
Progress In Electromagnetics Research C, Vol. 77, 39–48, 2017

Near Field Shielding of a Wireless Power Transfer (WPT)
Current Coil

Mauro Feliziani1, *, Silvano Cruciani1, Tommaso Campi1, and Francesca Maradei2

Abstract—The configuration of an infinite planar conductive shield is examined when it is excited
by an electromagnetic near field generated by a coil current source as that of a wireless power transfer
(WPT) system. The analytical expressions of the electromagnetic field based on the transmission theory
of shielding are given for different frequencies and different incidence angles of the near field generated
by the coil current, assuming the conductive planar shield placed in the close proximity of the coil. The
obtained results are discussed and compared with other traditional analytical and numerical solutions.

1. INTRODUCTION

Low frequency shielding is traditionally a hot topic since the magnetic field is considered a
critical issue in terms of both Electric and Magnetic Field (EMF) safety and Electromagnetic
Compatibility/Electromagnetic Interference (EMC/EMI). In the past, great attention was addressed to
extremely low frequency (ELF) applications due to the public concern for human exposure to magnetic
fields, especially after the 2002 IARC classification of power frequency magnetic fields as possibly
carcinogenic to humans (Group 2B). This concern is even amplified by the difficulties in mitigating
low frequency magnetic fields [1–12].

Nowadays, growing interest is directed to EMF safety concerns about magnetic fields in applications
related to the emerging technology of the Wireless Power Transfer (WPT) based on magnetic resonant
coils [13–20]. WPT for battery recharging is spreading in a number of applications such as automotive,
biomedical devices, and consumer electronics. In future perspective, we can envision the progressive
substitution of the power wiring systems with wireless links based on inductive coupling. It means that
humans and electrical/electronic devices will be exposed to magnetic fields at frequencies in the range
between a few kilohertz and tens of megahertz.

For the aforementioned reasons, there is big renovated interest for low-frequency low-impedance
electromagnetic shielding in case the source is given by a current flowing into a coil at frequencies higher
than the power frequency. This simple configuration can be seen as the basis for the calculation method
of WPT multicoil/multiturn systems.

Near-field shielding has been investigated for many years [1–9], but the analytical expressions given
in [2, 3] are very complex and not very accurate at higher frequencies because the axial variation of
eddy currents within the shield is neglected, so industry engineers and technicians often prefer to deal
with numerical studies instead of solving difficult analytical equations. However, the numerical approach
based on the solution of partial differential equations (PDE) is not an easy task at the higher frequencies
when the penetration depth inside the conductive shield region is so much smaller than the shield
thickness, and solution of a three-dimensional shielding configuration requires heavy computations.
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To overcome this inconvenience, the transmission theory of shielding is here applied to evaluate
the shielding effectiveness of a planar conductive shield when it is excited by the near field generated
from a circular loop current. This method, known also as transmission line (TL) method, is not based
on the solution of partial differential equations (PDE) as in [2, 3], but based on the adaptation of the
classical shielding theory proposed in [1, 5, 6, 9] to the case of a current coil above a planar shield. The
TL method for shielding is based on the solution of telegraphers’ equations in terms of field quantities
to account the quasi TEM field propagation inside a highly conductive shield barrier. For plane wave
excitation, the TL terminations are given in terms of wave impedances calculated as the ratio between
the tangential components of electric and magnetic incident fields. For near-field sources, the field
in air is quasi stationary, and the TL is terminated on impedances which are not always identical
to the wave impedances of the incident field. The use of realistic values of wave impedances as TL
terminations is a key point in the adaptation of the TL method to near-field shielding problems. In
the past, several authors used, as TL terminations in near field applications, the wave impedances
of the incident field as usually done for far-field methods; however, this solution produces accurate
results only in the axial direction of the circular coil [3, 5], but not in the radial direction which is
very important in some applications as WPT. Here, the TL method for near-field shielding is reviewed
and improved to achieve good accuracy in a wide frequency range and for different values of the radial
distance. The accuracy of the TL method has been significantly increased by applying a suitable
expression of the wave impedance used as terminal load of the equivalent TL. In the following sections,
the mathematical method is described and discussed. Then some applications are presented to show the
advantages and disadvantages of the proposed method compared with other analytical and numerical
techniques. Finally, it should be pointed out that this procedure is completely analytical and based on
TL/circuit approach. Thus, the proposed method is very different from Impedance Network Boundary
Conditions (INBCs) [24–27] or similar approaches that have been utilized to eliminate the shield from
the computational domain in PDE numerical solution in order to reduce the computational cost.

2. MATHEMATICAL METHOD

2.1. System Configuration

The configuration under examination is given by an infinite planar conductive shield excited by a
magnetic near field produced by a current loop of radius R. The planar loop and conductive shield
of thickness t are parallel, both lying in the xy plane and separated by a distance d, as shown in
Fig. 1. The coil is assumed to be in free space, and the planar shield is composed of a linear lossy
material with specific constants σ, ε = εrε0, μ = μrμ0, with σ being the conductivity and εr and μr

the relative permittivity and permeability, respectively. The wire is assumed to be very thin, and the
small loop approximation is adopted, i.e., time-harmonic current I = Iϕ is constantly distributed in
the coil. The configuration under study is suitable to be modeled by a 2D axially symmetrical domain
using cylindrical coordinates (ρ, ϕ, z). The only non-zero field components are Eϕ, Hρ and Hz, whose
expressions are analytically known in free space [21–23]. The field created by the current loop in free
space is assumed to be the incident field (i.e., field in the absence of the shield) on the planar shield.

2.2. Field Propagation inside Conductive Shield

Some simplifying assumptions are made in the present study. The infinite planar shield of thickness t is
considered composed by a good conductor material (σ � ωε). It means that the displacement currents
are negligible in comparison with conductive currents. This assumption is valid at any frequency for
many practical WPT applications when considering metal shields, e.g., made with aluminum or copper.

Another relevant assumption is that the tangential components of the electromagnetic field inside
the conductive shield propagate in the direction ζ perpendicular to the shield surfaces Γ0 and Γt, and
therefore, the refraction angle is assumed to be zero [9]. This approximation can be successfully used
for a large value of σ as that of metals. Thus, the propagation of the field tangential components
inside the shield barrier can be modeled by the TL theory of shielding, i.e., plane wave propagation
described by telegraphers’ equations in terms of transversal components of electric and magnetic fields.
This approach is well described in [9] for spatially constant incident fields and is widely used for plane
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Figure 1. System configuration.

wave incident fields with any incidence angle. Here, this approach is assumed to be valid at any point
on the shield surfaces for a spatially varying incident field as that created by a current loop. Thus,
the TL equations in terms of tangential components of electric and magnetic fields, Eϕ and Hρ, which
depend on cylindrical coordinates ρ, ζ = z − d and independent of ϕ due to axial symmetry, are given
for t ≥ ζ ≥ 0 by:

dEϕ(ρ, ζ)
dζ

= jωμHρ(ρ, ζ) (1)

dHρ(ρ, ζ)
dζ

= (σ + jωε) Eϕ(ρ, ζ) ≈ σEϕ(ρ, ζ) (2)

By a simple mathematical treatment, the tangential components of the electric and magnetic fields at
both sides of the solid planar shield (Eϕ0(ρ) and Hρ0(ρ) on Γ0 at ζ = 0; Eϕt(ρ) and Hρt(ρ) on Γt at
ζ = t) are related by the following equations:

Eϕ0(ρ) = cosh (γst)Eϕt(ρ) + ηs sinh (γst) Hρt(ρ) (3)

Hρ0(ρ) =
sinh (γst)

ηs
Eϕt(ρ) + cosh (γst)Hρt(ρ) (4)

where ηs and γs are the spatially constant intrinsic impedance and propagation constant of the shield,
given for a good conductor by:

ηs =

√
jωμ

σ
(5)

γs =
√

jωμσ (6)

To determine the field tangential components in Eq. (2), it is necessary to apply boundary conditions
(BCs). This problem can be modeled by an equivalent circuit, where the shield is modeled by a lossy TL
when considering distributed parameter circuit as shown in Fig. 2(a), or by a T -type lumped parameter
equivalent circuit as shown in Fig. 2(b). The BCs are modeled as circuit terminations. Traditionally, the
terminal loads are the wave impedances Zw0(ρ) and Zwt(ρ) that depend only on the source configuration,
while the series impedance Zs and shunt impedance Za are spatially constant since they depend at a
given frequency only on the shield characteristics (i.e., thickness, material, etc.), and their expressions
are given by [9]:

Zs = ηs
cosh (γst) − 1

sinh (γst)
(7)

Za = ηs
1

sinh (γst)
(8)
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Figure 2. Equivalent TL configuration for a near field incident to a conductive shield. (a) Distributed
parameter equivalent circuit. (b) Lumped parameter equivalent circuit.

Note that in the equivalent circuit of Fig. 2, the two-port network representing the shield is spatially
constant when considering a solid planar shield, while the terminations, H i

ρ0(ρ), Zw0(ρ) and Zwt(ρ),
spatially vary depending on the source configuration.

The circuit excitation is given by Norton equivalent representation as an independent current source
function of the incident magnetic field H i

ρ(ρ, 0) at ζ = 0 in parallel with the wave impedance Zw0(ρ).
Both source and wave impedance can be obtained analytically. In the traditional application of the
TL method for shielding, the right terminal wave impedance is given by the ratio of the tangential
components of the incident fields, but this approach does not achieve good results [3]. Here a significant
modification is carried out modifying the right terminal load Zwt(ρ) at ζ = t which is assumed to be
the ratio of the tangential components of the total fields instead of the incident fields. Thus the two
terminal impedances, Zw0(ρ) at ζ = 0 and Zwt(ρ) at ζ = t, are given for a circular current loop by [2]:

Zw0(ρ) =
−Ei

ϕ0(ρ)
H i

ρ0(ρ)
=

jωμ02Rρα2 [(2 − p)K (p) − 2F (p)]
dp [(R2 + ρ2 + d2)F (p) − α2K (p)]

(9)

and

Zwt(ρ) =
−Eϕt(ρ)
Hρt(ρ)

= −jω

∞∫
0

Cλτ

τ0
J1 (λR)J1 (λρ) e−τ0d−t(τ−τ0)dλ

∞∫
0

Cλτ

τ2
0

J1 (λR)J1 (λρ) e−τ0d−t(τ−τ0)dλ

(10)

when F and K are elliptical integrals with argument p = 1 − (α/β)2. and when posing α2 =
R2 + ρ2 + d2 − 2Rρ, β2 = α2 + 4Rρ while Jν is the Bessel integral function of first kind with ν = 1,
τ =

√
λ2 − jωμσ, τ0 =

√
λ2 − ω2μ0ε0, C = ((τ/τ0 + μr)2 − (τ/τ0 − μr)2e−2tτ )−1.

The input impedance Zi0(ρ) seen at the circuit port 1-1’ (see Fig. 2) is given by:

Zi0(ρ) = Zs + Za
Zs + Zwt(ρ)

Za + Zs + Zwt(ρ)
(11)

It should be noted that for many practical shielding configurations for WPT systems |ηs| < |Zi0(ρ)| �
|Zw0(ρ)|, |Zwt(ρ)|. It means that the TL termination is a high impedance load, and therefore, a
significant reflection of the tangential fields occurs.



Progress In Electromagnetics Research C, Vol. 77, 2017 43

The tangential components of the electric and magnetic fields on Γ0 at ζ = 0 are then obtained via
circuit analysis by:

Hρ0(ρ) =
Zw0(ρ)

Zw0(ρ) + Zi0(ρ)
2H i

ρ0(ρ) (12)

Eϕ0(ρ) =
Zi0(ρ)Zw0(ρ)

Zw0(ρ) + Zi0(ρ)
2H i

ρ0(ρ) (13)

From the knowledge of Eϕ0(ρ) and Hρ0(ρ) the tangential fields Eϕt(ρ) and Hρt(ρ) on Γt at ζ = t can
be simply derived via Eqs. (3)–(4). By simple manipulations, the ratio between the incident and the
shielded magnetic fields at any point ρ on Γt can be obtained as:

H i
ρt(ρ)

Hρt(ρ)
=

Zw0(ρ) + Zi0(ρ)
2Zw0(ρ) (−Zi0(ρ) sinh (γst) /ηs + cosh (γst))

(14)

By the analysis of the equivalent circuit, it is possible to accurately evaluate the tangential components
of the magnetic field, Hρτ , and of the electric field, Eϕt, behind the shield. The problem still to be solved
is the evaluation of the normal component of the magnetic field, Hz. This component can be simply
evaluated via the magnetic vector potential A = Aϕϕ̂ [2]. In fact, Eϕ is the only non-zero component
of the electric field E and is given by

Eϕ = −jωAϕ, (15)

and the magnetic field related to the magnetic vector potential given by

H = Hρρ̂ + Hzẑ =
1
μ
∇× A, (16)

thus, the normal component of the magnetic field, Hz, is derived as:

Hz =
1
μ

(∇× A)z =
1
μ

(∇× Aϕϕ̂)z =
1
μ

(
∂Aϕ

∂ρ
+

1
ρ
Aϕ

)
(17)

or in terms of the electric field Eϕ as

Hz = − 1
jωμ

(
∂Eϕ

∂ρ
+

1
ρ
Eϕ

)
(18)

Equation (18) can be easily calculated when the electric field distribution is known, that is exactly our
case in which the electric field is obtained by the solution of the equivalent circuit in Fig. 2.

The shielding effectiveness of the magnetic field, SEH , in decibels (dB), can be calculated by:

SEH(ρ) = 20 log10

∣∣H i
t(ρ)

∣∣
|Ht(ρ)| (19)

where H i
t(ρ) is the incident magnetic field (i.e., field in absence of the shield), and Ht(ρ) is the total

magnetic field in presence of the shield, both calculated at ζ = t. Thus SEH is finally given by

SEH(ρ) = 20 log10

⎛
⎝

√∣∣H i
ρt(ρ)

∣∣2 +
∣∣H i

zt(ρ)
∣∣2√

|Hρt(ρ)|2 + |Hzt(ρ)|2

⎞
⎠ (20)

3. APPLICATIONS

The proposed analytical solution is approximate, and its accuracy is strongly dependent on the ratio
δ/t, with δ = (πμσf)−1/2 being the penetration depth and f the frequency. The behavior of the ratio
δ/t vs. frequency is shown in Fig. 3 for copper and aluminum planar shields when assuming t = 1 mm.

The electro-geometrical configuration of a circular coil with radius R = 50 mm and carrying a unit
current I = Iϕ is considered. The coil is assumed to be parallel to an infinite copper shield of thickness
t = 1 mm at distance d = 10 mm, as shown in Fig. 4. The frequency behavior of SEH is evaluated at
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Figure 5. Magnetic shielding effectiveness SEH of a copper plate at ρ ≈ 0 for d = 20 mm and t = 1 mm.

the center of the coil on Γt (ρ = 0, ζ = t). The obtained results are shown in Fig. 5 and compared
with the numerical solutions obtained by a FEM code and the method proposed by Moser [2]. All the
considered methods produce almost identical solutions. The FEM solution has been achieved analyzing
the 2D axially symmetrical configuration using the same fixed mesh for all the considered frequencies.
Thus, the FEM solution is not accurate at the higher frequencies since the mesh discretization is not
fine enough to suitably model the field propagation through the conductive shield.

The tangential components of the magnetic field, Hρ, are calculated along the radial distance ρ at
ζ = t at four different frequencies, 100 Hz, 1 kHz, 10 kHz and 100 kHz, of relevant interest for power
and WPT automotive applications [15, 16]. The results are obtained considering a copper shield with
t = 1 mm and coil/shield separation d = 10 mm, as shown in Fig. 6. The tangential components of
the electric field, Eϕ, and the normal component of the magnetic field, Hz, calculated for the same
configuration previously described, are shown in Figs. 7 and 8. The shielding effectiveness SEH is
also reported in Fig. 9. The results obtained by the proposed TL method are compared with Moser’s
method [2] and with the reference solution obtained numerically by the FEM. As can be observed, the
solutions of the proposed method is very accurate, and its accuracy increases as the frequency increases,
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while the trend of Moser’s method solution is the opposite, as described in [3]. At the lowest frequency
of 100 Hz which is a very low value and comparable with the power frequency, when the validity of the
TL method is doubtful, the error in SEH obtained by the proposed method is within 3 dB. Finally, it
should be noted that the error decreases as the separation d between shield and coil increases.
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Figure 6. Complex magnitude of magnetic field tangential component Hρ calculated at ζ = t for
various frequencies along the radial distance ρ assuming d = 10 mm and t = 1 mm. (a) f = 100 Hz. (b)
f = 1 kHz. (c) f = 10 kHz. (d) f = 100 kHz.
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Figure 7. Complex magnitude of electric field tangential component E = Eϕ calculated at ζ = t for
various frequencies along the radial distance ρ assuming d = 10 mm and t = 1 mm. (a) f = 100 Hz. (b)
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Figure 8. Complex magnitude of magnetic field normal component Hz calculated at ζ = t for various
frequencies along the radial distance ρ assuming d = 10 mm and t = 1mm. (a) f = 100 Hz. (b)
f = 1 kHz. (c) f = 10 kHz. (d) f = 100 kHz.
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The proposed TL method solution is very accurate due to the use of the wave impedance of the
total field components as right termination of the equivalent circuit. Thus it is interesting to note the
differences between the wave impedances calculated by Eq. (9), as done by several authors, and by
Eq. (10), as proposed in this paper. The behavior of |Zw0(ρ)| and |Zwt(ρ)| is shown in Fig. 10 for a
copper planar shield assuming f = 10 kHz, R = 5cm, d = 10 mm and t = 1mm. Finally, it should be
noted that the wave impedance calculated by Eq. (10) is affected by some approximations especially at
higher frequencies since the axial variation of eddy currents within the shield is neglected in [2], but it
is good enough to accurately evaluate the shielding effectiveness SEH because the TL is terminated on
a high impedance load.
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Figure 10. Complex magnitude of wave impedances along the radial distance ρ assuming d = 10 mm,
t = 1 mm and f = 10 kHz.

4. CONCLUSIONS

The TL method is applied to predict shielding performance of a planar conductive shield in the presence
of a circular loop current. Using the TL method, the magnetic shielding effectiveness is analytically
calculated at any point on the shield surfaces. The novelty of the proposed TL method is in the
terminal conditions of the equivalent circuit. Here, the load impedance is assumed to be the ratio of
the tangential components of the total electric and magnetic fields instead of the incident fields, as
proposed in the past by several authors without achieving good results. This modification permits to
obtain very good results by analytical expressions. The proposed method is very efficient since it allows
a fast and accurate prediction of the shielding effectiveness for magnetic near-field sources in a wide
frequency range. Furthermore, the use of an equivalent circuit can permit an easy design of shielding
for WPT coils. The proposed mathematical treatment is valid only for linear material shields. Finally,
the proposed method is valid for an infinite planar shield, but it can be considered also valid for a finite
extension shield whose dimensions are much larger than the coil radius.
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