16,808 research outputs found

    Dynamics of clusters: From elementary to biological structures

    Get PDF
    Between isolated atoms or molecules and bulk materials there lies a class of unique structures, known as clusters, that consist of a few to hundreds of atoms or molecules. Within this range of "nanophase," many physical and chemical properties of the materials evolve as a function of cluster size, and materials may exhibit novel properties due to quantum confinement effects. Understanding these phenomena is in its own rights fundamental, but clusters have the additional advantage of being controllable model systems for unraveling the complexity of condensed-phase and biological structures, not to mention their vanguard role in defining nanoscience and nanotechnology. Over the last two decades, much progress has been made, and this short overview highlights our own involvement in developing cluster dynamics, from the first experiments on elementary systems to model systems in the condensed phase, and on to biological structures

    Hierarchical micro-adaptation of biological structures by mechanical stimuli

    Get PDF
    Remodeling and other evolving processes such as growth or morphogenesis are key factors in the evolution of biological tissue in response to both external and internal epigenetic stimuli. Based on the description of these processes provided by Taber, 1995 and Humphrey et al., 2002 for three important adaptation processes, remodeling, morphogenesis and growth (positive and negative), we shall consider the latter as the increase/decrease of mass via the increase/decrease of the number or size of cells, leading to a change in the volume of the organ. The work of Rodriguez et al. (1994) used the concept of natural configuration previously introduced by Skalak et al. (1982) to formulate volumetric growth. Later, Humphrey et al. (2002) proposed a constrained-mixture theory where changes in the density and mass of different constituents were taken into account. Many other works about biological growth have been presented in recent years, see e.g. Imatani and Maugin, 2002, Garikipati et al., 2004, Gleason and Humphrey, 2004, Menzel, 2004, Amar et al., 2005, Ganghoffer et al., 2005, Ateshian, 2007, Goriely et al., 2007, Kuhl et al., 2007, Ganghoffer, 2010a, Ganghoffer, 2010b and Goktepe et al., 2010. Morphogenesis is associated to changes in the structure shape (Taber, 1995 and Taber, 2009) while remodeling denotes changes in the tissue microstructure via the reorganization of the existing constituents or the synthesis of new ones with negligible volume change. All these processes involve changes in material properties. Although remodeling and growth can, and usually do, occur simultaneously, there are some cases where these processes develop in a decoupled way. For example, Stopak and Harris (1982) reported some experimental results showing remodeling driven by fibroblasts, with no volume growth. We will assume this scenario in this contribution, focusing exclusively on remodeling processes and on the reorientation of fibered biological structures. It is well known that biological tissue remodels itself when driven by a given stimulus, e.g. mechanical loads such as an increase in blood pressure, or changes in the chemical environment that control the signaling processes and the overall evolution of the tissue. Biological remodeling can occur in any kind of biological tissue. In particular, the study of collagen as the most important substance to be remodeled, in all its types (preferentiallyPeer ReviewedPostprint (author's final draft

    Novel parameter estimation schemes in microsystems

    Get PDF
    This paper presents two novel estimation methods that are designed to enhance our ability of observing, positioning, and physically transforming the objects and/or biological structures in micromanipulation tasks. In order to effectively monitor and position the microobjects, an online calibration method with submicron precision via a recursive least square solution is presented. To provide the adequate information to manipulate the biological structures without damaging the cell or tissue during an injection, a nonlinear spring-mass-damper model is introduced and mechanical properties of a zebrafish embryo are obtained. These two methods are validated on a microassembly workstation and the results are evaluated quantitatively

    Acoustics and Biological Structures

    Get PDF
    Within the context of noise-induced health effects, the impact of airborne acoustical phenomena on biological tissues, particularly within the lower frequency ranges, is very poorly understood. Although the human body is a viscoelastic-composite material, it is generally modeled as Hooke elastic. This implies that acoustical coupling is considered to be nonexistent at acoustical frequencies outside of the human auditory threshold. Researching the acoustical properties of mammalian tissue raises many problems. When tissue samples are investigated as to their pure mechanical properties, stimuli are not usually in the form of airborne pressure waves. Moreover, since the response of biological tissue is dependent on frequency, amplitude, and time profile, precision laboratory equipment and relevant physiological endpoints are mandatory requirements that are oftentimes difficult to achieve. Drawing upon the viscoelastic nature of biological tissue and the tensegrity model of cellular architecture, this chapter will visit what is known to date on the biological response to a variety of different acoustic stimuli at very low frequencies

    Paradoxes in biological structures

    Get PDF

    Measurement of biological structures humidity

    Get PDF
    Práce shrnuje známé metody měření kapalin a vlhkosti u komplikovaných biologických struktur. Jsou zde uvedeny a popsány jednotlivé metody i jejich princip. Práce zahrnuje popis a tvorbu indukčního a kapacitního senzoru. Jsou zde uvedené informace pro vytvoření indukčního i kapacitního senzoru.The work summarizes known methods about measuring liquids and humidity in complicated biological structures. Particular methods and their principles are stated and described here. This work includes description and creation of inductive and capacitive sensor as well as information for creating inductive and capacitive sensor.

    Suspended manufacture of biological structures

    Get PDF
    We present a novel method of extrusion-based ALM for the production of cell-laden strucutres from low viscosity polymers. The traditional planar print bed is replaced with a bed of micoparticulate fluid gel. During the extrusion process, the fluid gel is displaced whilst providing a support strucutre for the low viscosity material allowing manufacture of relatively complex geometries. The extruded structure can then be easily removed from this self-healing fluid bed. For this study, a bi-layered cell-seeded construct was produced to model the osteochondral junction. Osteochondral plugs were produced by the addition of chondrocytes and osteoblasts to 1.5%w/v gellan and 1.5%w/v gellan-5% nano-hydroxyapatite respectively. The consecutive extrusion of these two solutions into the fluid bed followed by further ionic crosslinking produced the bi-layered construct that was implant into a femoral condyle defect in vitro. Cell viability following extrusion was confirmed using calcein AM/PI live/dead staining showing excellent viability. Constructs were then sectioned, and qRT-PCR was performed, showing a native collagen phenotype across the construct with evidence of matrix markers in the cartilage-like region which were also identified using fluroescent-IHC. Constructs were also tested for their bulk relaxation properties. Addition of nano-hydroxyapatite in the bone-like region resulted in a faster, more elastic relaxation than gellan alone, something that has previously been reported to favour osteogenic differentiation. Please click Additional Files below to see the full abstract

    Biological systems for human life support: Review of the research in the USSR

    Get PDF
    Various models of biological human life support systems are surveyed. Biological structures, dimensions, and functional parameters of man-chlorella-microorganism models are described. Significant observations and the results obtained from these models are reported
    corecore