240 research outputs found

    Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication

    Get PDF
    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a co-ordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e. via expression from a separate RNA molecule), whilst other are required in cis (i.e. expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA-polymerase (RdRp), 3D, are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically-active 3D molecules and those which build a replication complex. We report a novel non-enzymatic cis-acting function of 3D that is essential for viral genome replication. Using a FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans-acting. Immunofluorescence studies suggest that both cis- and trans acting 3D molecules localise to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. Together, this study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further

    The structure of a protein primer-polymerase complex in the initiation of genome replication

    Get PDF
    Picornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues. In both complexes, VPg fits the RNA binding cleft of the polymerase and projects the key residue Tyr3 into the active site of 3D. This is achieved by multiple interactions with residues of motif F and helix α8 of the fingers domain and helix α13 of the thumb domain of the polymerase. The complex obtained in the presence of the oligoadenylate showed the product of the VPg uridylylation (VPg-UMP). Two metal ions and the catalytic aspartic acids of the polymerase active site, together with the basic residues of motif F, have been identified as participating in the priming reaction. © 2006 European Molecular Biology Organization | All Rights Reserved.Work in Barcelona was supported by Grants BIO2002-00517 and BFU2005-02376/BMC. Work in Madrid by Grants BMC 2001.1823.C02-01, BFU2005-00863/BMC and Fundación R Areces. CF and AA were supported by I3P fellowships from Ministerio de Educación y Ciencia. RA was supported by an FPI fellowship from Comunidad de Madrid. The financial support was provided by the ESRFPeer Reviewe

    A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape

    Get PDF
    Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin —by avoiding the biased repertoire of transition mutations produced by this purine analogue—and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure

    Fatal pneumonia by Legionella in a farmer with hypersensitivity pneumonitis

    Get PDF
    Artículos originales[ES] Introducción: La investigación retrospectiva sobre un fallecimiento aislado por Legionelosis, hizo aflorar un caso de neumonitis por hipersensibilidad en un granjero cuidador de cerdos. Métodos: Se realizaron las siguientes pruebas: tomografía axial computerizada de alta resolución, lavado broncoalveolar, biopsia pulmonar, gasometría arterial, pruebas de función respiratoria y autopsia. Se estudió la presencia de Legionella por serología y se analizaron las muestras de fuentes de riesgo para identificar el foco de Legionella. Resultados: El estudio confirmó los diagnósticos de neumonitis por hipersensibilidad y neumonía por Legionella pneumophila. Las pruebas realizadas objetivaron la fibrosis pulmonar, un patrón respiratorio funcional restrictivo, un descenso de la difusión pulmonar, hipoxemia y la presencia de linfocitosis en el lavado broncoalveolar. Se detectó el foco de Legionella en una ducha y la serología fue positiva en el paciente. La autopsia confirmó la fibrosis pulmonar y el shock séptico por Legionella que causó la muerte. Conclusiones: La presencia de tos crónica e infiltrados pulmonares en un granjero debería hacer sospechar la existencia de una neumonitis por hipersensibilidad. Retrasar su diagnóstico conlleva un peor pronóstico, impide evitar la exposición a los antígenos causantes del cuadro y permite el avance de la fibrosis pulmonar facilitando la aparición de infecciones oportunistas.[EN] Background: The retrospective investigation of a fatal sporadic Legionnaires’ disease identified an unknown case of occupational hypersensitivity pneumonitis in a swine breeder. Methods: Chest high-resolution computed tomography, bronchoalveolar lavage, lung biopsy, arterial gasometry, pulmonary function tests and autopsy were performed. It was studied the presence of Legionella by serology and risk water samples were analyzed to identify the Legionella’s source. Results: HP and Legionella pneumophila pneumonia diagnostics were confirmed. Lung fibrosis, a restrictive functional pattern, decreased diffusion, hypoxemia and bronchoalveolar lavage lymphocytosis were evidenced. Legionella´s source was detected in a shower and a positive serology in the patient. Autopsy verified pulmonary fibrosis and the septic shock leaded to Legionella causing the death. Conclusions: Chronic cough and pulmonary infiltrates in a farmer should suspect the presence of hypersensitivity pneumonitis. Later diagnosis carries a worse prognosis, the offending antigens exposure can’t be avoided and fibrotic stage enhanced opportunity infection disease.N

    Molecular characterization of a 13-amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87

    Get PDF
    The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3Dpol) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3Dpol coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp26→Glu substitution in a beta sheet located within a small groove of the 3Dpol protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment

    Soft Skills y empleabilidad: Estudio de las habilidades blandas de los estudiantes en prácticas de la Facultad de Comercio y Turismo para su mejor inserción laboral

    Get PDF
    Estudio de las habilidades blandas de estudiantes en prácticas con el fin de identificar posibles limitaciones, ofrecer herramientas necesarias para transformarlas en habilidades empoderadoras en su perfil profesional y potenciar su empleabilidad

    Amino acid substitutions associated with treatment failure of hepatitis C virus infection

    Get PDF
    Trabajo presentado en el XVI Congreso Nacional de Virología, celebrado en Málaga (España) del 06 al 09 de septiembre de 2022.Despite the high sustained virological response rates achieved with current directly-acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of patients do not achieve such a response. Identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultra-deep sequencing (UDS) methods for HCV characterization and patient management. By deep sequencing analysis of 220 subtyped HCV samples from infected patients who failed therapy, collected from 39 Spanish hospitals, we determined amino acid sequences of the DAA-target proteins NS3, NS5A and NS5B, by UDS of HCV patient samples, in search of resistanceassociated substitutions (RAS). Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide RAS. They were present frequently in basal and post-treatment virus of patients who failed therapy to different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Coherently, their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. Also, they have limited predicted disruptive effects on the threedimensional structures of the proteins harboring them. The information on HRSs that will be gathered during sequencing should be relevant not only to help predict treatment outcomes and disease progression but also to further understand HCV population dynamics, which appears much more complex than thought prior to the introduction of deep sequencing.The work at CBMSO was supported by grants SAF2014-52400-R from MINECO, SAF2017-87846-R and BFU2017-91384-EXP MICIU, PI18/00210 from ISCIII, S2013/ABI-2906 (PLATESA) and S2018/BAA-4370 (PLATESA2) from Comunidad de Madrid/FEDER. C.P. is supported by the Miguel Servet program of the ISCIII (CP14/00121 and CPII19/00001), cofinanced by the European Regional Development Fund (ERDF). CIBERehd is funded by ISCIII. Institutional grants from the Fundación Ramón Areces and Banco Santander to the CBMSO are also acknowledged. The team at CBMSO belongs to the Global Virus Network (GVN). The work in Barcelona was supported by ISCIII, cofinanced by ERDF grant number PI19/00301 and by the Centro para el Desarrollo Tecnológico Industrial (CDTI) from the MICIU, grant number IDI20151125. Work at CAB was supported by MINECO grant BIO2016-79618R and PID2019-104903RB-I00 (funded by the EU under the FEDER program) and by the Spanish State research agency (AEI) through project number MDM-2017-0737 Unidad de Excelencia “María de Maeztu”-Centro de Astrobiología (CSIC-INTA). Work at IBMB was supported by MICIN grant BIO2017-83906-P (funded by the EU under the FEDER program). C.G.-C. is supported by predoctoral contract PRE2018-083422 from MICIU. B.M.-G. is supported by predoctoral contract PFIS FI19/00119 from Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo), cofinanced by Fondo Social Europeo (FSE).Peer reviewe

    Reinitiated viral RNA-dependent RNA polymerase resumes replication at a reduced rate

    Get PDF
    RNA-dependent RNA polymerases (RdRP) form an important class of enzymes that is responsible for genome replication and transcription in RNA viruses and involved in the regulation of RNA interference in plants and fungi. The RdRP kinetics have been extensively studied, but pausing, an important regulatory mechanism for RNA polymerases that has also been implicated in RNA recombination, has not been considered. Here, we report that RdRP experience a dramatic, long-lived decrease in its elongation rate when it is reinitiated following stalling. The rate decrease has an intriguingly weak temperature dependence, is independent of both the nucleotide concentration during stalling and the length of the RNA transcribed prior to stalling; however it is sensitive to RNA structure. This allows us to delineate the potential factors underlying this irreversible conversion of the elongation complex to a less active mode

    Dynamics on multiple timescales in the RNA-directed RNA polymerase from the cystovirus ϕ6

    Get PDF
    The de novo initiating RNA-directed RNA polymerase (RdRP), P2, forms the central machinery in the infection cycle of the bacteriophage ϕ6 by performing the dual tasks of replication and transcription of the double-stranded RNA genome in the host cell. By measurement and quantitative analysis of multiple-quantum spin-relaxation data for the δ1 positions of Ile residues that are distributed over the 3D-fold of P2, we find that the enzyme is dynamic both on the fast (ps–ns) and slow (µs–ms) timescales. The characteristics of several motional modes including those that coincide with the catalytic timescale (500–800/s) are altered in the presence of substrate analogs and single-stranded RNA templates. These studies reveal the plasticity of this finely tuned molecular machine and represent a first step towards linking structural information available from a host of crystal structures to catalytic mechanisms and timescales obtained from the measurements of kinetics for homologous systems in solution
    corecore