inflammation which would favor cancer progression. The complex regulation of 

inflammation by biglycan is a result of signaling crosstalk between TLR2/4- and P2X7-

NLRP3-caspase-1-pathways [88,113,114]. While direct data on biglycan-NLRP3-caspase-1-

signaling in carcinoma cells are not available yet, there is strong evidence for pro-

tumorigenic effects of the NLRP3-caspase-1 signaling pathway [115,116]. Enhanced 

expression and activation of NLRP3 and caspase-1 is considered a poor prognostic sign for 

oncologic patients [115]. Therefore the development of inhibitors selectively targeting the 

NLRP3 inflammasome could be of potential therapeutic value.

Besides directly triggering pro-inflammatory TLR- and inflammasome-signaling, biglycan 

stimulates the generation of pro-inflammatory cytokines, NOX enzymes, ROS, HIF-2α, Epo 

and VEGF, which are crucial mediators of inflammation and angiogenesis in cancer 

development. Accordingly, enhanced generation of NOX-derived ROS in inflammatory 

tumors causes chromosomal DNA alteration and genomic instability, as well as induces 

tumor cell proliferation, survival, and metastasis [117,118]. Furthermore, enhanced HIF-2α, 

which might be due to biglycan-TLR2-dependent HIF-2α stabilization [95], has been 

detected in a variety of tumors with diverse histogenetic background [119,120]. 

Interestingly, there is growing evidence that generation of HIF-2α in cancer is restricted to 
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tumor-associated macrophages (TAMs) [119,121]. By regulating the expression of VEGF, 

VEGF receptors 1/2 and angiopoietins in TAMs, HIF-2α induces tumor angiogenesis and 

triggers the expression of genes involved in tumor cell proliferation and tumor invasion 

[122–124]. On the other hand, biglycan has been described to trigger endothelial cell 

migration and neovascularization of tumors due to its ability to induce VEGF synthesis in a 

TLR2/4-dependent manner [32,77,111]. Additionally, biglycan can generate a reservoir for 

VEGF, which in turn can be released during tumor-associated ECM-degradation, thus 

promoting angiogenesis [125]. Moreover, soluble biglycan is expressed in highly metastatic 

tumor endothelial cells, where it promotes tumor cell migration [126]. Thus, it is 

conceivable that during cancer development enhanced biglycan levels could promote 

stabilization of TAM-derived HIF-2α (Fig. 3) and trigger VEGF production and 

sequestration. Both bioactivities would ultimately trigger tumor angiogenesis.

During tumorigenesis a cross-talk between tumor and stromal cells modifies the 

microenvironment and the ECM [127]. The expression of biglycan by stromal fibroblasts is 

induced by TGF-β, a multi-purpose growth factor [128,129] which might then use the 

TLR2/4 on stromal macrophages to further modulate the tumor microenvironment and to 

induce the recruitment of tumor cells through chemokine production. In addition, biglycan is 

able to increase the affinity of TGF-β to its receptor and therefore promote cancer 

progression. Thus, we presume, that biglycan-triggered TGF-β signaling might create an 

environment, which is prone to tumor development, by triggering the expression of matrix 

proteins and enzymes involved in matrix remodeling [130,131]. Moreover, TGF-β activates 

fibroblast-to-myofibroblast differentiation [132,133], as well as epithelial-to-mesenchymal 

transition (EMT) [134] thus increasing the potential for metastasis. Furthermore, decorin 

interacts with TGF-β [62], to inhibit its signaling pathway, resulting in the reduction of 

fibrosis [135]. Interestingly, TGF-β inhibits decorin transcription [136], a finding opposite to 

the TGF-β-mediated induction of biglycan. These disparate functions of decorin and 

biglycan in the context of TGF-β signaling solidify the contrasting effects seen on 

tumorigenesis by these related proteoglycans, where one diminishes tumor progression 

while the other promotes disease.

Enhanced Epo production based on biglycan-TLR2-HIF-2α signaling [95] provides an 

additional indirect mechanism of biglycan promoted tumorigenesis. Upon binding to 

erythropoietin receptors present on carcinoma cells, Epo promotes tumor growth, local 

invasion, metastasis, angiogenesis and lymphangiogenesis [137–140] (Fig. 3). Thus, there is 

a plethora of direct and indirect mechanisms through which biglycan promotes inflammation 

and angiogenesis resulting in tumor progression.

Besides strong indications for pro-oncogenic functions of biglycan, there are also some 

reports describing tumor suppressive effects of biglycan. For example, biglycan induces cell 

growth arrest in pancreatic cancer cell lines in vitro [78] and inhibits bladder cancer cell 

proliferation [141]. Interestingly, although elevated levels of biglycan correlate with high-

grade human bladder cancer and muscle invasiveness, enhanced expression of tumor-

associated biglycan is linked to a better survival rate [141]. Accordingly, knockdown of 

biglycan leads to increased proliferation of bladder cancer cells, indicating biglycan as an 

endogenous inhibitor of cancer cell growth in urothelial neoplasms [141]. In addition, 
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biglycan induces a high intratumoral inflammatory reaction as well as an enhanced 

autologous tumor response in diffuse large B-cell lymphomas, leading to improved 

therapeutic outcome and survival [142]. Presumably, this dual role of biglycan in 

tumorigenesis depends on the tumor cell type and differentiation stage (Fig. 2). According to 

our current knowledge, a biglycan-mediated chronic inflammatory milieu should promote 

tumor growth. However, acute inflammation caused by administration of biglycan into 

established tumors actually reduces malignant growth, analogous to beneficial effects of 

decorin-TLR2/4 signaling [143] (Fig. 2).

Taken together, the multifunctional involvement of biglycan in the regulation of 

inflammation makes it a potentially druggable target for cancer remedies as well as a novel 

anti-oncogenic therapeutic agent on its own.

Pro-inflammatory signaling of decorin

Analogous to biglycan, decorin induces a TLR2/4-dependent signaling cascade in 

macrophages leading to the activation of the MAPK, ERK, stress-activated protein kinase 

(SAPK) and p38 signaling pathways, and subsequently to the synthesis and secretion of 

CCL-2, TNF-α and IL-12p70 [143,144]. Moreover, decorin possesses the ability to further 

drive the cytokine profile toward a pro-inflammatory phenotype by impeding the production 

of the anti-inflammatory cytokine, IL-10, by macrophages. By sequestering active TGF-β, 

decorin reduces the abundance of TGF-β-driven oncogenic microRNA (miR)-21. miR-21 is 

a translational inhibitor of the tumor suppressor programmed cell death protein 4 (PDCD4), 

which itself post-translationally suppresses IL-10. Consequently, increased PDCD4 

production causes reduction of IL-10 protein abundance [143]. Indeed, due to creating an 

inflammatory milieu in the tumor microenvironment together with reduction of the 

oncogene miR-21 and enhancement of the tumor suppressor PDCD4, decorin inhibits 

growth of established tumors [143]. Thus, decorin, as an important modulator of malignant 

growth, metastasis and tumor microenvironment [67,68,145–148] might be a useful tool for 

anti-tumor interventions.

Conclusions and perspectives

The functions of decorin in tumor biology continue to surface as more sophisticated research 

tools become available [149,150]. Though decorin has been touted as a “guardian from the 

matrix” for many years, this designation was primarily given due to its ability to alter RTK-

signaling, resulting in reduction of tumor growth via cell cycle arrest. More recent work 

demonstrates the incredible versatility of this SLRP as decorin has now acquired a new role 

as a potent autophagic inducer in endothelial cells and a pro-mitophagic agent in tumor cells. 

The ability for decorin to regulate these signaling pathways offers a new perspective on 

matrix-regulation of both the tumor microenvironment as well as the tumor proper. 

Specifically, the capacity of decorin to both inhibit angiogenesis as well as act directly on 

the tumor proper makes it an ideal candidate for drug design. Furthermore, as decorin is a 

naturally-occurring proteoglycan, the side effects of using purified decorin or its biologically 

active fragments will likely be minimal, making it an attractive option for chemotherapy.
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Moving to biglycan, research of the last two years has exponentially improved our 

knowledge regarding the role of this SLRP in inflammation and angiogenesis. There is now 

evidence that, besides mediating inflammation by biglycan, TLR2/4 are required for 

biglycan-dependent synthesis of VEGF and, therefore, regulation of angiogenesis. 

Furthermore, it became clear that biglycan is not only a pro-inflammatory stimulus but is 

also capable of self-limiting inflammation. The underlying mechanism of how biglycan 

tightly balances pro- and anti-inflammatory responses under physiological conditions has 

been provided [89]. Hopefully, these data will encourage further research on the mechanisms 

regarding anti-inflammatory signaling of other ECM-derived danger signals.

Beyond the well-known biglycan-dependent orchestration of various receptor signaling, 

another level of complexity in biglycan-dependent regulation of inflammation has recently 

been described [89]. It is now obvious that besides common signaling via TLR2 and TLR4, 

biglycan selectively binds to only one TLR. After choosing the receptor, the next step of 

signaling is achieved at the level of TLR adaptor molecules, finally resulting in a very 

specific downstream outcome. This might explain why, in certain cell types and under 

certain conditions, biglycan could actually suppress tumorigenesis. The mechanisms of how 

this selection of receptors and adaptors is regulated are not known yet. It is conceivable, 

however, that various co-receptors might help biglycan to “make that specific choice”.

One example for a specific outcome of biglycan-TLR2 signaling is the newly-identified 

function of biglycan to stabilize HIF-2α and increase Epo production [95]. The exact 

mechanisms for biglycan-mediated HIF-2α stabilization still need to be elucidated. 

Although little is known about the biglycan-HIF-2α-Epo signaling axis during 

tumorigenesis, it is likely that the blockade of biglycan/TLR2-binding could protect against 

malignant growth. However, given that TLRs have crucial physiological functions, future 

studies are essential to unravel co-receptors and downstream mechanisms of biglycan/TLR-

signaling for selective druggability in the context of cancer.

In conclusion, both decorin and biglycan are important mediators of tumor initiation and 

progression involving the cellular pathways of angiogenesis, inflammation, and autophagy. 

As the tumor microenvironment is a complex amalgam of different cell types and signaling 

molecules, it is probable that these critical cellular processes are intertwined in an intricate 

system to alter cell growth, metastasis, and nutrient availability for both normal and cancer 

cells. Therefore, it is important to focus on these pathways and their regulation by these and 

other matrix constituents in order to gain a closer understanding of the timeline of events 

involved in tumor initiation as well as to define which pathways are deregulated leading to 

tumor progression. Future therapeutic modalities will materialize as the nuances of these 

signaling pathways are elucidated, and thus it is essential to continue our efforts of 

unravelling the role of these proteoglycans in normal and aberrant physiology.
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Abbreviations

AMPK adenosine monophosphate kinase

CCL chemokine (C–C motif) ligand

CS/DS chondroitin sulfate/dermatan sulfate

CXCL chemokine (C-X-C motif) ligand

ECM ECM

EGFR epidermal growth factor receptor

Epo erythropoietin

ERK extracellular signal-regulated kinases

GAG glycosaminoglycan

HGF/Met hepatocyte growth factor

HIF hypoxia inducible factor

HSP heat shock protein

HSPG2 heparan sulfate proteoglycan 2

IL interleukin

LC3 microtubule-associated protein light chain 3

LRP6 LDL-receptor related protein 6

MyD88 Myeloid differentiation primary response protein

NOX NADPH oxidase

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NLRP3 NOD-like receptor protein 3

PDGF platelet-derived growth factor

Peg3 paternally expressed gene 3

ROS reactive oxygen species

SLRP small, leucine-rich proteoglycan

TAM tumor associated macrophages

TLR Toll-like receptor

TGF-β transforming growth factor β

TRIF Toll/IL-1R domain-containing adaptor inducing IFN-β
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VEGF vascular endothelial growth factor

VEGFR2 vascular endothelial growth factor receptor 2
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Fig. 1. 
Decorin exhibits promiscuity in its ability to alter tumorigenesis via regulation of 

angiogenesis, autophagy, and inflammation. Decorin antagonizes RTKs, such as EGFR and 

Met, on the tumor cell surface to inhibit angiogenesis via suppression of pro-angiogenic 

factors, such as VEGFA, as well as induction of anti-angiogenic proteins, such as 

thrombospondin-1, while simultaneously reducing tumor growth via cell cycle arrest and 

inhibition of Myc and β-catenin. Signaling through Met also induces mitostatin leading to 

tumor cell mitophagy. Interaction between decorin and VEGFR2 in endothelial cells results 

in autophagic induction vis-à-vis the canonical intermediates, Beclin 1 and LC3 as well as 

with the novel autophagic regulator, Peg3. In inflammatory cells, decorin signals through 

TLR2/4 to induce pro-inflammatory mediators, which reduces tumor growth.
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Fig. 2. 
Dual role of biglycan in the control of inflammation and tumorigenesis. Soluble biglycan 

triggers mRNA expression of pro-inflammatory cytokines and chemokines Il1β, Cxcl1, 

Cxcl2, and Ccl2 in macrophages in a TLR2/4- and MyD88-dependent manner, while it 

selectively stimulates the expression of Ccl5 through TLR4 and TRIF. By clustering TLR2/4 

and the P2X7 soluble biglycan induces the NLRP3-inflammasome, activating caspase-1 and 

releasing mature IL-1β. Moreover, biglycan directly mediates the expression of Nox2 

mRNA via TLR4/TRIF and the activation of NOX2 in a TLR4/MyD88-dependent manner, 

thereby attenuating the expression of the pro-inflammatory cytokine IL-1β. In contrast, by 

engaging TLR2, soluble biglycan triggers the expression of HSP70, which binds to NOX2, 

and consequently impairs the inhibitory function of NOX2 on biglycan-mediated IL-1β 
expression and maturation.
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Fig. 3. 
Biglycan induces tumorigenesis via HIF-2α stabilization and Epo expression. Soluble 

biglycan binds to the TLR2 in the kidney and/or in the liver and induces the stabilization of 

HIF-2α produced in liver, kidneys and tumor-associated macrophages (purple). HIF-2α 
subsequently induces the expression of erythropoietin (Epo). Epo is than released into the 

circulation, where it may stimulate tumor angiogenesis, cell growth and cell migration, as 

well as tumor lymphangiogenesis, thus inducing tumorigenesis.
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