4,720 research outputs found

    Manufacturing and services in Italian labour market areas in an historical perspective (1981-1996)

    Get PDF
    The basic hypothesis of this paper is the existence of strong territorial disparities in services development. In many areas a strict integration emerges between manufacturing production and endowment of tertiary functions; in other regions the sparse presence of services may result in belated development or slow growth. From a sectoral point of view, the analysis goes beyond the classical tripartition of industries, proposing a classification of services based both on the nature of the service given and the features of their users. From a geographical point of view, a territorial grid based on local labour market areas as proposed by Istat [1997] is adopted. The long-term analysis - based on Census data from 1981 to 1996 - allows to identify territorial regularities in development patterns across LLMAs, with respect to manufacturing and services and to different growth paths (convergence, externalisation, integration, ...).

    Patterns of Inter-Chromosomal Gene Conversion on the Male-Specific Region of the Human Y Chromosome

    Get PDF
    The male-specific region of the human Y chromosome (MSY) is characterized by the lack of meiotic recombination and it has long been considered an evolutionary independent region of the human genome. In recent years, however, the idea that human MSY did not have an independent evolutionary history begun to emerge with the discovery that inter-chromosomal gene conversion (ICGC) can modulate the genetic diversity of some portions of this genomic region. Despite the study of the dynamics of this molecular mechanism in humans is still in its infancy, some peculiar features and consequences of it can be summarized. The main effect of ICGC is to increase the allelic diversity of MSY by generating a significant excess of clustered single nucleotide polymorphisms (SNPs) (defined as groups of two or more SNPs occurring in close proximity and on the same branch of the Y phylogeny). On the human MSY, 13 inter-chromosomal gene conversion hotspots (GCHs) have been identified so far, involving donor sequences mainly from the X-chromosome and, to a lesser extent, from autosomes. Most of the GCHs are evolutionary conserved and overlap with regions involved in aberrant X-Y crossing-over. This review mainly focuses on the dynamics and the current knowledge concerning the recombinational landscape of the human MSY in the form of ICGC, on how this molecular mechanism may influence the evolution of the MSY, and on how it could affect the information enclosed within a genomic region which, until recently, appeared to be an evolutionary independent unit

    Near field shielding of a wireless power transfer (WPT) current coil

    Get PDF
    The configuration of an infinite planar conductive shield is examined when it is excited by an electromagnetic near field generated by a coil current source as that of a wireless power transfer (WPT) system. The analytical expressions of the electromagnetic field based on the transmission theory of shielding are given for different frequencies and different incidence angles of the near field generated by the coil current, assuming the conductive planar shield placed in the close proximity of the coil. The obtained results are discussed and compared with other traditional analytical and numerical solutions

    Dexterous Manipulation Graphs

    Full text link
    We propose the Dexterous Manipulation Graph as a tool to address in-hand manipulation and reposition an object inside a robot's end-effector. This graph is used to plan a sequence of manipulation primitives so to bring the object to the desired end pose. This sequence of primitives is translated into motions of the robot to move the object held by the end-effector. We use a dual arm robot with parallel grippers to test our method on a real system and show successful planning and execution of in-hand manipulation

    Evidence of extensive non-allelic gene conversion among LTR elements in the human genome

    Get PDF
    Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes

    EXplainable Artificial Intelligence: enabling AI in neurosciences and beyond

    Get PDF
    The adoption of AI models in medicine and neurosciences has the potential to play a significant role not only in bringing scientific advancements but also in clinical decision-making. However, concerns mounts due to the eventual biases AI could have which could result in far-reaching consequences particularly in a critical field like biomedicine. It is challenging to achieve usable intelligence because not only it is fundamental to learn from prior data, extract knowledge and guarantee generalization capabilities, but also to disentangle the underlying explanatory factors in order to deeply understand the variables leading to the final decisions. There hence has been a call for approaches to open the AI `black box' to increase trust and reliability on the decision-making capabilities of AI algorithms. Such approaches are commonly referred to as XAI and are starting to be applied in medical fields even if not yet fully exploited. With this thesis we aim at contributing to enabling the use of AI in medicine and neurosciences by taking two fundamental steps: (i) practically pervade AI models with XAI (ii) Strongly validate XAI models. The first step was achieved on one hand by focusing on XAI taxonomy and proposing some guidelines specific for the AI and XAI applications in the neuroscience domain. On the other hand, we faced concrete issues proposing XAI solutions to decode the brain modulations in neurodegeneration relying on the morphological, microstructural and functional changes occurring at different disease stages as well as their connections with the genotype substrate. The second step was as well achieved by firstly defining four attributes related to XAI validation, namely stability, consistency, understandability and plausibility. Each attribute refers to a different aspect of XAI ranging from the assessment of explanations stability across different XAI methods, or highly collinear inputs, to the alignment of the obtained explanations with the state-of-the-art literature. We then proposed different validation techniques aiming at practically fulfilling such requirements. With this thesis, we contributed to the advancement of the research into XAI aiming at increasing awareness and critical use of AI methods opening the way to real-life applications enabling the development of personalized medicine and treatment by taking a data-driven and objective approach to healthcare
    • …
    corecore