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Abstract

The adoption of Artificial Intelligence (AI) models in medicine and neurosciences has
the potential to play a significant role not only in bringing scientific advancements but
also in clinical decision making. However, concerns mounts due to the eventual biases
AI could have which could result in far-reaching consequences particularly in a critical
field like biomedicine. It is challenging to achieve usable intelligence because not only
it is fundamental to learn from prior data, extract knowledge and guarantee generaliza-
tion capabilities, but also to disentangle the underlying explanatory factors in order to
deeply understand the variables leading to the final decisions. There hence has been
a call for approaches to open the AI ‘black box’ to increase trust and reliability on the
decision-making capabilities of AI algorithms. Such approaches are commonly referred
to as eXplainable Artificial Intelligence (XAI) and are starting to be applied in medical
fields even if not yet fully exploited.

With this thesis we aim at contributing to enabling the use of AI in medicine and
neurosciences by taking two fundamental steps: (i) practically pervade AI models with
XAI (ii) Strongly validate XAI models.

The first step was achieved on one hand by focusing on XAI taxonomy and proposing
some guidelines specific for the AI and XAI applications in the neuroscience domain.
On the other hand, we faced concrete issues proposing XAI solutions to decode the
brain modulations in neurodegeneration relying on the morphological, microstructural
and functional changes occurring at different disease stages as well as their connections
with the genotype substrate.

The second step was as well achieved by firstly defining four attributes related to
XAI validation, namely stability, consistency, understandability and plausibility. Each
attribute refers to a different aspect of XAI ranging from the assessment of explanations
stability across different XAI methods, or highly collinear inputs, to the alignment of the



ii

obtained explanations with the state-of-the-art literature. We then proposed different
validation techniques aiming at practically fulfilling such requirements.

With this thesis, we contributed to the advancement of the research into XAI aiming
at increasing awareness and critical use of AI methods opening the way to real-life ap-
plications enabling the development of personalized medicine and treatment by taking
a data-driven and objective approach to healthcare.
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1

Introduction

Is eXplainable Artificial Intelligence (XAI) the enabling technology for the adoption of Ar-
tificial Intelligence (AI) in medicine?

AI systems are increasingly exploited in a myriad of sensitive domains, including
medical and healthcare fields (e.g, disease diagnosis and progression modeling, image
analysis, monitoring), with important ethical, legal, social and responsibility implica-
tions.

Starting from the definition of AI, it is conceivably the oldest field of computer
science as it focuses on replicating cognitive capacities for resolving practical issues
through the development of machines that can learn and reason like humans. One of
the most significant branches of AI is Machine Learning (ML). Its goal is to create soft-
ware that can automatically learn from historical data in order to gather expertise, and
to gradually improve its learning behavior in order to produce predictions based on
recent data [1]. The development of novel statistical learning techniques, the availabil-
ity of large data sets, and the low cost of computation have all greatly advanced ML
[2] resulting in one of today’s most popular branches which is Deep Learning (DL), a
family of deep neural network-based models [3] in which multiple layers of processing
are used to extract progressively higher level features from data, including non linear
intertwined interactions. In order to fully comprehend how the model came to its fi-
nal decision, the inspection of all those layers for describing their relations would be
unfeasible. For this reason, AI and in particular deep neural networks are often consid-
ered as ‘black boxes’, and concerns mount especially in the most critical fields such as
medical applications where eventual biases can have far-reaching consequences. It was
indeed recently emphasized that it is challenging to achieve usable intelligence because
not only it is fundamental to learn from prior data, extract knowledge, generalize, and
battle the curse of dimensionality, but also to disentangle the underlying explanatory
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factors of the data in order to understand the context in an application domain, where
to date a doctor-in-the-loop is necessary that is, of course, the case of AI application in
medicine [4, 5]. Moreover, Medical experts have voiced their concern about the black
box nature of deep learning which is however the current state of the art in medical
image analysis. Furthermore, regulations such as the European Union’s General Data
Protection Regulation (GDPR, Article 15) require the right of patients to receive mean-
ingful information about how a decision was rendered, hence introducing the right of
explanation.

In this framework, making sense, understanding context, and making judgments in
the face of uncertainty pose the biggest challenges [6]. There hence has been a call for
approaches to open the black box and to increase the decision-making capabilities of
ML and DL algorithms. Such approaches are commonly referred to as XAI [7, 8]. XAI
has hence emerged with the goal of supplying new methodologies and algorithms to
improve transparency and reliability to both the judgments made by predictive algo-
rithms and the contributions and importance of individual features to the outcome [9,
10]. With this aim XAI could also be applied in a feedback loop allowing to increase
models’ performance given the explanations for the wrong classification or regressions.
However, the field is still not mature, and there is a lack of consensus when referring to
XAI in many respects, ranging from the taxonomy to the methods and to their validation
and exploitability in real contexts. In this thesis, we aim to shed some light on all these
aspects, contributing to the advancement of the field while proposing ad-hoc solutions
for specific case studies. To this end, the first part of this thesis will present the state of
the art on XAI as well as our view on the issue and fixing the terminology. In particular,
we propose to differentiate explainability from interpretability with the former referring
to the ability to decrypt the internal rules of the system, thus pointing to the so-called
‘white box’ or ante-hoc models, and the latter referring to XAI methods applied post-
hoc on ‘black box’ models to derive explanations allowing to describe its function in
human-comprehensible terms, supporting the identification of causal relationships.

Numerous studies have shown how essential XAI approaches are for personalized
medicine, including tailored interventions and therapies [7, 11]. Moreover, as argued
by Holziger and colleagues [4], through the adoption of XAI methods, human specialists
have the ability on-demand to comprehend and retrace the machine decision process
allowing the use of powerful AI systems to aid medical practitioners and, in some situ-
ations, even play a significant role in clinical decision making. We will indeed present
some practical applications of XAI models facing real clinical problems within a guided
tour illustrating the main concepts, bottlenecks and issues encountered in this con-
text. Different scenarios will be considered including disease phenotypes classification
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or feature-association studies relying both on directly explainable models and inter-
pretability methods focusing on deep networks.

Moving further, trying to answer the leading question of this thesis, which is about
enabling AI in medicine, a new core issue arises, which is models validation. If on one
side it is necessary that XAI pervades AI models, on the other, it is also stringent a strong
validation of XAI methods providing evidence that the outcomes of such models are
non-biased by any factors such as the algorithms, data, and so on. The evaluation of
explanation methods is still underinvestigated, however, since explainability is meant
to increase confidence in artificial intelligence, it is vital to systematically analyze and
compare explanation methods in order to ensure their accuracy [12]. Some approaches
for XAI validation are already emerging aiming to propose a common and generalized
approach or attributes XAI should respect in order to more strongly validate the ob-
tained explanations. After a literature review, in thesis, we will propose four validation
attributes that in our opinion a XAI method should fulfill and we will as well show how
they were implemented in our works.

There are hence two steps to overcome for AI to be enabled in medicine: (1) The
utilization of XAI methods which have a twofold role, allow clinicians to build trust on
AI models enabling them for decision aiding and use them in a feedback loop where
explanations aid in understanding how to improve model accuracy; (2) XAI model vali-
dation, which, due to the flourishing of diverse XAI methods, allows to properly choose
the most reliable XAI methods, enhancing as well the trust in the obtained explanations.

The clinical outcomes of this thesis are neurodegenerative diseases, in particular
Alzheimer’s Disease (AD) and Multiple Sclerosis (MS). Neurodegeneration includes a
heterogeneous group of disorders, characterized by the progressive degeneration of
the structure and function of the central nervous system or peripheral nervous system.
They occur when nerve cells in the brain or peripheral nervous system lose function
over time and ultimately die. Although certain treatments may help relieve some of
the physical or mental symptoms associated with neurodegenerative diseases no cures
still exist. Of note, some studies were also performed based on brain aging and post-
stroke rehabilitation. In this research area, there is growing evidence that multimodal
brain imaging studies can aid in providing a more thorough understanding of the brain
and its disorders. Brain imaging studies frequently gather data from a single subject us-
ing many Magnetic Resonance Imaging (MRI) modalities. For instance, they can tell us
how brain structure influences brain function, how psychopathology affects them, and
which functional or structural aspects of physiology may be responsible for human be-
havior and cognition. In this framework, the specific association between genetic mea-
sures and Imaging Derived Phenotype (IDP)s is, in particular, the target of Imaging Ge-
netics (IG) which focuses on integrative studies to assess the influence of the genetic



4 1 Introduction

architecture on brain structure and function, aiming at gaining new insights into the
phenotypic characteristics and genetic mechanisms of the brain, and into their role in
shaping normal and disordered brain conditions [13]. It has gained a central role in
clinical research in recent years, as confirmed also by several articles highlighting the
potential of meta-analyses of omics-wide association studies and imaging studies [13,
14]. This growing interest resulted in the increased availability of datasets containing
both MRI acquisitions and DNA sequencing as well as gene expression values. Among
these, concerning diseases, Alzheimer’s Disease Neuroimaging Initiative (ADNI) is pub-
licly available and comprehends a cohort of healthy controls, AD patients and subjects
presenting Mild Cognitive Impairment (MCI) at different stages. The available data in-
clude MRI images, Positron Emission Tomography (PET), biospecimen, clinical as well
as genetic data. The complementing information that can be extracted from this het-
erogeneous database is huge. For instance, structural Magnetic Resonance Imaging
(sMRI) enables us to estimate the type of tissue for each voxel in the brain (Grey Mat-
ter (GM), White Matter (WM), and CerebroSpinal Fluid (CSF)); diffusion Magnetic Res-
onance Imaging (dMRI) can also provide information on the integrity of white matter
tracts and structural connectivity; functional Magnetic Resonance Imaging (fMRI) mea-
sures the hemodynamic response related to neural activity in the brain dynamically;
cognitive and clinical scores could shed light on behavioral information; and genetics
itself would allow identifying genetic variants typical of each subject. With the focus
still on XAI, in this thesis, we will present explainable models for IG considering mul-
tiple biomarkers as input and we will propose an interpretability framework for more
complex data integration models.

1.1 Open questions and objectives

With this thesis, we aim at contributing to enabling the use of AI in medicine and neu-
rosciences by following the two steps presented in the introduction. The first step is
to practically pervade AI models with XAI, we hence firstly focused on XAI taxonomy
and applications to describe the brain modulation in neurodegeneration relying on the
morphological and microstructural changes occurring at different disease stages as well
as their connection with genotype. The second step is XAI validation, indeed we pro-
posed different validation techniques, as well as the practical application of the four
proposed validation attributes that XAI models should satisfy.

More in detail, six main open questions emerge from the previous Sections regarding
both XAI applications and heterogeneous data integration.
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• XAI taxonomy is still highly confused in literature, hence limiting also its applicabil-
ity to clinical problems;

• XAI is not yet fully exploited in brain imaging despite the emerging demand for tech-
niques enabling the building of trust in clinical decision-aiding models;

• While new XAI methods are flourishing, especially in the field of computer vision,
techniques to validate them and assess their stability are deemed as necessary to be
applied in clinical contexts;

• Being brain diseases highly complex and not fully described by data, or features,
coming from single acquisition modalities, heterogeneous data integration meth-
ods are lately being developed to account for the multi-faceted disease nature. In
addition, dealing with a limited sample size while extracting still meaningful associ-
ations is still an open research question;

• Concerning input features, on the imaging side microstructure, as derived from
dMRI data, is not yet fully exploited in the clinical contexts addressed in this the-
sis, both considering row data and classical or more advanced reconstruction mod-
els. Microstructural features are very powerful in describing brain tissues at a mi-
croscopic scale, thus injecting this information in both linear multivariate and deep
models, has the potential to significantly enhance the performance. In particular,
Region Of Interest (ROI), voxel or tract-based features, as well as 3D maps represent-
ing different diffusion-derived indices will be considered depending on the models;

• Moving to genetics, scores summarizing the disease status, still keeping enough in-
formation about subjects’ mutations are needed in order to deal with small sample
size data.

To summarize, the general aim of this thesis is indeed, firstly, the clarification of
XAI taxonomy, proposing also a use case overview focusing on a specific brain imaging
application. Then the exploitation of XAI to model multimodal and multidimensional
data with neurodegeneration applications, concluding with the proposal of different
techniques to validate XAI methods.

1.1.1 Thesis outline

The manuscript is structured in five parts.
Part I will present our view on XAI.
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Chapter 2 clarifies various XAI aspects by merging the State-Of-the-Art (SOA) reviews
on the topic, with a special focus on medical imaging and on XAI methods validation
strategies.

Chapter 3 will then propose some guidelines on how to apply XAI methods for sam-
ple applications in brain imaging.

Part II will focus on the viability of XAI for multimodal visual inspection, focusing on
feature visualization methods, with the clinical application of MS patients stratification.

Chapter 4 will present a multivariate approach trying to associate brain IDPs deriv-
ing from different modalities with cognitive assessment features.

Chapter 5 will propose a DL based approach allowing to skip the handcrafted fea-
ture selection, followed by the application of feature visualization techniques for inter-
operability. We indeed relied on 3D-Convolutional Neural Networks (CNN) which are
powerful deep models allowing to account for the full spatial information of the input
data, which is fundamental in particular when dealing with brain imaging. They are not
directly explainable in terms of coefficients or parameters but allow the application of
interpretability methods. Explanations for this model can be obtained in the form of
saliency maps highlighting the relevance of each input voxel in the final decision. XAI
was applied to the twofold aim of detecting which of the input maps better achieved
the task of stratifying patients and which brain regions had the main role, also checking
how the different inputs held different and complementary information better explain-
ing the complexity of the disease in combination.

Part III will move a step forward towards XAI in data integration, adding genetics
into the equation. Multivariate methods as well as generative models will be presented
and applied to the decryption of the link between imaging and genetics in AD con-
tinuum. We started from the most simple yet explainable ones such as Partial Least
Squares (PLS) which aims at multivariate modeling finding a latent representation
where the covariance between input projections is maximized. This model is directly
explainable since the fitted weights directly relate to the feature importance leading to
the latent space generation. We indeed tested classical multivariate methods to derive a
common latent space describing the patient state, firstly by considering only one imag-
ing technique and summary scores on the genetic side, then relying on more complex
models to account for multi-channel information derived both from different imaging
techniques, while representing finer-grained information for genetics. The focus was
still on either the explainability of the model, which was possible when considering
simple multivariate methods, or their interpretation through the application of post-
hoc interpretability analysis. This allowed the uncovering of the leading features for the
generation of the common latent space, which was then exploited for more complex
multimodal methods.
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Chapter 6 will benchmark the use of PLS analysis relying on sMRI based IDPs and a
set of Polygenic Risk Score (PRS) as genetic features.

Chapter 7 will introduce microstructure and functional MRI derived IDPs in two sep-
arate PLS models to study their association with a subset of the PRSs.

Chapter 8 will then explore a different set of gene-based genetic features allowing to
deal with a small study cohort while expressing at gene level the genetic information
compared with the PRS considered in the previous Chapters. Moreover, we proposed
the validation of the obtained explanations through transcriptomic analysis.

Chapter 9 will finally present a framework for the application of XAI techniques on
a multichannel Variational AutoEncoder (VAE) aiming at addressing both the study of
the association between features and the generative performance of one channel from
the others.

Part IV will be devoted to the challenges posed by the application and development
of multiple interpretability methods. Since XAI is still in its early stages while multiple
methods are being deployed, ways to assess attributes such as stability, robustness, re-
liability, etc. throughout the different possible choices are still being investigated.

Chapter 10 will present a new proxy to establish a stability criterion of XAI methods
over feature collinearity in AD patients stratification.

Chapter 11 will present a study focusing on the comparison between different per-
turbation based methods applied to the problem of rehabilitation after stroke.

Chapter 12 will finally present a study on the comparison between different feature
visualization methods applied to the problem of MS stage detection.

Part V will draw the conclusions of the work while opening to possible future re-
search directions.

An extensive description of the background of the thesis will be given in Appendix A.
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XAI taxonomy in neuroimaging

eXplainable Artificial Intelligence (XAI) recently emerged as one of the hottest topics
for understanding “the why and how" of the outcomes of Machine Learning (ML)/Deep
Learning (DL) algorithms. However, this is still largely unexplored especially in the brain
imaging field though it could help to disentangle the contributions of the different fea-
tures shaping the final estimates, as well as to provide other hints about the subserving
mechanisms that cannot be captured with traditional approaches. Before tackling the
issue, we will try to elucidate one aspect that is still unclear in the literature, i.e. the
difference between explainability and interpretability, which are still used quite inter-
changeably while subtending different concepts.

The concepts of explainability and interpretability are hard to encode and are usu-
ally considered interchangeable by ML researchers. Such ambiguity was also put forth
by the query outcomes of the literature review. In fact, the keyword explainability did
not return any result, while the keyword interpretability returned the papers discussed
in this Section. A clear definition of such terms would be required in order to get to a
common agreement on their meaning in this context so as to derive criteria for their as-
sessment, either subjective or objective. Far from pretending to solve this issue, which
requires philosophical thinking, we will shape the discussion on one possible significa-
tion of such terms as specified hereafter.

Following [9], interpretability is connected with the human intuition behind the out-
puts of a model, claiming that the more interpretable the model, the easier is to devise
cause-and-effect relationships within the system input and output. This definition is
strongly related to the concept of causability, quite relevant to the medical area, pre-
sented in [10]. Causability is defined as "the extent to which an explanation of a state-
ment to human experts achieves a specified level of causal understanding with effec-
tiveness, efficiency and satisfaction in a specified context of use". Instead, following [9],
explainability would be associated with the decoding of the internal logic and mech-
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Chapter2/Figures/Fig4.png

Fig. 2.1: Overview of the interpretability methods. a) Black-box models can obtain opti-
mal predictions but they do not allow a complete understanding. The application of the
interpretability methods allows to retrieve and interpret the most important features.
b) Schematic representation of the difference between explainable and interpretable
models. c) Taxonomy map of the interpretability methods classified in ante-hoc and
post-hoc. Local, global, model agnostic and model specific attributes are exemplified as
well as feature-probing properties.

anisms of a ML system. In particular, [10] defines explainability as highlighting the
decision-relevant parts of the used representations of the algorithm and active parts
in the algorithmic model, that either contribute to the model accuracy on the training
set or to a specific prediction for one particular observation. It is hence not necessar-
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ily related to human understanding. Therefore, regarding ML, interpretability does not
axiomatically entail explainability and vice versa, following [9]. Figure 2.1 (b) tries to
express the difference between these two concepts. Starting from the training data two
directions can be followed to obtain model explanations: 1) using a directly explainable
model, such as a decision tree or a linear regression model, for which the underlying
logic is easy to follow and understand, and the explanation can be straightforwardly
derived from the model coefficients; 2) applying a black box model (e.g. deep models
such as Convolutional Neural Networks (CNN)s), followed by a post-hoc interpretability
model to derive explanations, not necessarily requiring to understand the underlying
model mechanism.

In order for a system to be interpreted, explanations, namely the outcomes of in-
terpretability methods application, must be provided and the properties making an ex-
planation effective to humans need to be defined. Holzinger et al.[10] states that di-
rectly understandable, hence interpretable for humans, are data, objects or any graph-
ical representations ≤R3, such as images or text. Feature-probing methods provide ex-
planations to enable model interpretation. Following [15], three feature properties are
relevant: (i) feature stability, which is assessed through methods that measure how sta-
ble each feature contribution is over multiple models trained on held-out datasets using
resampling methods or cross-validation; (ii) ranking of feature importance, obtained by
assessing the impact of a feature on the prediction output; and (iii) feature visualization,
that encompasses strategies providing a visual rendering of feature importance, such as
saliency maps. While (ii) and (iii) aim at making the model outcomes humanly under-
standable, (i) can be considered as a way to assess the robustness (generalizability) of
the solution. In this respect, bootstrap is usually employed in the training/validation
phase.

In [16] the authors discussed the properties of models that might render them in-
terpretable, highlighting that human decisions might admit post-hoc interpretability
despite the black-box nature of human brains. One advantage of this reading of inter-
pretability is that opaque models can be interpreted after the fact, and subtends a clear
distinction with respect to explainability, which instead entails a clear understanding
of the model’s internal rules and functioning. In our work, we build on such a claim and
assume that interpretability points to causability, while explainability means decoding
the system’s internal rules, they do not reciprocally entail and both fall under the XAI
umbrella.

In what follows we also remind a few additional attributes of interpretability models
that we consider to be relevant in this context. Interpretability models can be model-
agnostic or model-specific. While the former tries to give some insights about the func-
tion underlying the model, regardless of the model structure, the latter can be applied
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only to a specific prediction model or architecture. Moreover, interpretability models
can be local or global, depending on the fact that the explanation concerns an individ-
ual prediction or small Sections of the whole model or the whole system, respectively.

Finally, another pertinent categorization proposed in [10] distinguishes between
post-hoc and ante-hoc models. In our taxonomy, the first lie in the interpretable models
while the latter are explainable models that also hold the interpretability property as
they embed explainability directly into their structure.

2.1 XAI in neuroimaging: State-Of-the-Art overview

The interpretability step in ML or DL framework is still among the open issues and fu-
ture direction. This was also pointed out in a very recent and complete review on ML
and DL methods in brain disease diagnosis [5] where the authors claimed that recently
XAI emerges as an oracle to make the Artificial Intelligence (AI)-based systems more
transparent, even though not yet deeply exploited. However, it is a clear future research
direction since explainable diagnosis will be the ultimate basis for reliable and trust-
worthy communications between medical experts and AI experts, which is highly im-
portant to transform the ML/DL-based brain disorder detection potentials into clinical
practice. Jiang and colleagues arrived at the same conclusion in their review on predic-
tive neuroimaging where they state XAI step has received much less attention in pre-
dictive neuroimaging, and they also provide some potential reasons such as the trend
to reward higher prediction performance over neurobiologically meaningful interpre-
tation [11].

In addition to pursuing higher predictive performance, determining which specific
connections, regions, or functional networks contribute to prediction may significantly
advance our knowledge of how the brain implements cognition and, more importantly,
facilitate the translation of neuroimaging findings into clinical practice[4, 10]. More-
over, machine learning methods tend to be treated as a black box, which results in fo-
cusing on the highest possible predictive performance rather than mechanism under-
standing. This may lead to the current dilemma of researchers treating interpretation as
a secondary goal, e.g., explaining feature importance in their own way and attempting
to link with neurobiological significance in a relatively shallow manner without tak-
ing full advantage of interpretable models. In this regard, the arbitrary interpretation of
models may make it hard to reveal the neural underpinnings of behavioral traits [11].

In this State-Of-the-Art (SOA) description, we will review the main studies relying on
XAI techniques in brain imaging for both disease detection and Imaging Genetics (IG)
research with a particular focus on the methods implemented in this thesis.
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2.1.1 Ante-hoc methods

Starting from the ante-hoc explainability models, this category encompasses methods
that are interpretable by design meaning easily understandable by humans. The mod-
els in this category are usually known as intrinsic, transparent or white-box models.
This class includes linear, decision trees, rule-based models and more complex models
which are equally transparent and described in [9].

This class hence encompasses linear regression models, such as Ordinary Least
Squares (OLS), Ridge and Least Absolute Shrinkage and Selection Operator (LASSO)
which also hold the interpretability property, in that they can be directly interpreted in
terms of their β coefficients both locally and globally. Assuming that the data has been
standardized and the model contains no intercept term, large components of the β can
be interpreted as features that are relevant to the regression task.

Linear regression models are sometimes preceded by linear latent variable models
such as Principal Component Analysis (PCA), Independent Component Analysis (ICA)
or their generalization in order to perform an initial feature selection or to find the
‘modes’ which embed the information deriving from either single modality or multi-
modal data in a smaller feature space. The so obtained features are then used as in-
put to the prediction model. This does not compromise the interpretability property
because the resulting models yield loading vectors for every component, which quan-
tify the contribution of each feature to each component. These loading values are then
used to assess the contribution to the model’s outcome and thereby understand, for
instance, which input features mostly contributed to it. Both the coefficients and the
loadings can be directly visualized in a feature space that can also be a brain map.

2.1.2 Post-hoc methods

According to the very recent review performed by Van der Velden and colleagues [7]
which considered more than 200 studies using post-hoc XAI methods in medical image
analysis, neuroimaging resulted as one of the most frequent research areas to which XAI
has been applied, with a total of more than 40 papers included until 2020. Despite the
completeness and high clarity of their work, their focus is mainly on giving a compre-
hensive overview of the different XAI methods rather than focusing on the application
to which they were fitted. Following the train of thought of the thesis in this Section,
starting from the aforementioned review and adding more recent works, we will better
detail the different problems and how XAI was applied to them, limiting the overview
on Magnetic Resonance Imaging (MRI) based methods focusing on the brain.
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Perturbation based methods

Perturbation based methods aim at finding a difference in the outcome based on a
small permutation of the input. Some examples are Occlusion, Local Interpretable
Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) which
aim at building surrogate models to black-box ones to provide them interpretability.

Occlusion is a widely used approach due to its simplicity of application, and it was
for example used in Feng et al. [17] for brain age prediction. They applied ablation anal-
ysis methods focusing on part of the input data, each time calculating a saliency map
based on gradient.

Gaur and colleagues [18] proposed an explanation-driven DL model by utilizing a
convolutional neural network, LIME, and SHAP for the prediction of discrete subtypes
of brain tumors (meningioma, glioma, and pituitary) using an MRI image dataset.

SHAP alone was mainly applied to regression-based outcomes, such as brain age
estimation. It was for example used to assess feature relevance on an adolescence co-
hort [19]. The authors used SHAP on multiple ML methods, revealing that the anatom-
ical changes in a common set of regions drive model predictions of age, regardless of
the model type. Dartora and colleagues [20] propose investigating ensemble models
to classify groups in the aging cognitive decline spectrum by combining features ex-
tracted from single imaging modalities and combinations of imaging modalities (Flu-
oroDeoxyGlucose (FDG)+AMY+MRI, and a Positron Emission Tomography (PET) en-
semble). They applied SHAP with recursive feature elimination to evaluate the perfor-
mance analysis of models using balanced accuracy before and after feature elimination.

Backpropagation or gradient-based methods

In general, visual explanations or saliency appeared to be the most popular inter-
pretability methods. Approaches based on gradients still hold the leading positions,
some examples are namely BackPropagation (BP) [21], Guided BackPropagation (GBP)
[22], Class Activation Mapping (CAM) and all its variants [23, 24, 25].

BP, GBP and deconvolution methods were widely applied to brain imaging research.
Some examples are the work of Gao and colleagues where deconvolution was applied
to compare the features extracted through different models to decipher the behavior
tasks from functional Magnetic Resonance Imaging (fMRI) recording during subjects
performing different tasks.

Bohle et al. [26] moved a step forward, comparing various gradient based methods
for the detection task of Alzheimer’s Disease (AD) continuum. They appeared also to be
widely applied in segmentation tasks, for example, the detection of enlarged perivas-
cular spaces which are common in aging, and are considered a reflection of cerebral
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small vessel disease, for which Dubost et al. [27] applied GBP to aid the computation of
an automatic perivascular space score. Finally, backpropagation was also applied to a
generative framework to predict the PET-derived myelin content map from multimodal
MRI in Multiple Sclerosis (MS) by Wei et al. [28].

CAM and its variations appeared as the most popular approach in brain imaging.
The application fields ranged from tumor detection or segmentation to disease detec-
tion, to the generation of synthetic data for unbalanced classes. For example, Chrak-
aborty et al. [29] proposed one of the first approaches in exploiting CAM to check the
goodness of Parkinson’s Disease (PD) classification by observing the resulting relevant
Region Of Interest (ROI)s. Grad-CAM methods were then proposed to overcome CAM
limitations regarding noise and architecture limitations. This was used for example by
Zhang et al. [30] to classify MS types relying on MRI images. However, one main draw-
back of CAM techniques is that they extract feature maps from either the final layer or
a single intermediate layer to create the discriminative maps and then interpolate to
upsample to the original image resolution. The subject specific localization is coarse
and unable to capture subtle abnormalities. To mitigate this, still aiming at PD detec-
tion, Shinde et al. [31] proposed a CNN based discriminative localization model which
accounts for layers from each resolution facilitating a comprehensive map that can de-
lineate the pathology for each subject by combining low-level, intermediate as well as
high-level features from the CNN directly providing the discriminative map in the res-
olution of the original image.

Decomposition based methods

To overcome CAM limitations and obtain fine-grained subject-specific heatmaps Lay-
erwise Relevance Propagation (LRP) [32] came out and were widely applied for disease
detection. A few examples are the works of Bohole et al. [26] where LRP maps were com-
pared with other feature visualization through saliency maps techniques to detect AD,
while Eitel et al. [33] applied them to uncover brain regions leading the differentiation
between MS and healthy subjects. LRP was also very recently adopted for AD classifica-
tion in Deatsch et al. [34] to evaluate the best imaging modality between T1-weighted
(T1-w) and FDG PET over longitudinal data revealing that PET-trained methods out-
performed MRI-trained ones, particularly when adding the longitudinal information,
which instead had no influence on MRI-trained models. Finally, LRP was also applied
by Dang and Chaudhury [35] to the estimation of brain connectivity score starting from
MRI in order to determine the contribution of the higher order connectivity between
two brain regions.
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Other XAI methods

Other interesting XAI techniques are trainable attention models proposed in [36], which
used trained attention to further amplify relevant areas and suppress irrelevant areas.
Dubost et al. [37] exploited this method to detect brain lesions due to cerebrovascular
diseases. They proposed a new weakly supervised detection method using neural net-
works, that computes attention maps revealing the locations of brain lesions. These at-
tention maps are computed using the last feature maps of a segmentation network opti-
mized only with global image-level labels. The proposed method can generate attention
maps at full input resolution without the need for interpolation during preprocessing,
which allows small lesions to appear in attention maps. Lian et al.[38] exploited this
method to predict dementia status from brain MRI. They proposed a multi-task weakly
supervised attention network to jointly predict multiple clinical scores from the base-
line MRI data, by explicitly considering the individual specificities of different subjects.
Leveraging a fully trainable dementia attention block, they claim that their method can
automatically identify subject-specific discriminative locations from the whole-brain
MRI for end-to-end feature learning and multi-task regression. For the purpose of cre-
ating saliency maps, Zintgraf et al. [39] modified prediction difference analysis [40]. Pre-
diction difference analysis, which measures how the prediction changes if the pixel is
considered unknown, assigns a significance value to each pixel if each pixel in an im-
age is considered a feature. This was further developed by Zintgraf et al. [39] by adding
conditional sampling, which limited the analysis to pixels that are difficult to predict by
simply examining nearby pixels, and by adding multivariable analysis, which involved
analyzing patches of connected pixels rather than individual pixels. They provided a
comparison of brain MRI results between Human Immunodeficiency Virus (HIV) pa-
tients and healthy controls to provide an explanation of the classifier’s choice. On vari-
ous scales, Seo et al. [41] combined superpixels (or supervoxels for 3D) with prediction
difference analysis. Since they follow image edges, these multi scale supervoxel-based
saliency maps offered explanations that the authors described as visually appealing. A
classifier could distinguish between people with AD and healthy controls by using the
regions that the saliency maps identified as informative.

Finally, an XAI method that offers textual descriptions is a textual explanation. Such
descriptions range from really basic traits to whole medical reports. They are beginning
to be used in medical imaging as well mainly dealing with X-ray or Computed Tomog-
raphy (CT) imaging for chest-based research. To the best of our knowledge, they have
not yet been applied to brain MRI studies, opening the way to new research paths.
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2.2 XAI validation and assessment methods

As XAI in medicine is in an early stage of the investigation, some issues have still to be
addressed. Firstly, a deep validation of the XAI methods and secondly the increase in
the simplicity of explanations while maintaining an elevated level of performance.

For the first criticism, it is important to provide a solid validation of the outcomes at a
clinical level. For example, Lorenzi and colleagues [42] applied functional prioritization
meaning that the candidate genetic variants resulting from Partial Least Squares (PLS)
were subsequently screened for functional relevance by querying high-dimensional
gene expression databases, such as the Genotype Tissue Expression project (GTEX)
(gtexportal.org) [43] to be strongly validated.

Despite that there is no consensus regarding a validation proxy or protocol to evalu-
ate explainability methods[44], many proxies and attributes have been proposed for the
assessment of the explainability of different models. For example, Sundararajan et al.
[45] proposed two axioms to evaluate explainability methods for Deep Neural Network
(DNN) models, sensitivity and implementation of invariance. The first one has a double
claim, firstly if there are two different predictions and they have the same input but are
different in only one feature, that feature should not have a zero attribution; secondly
if a model does not depend on some features to predict a value, then the importance of
these features should be zero. The second axiom, implementation of invariance, argues
that if two models are identical, trained on the same task and have an identical predic-
tion, then they should have the same attribution for their networks. Montavon, et al.
[46] defined other two attributes for XAI explanations which are explanation selectivity
and explanation continuity. Explanation selectivity argues that if the relevant features
that are identified by the explainability method are then removed from the model, there
should be a sharp reduction in the model performance. Explanation continuity states
instead that if two data points are equivalent, their explanation of the prediction should
also be equivalent.

Focusing on the XAI method itself and not on the explanations, Silva et al. [47] pro-
posed three complementary Cs to evaluate an explainability method. The three Cs are
Correctness, Completeness and Compactness. Correctness implies that the explainabil-
ity method should be accurate and measure the accuracy. Completeness indicates that
it should be possible to apply explainability when the audience can verify its valida-
tion and it is quantified by the fraction of the training data set covered by the explana-
tion. Finally, Compactness argues that the time needed to understand the explainability
should be proportional to its length. Other two approaches were suggested by Herman
et al.[48]. The first one is to conduct an experiment using simulated data with known
characteristics to validate the correctness of the explainability method, while the sec-

gtexportal.org
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ond one is to test the consistency and stability of the explainability method using a
well-defined metric.

Moving to human interpretation of XAI explanations, Lipton [16] suggested three at-
tributes to evaluate any explainability method that are simulatability, algorithmic trans-
parency and decomposability. Simulatability measures to what extent a human can re-
peat or simulate the experiment based on the provided explanations. Algorithmic trans-
parency measures how humans can fully understand a predictive model. Finally, de-
composability quantifies the ability of the explainability method to explain each part of
the model and its function (informative features, monotonic relationship, parameters,
the output, etc)

Finally, a common criticism of DL and ML in general is ignoring the wisdom and
expertise of hypothesis-driven research, which is the benchmark in the medical field.
One of the emerging approaches is in fact to use expert human knowledge in combina-
tion with XAI to develop an interpretable model. This is consistent with the theory for
which a DL framework could be reflected by performing XAI on a learner with a com-
plete feature set, have the DL model generate results consistent with domain expertise
and have the DL re-perform its calculations excluding the rules judged by the experts as
superfluous [49]. As Smucny and colleagues [49] state, in fMRI this could be achieved
by focusing on rules that involve brain regions known to be associated with the cog-
nitive process of interest, an approach which could be easily tailored also on MRI and
diffusion Magnetic Resonance Imaging (dMRI) fields.

The need of making the explanations more humanely understandable is also present
in the very recent manifesto on explainability for artificial intelligence in medicine pro-
posed by Combi and colleagues [50] in which they consider usefulness and usability as
two of the four principles for XAI, together with interpretability and understandability.
Though their distinction between explainability and interpretability is inherently differ-
ent from our view shown in this Chapter, confirming that a clear definition of concepts
is still not achieved, of interest is the introduction of the specific requirement of use-
fulness and usability in XAI methods. Usability refers to the ease with which a user can
learn to operate, prepare inputs for, and interpret outputs of a system or component.
Usefulness, on the other hand, is seen as the practical worth or applicability of a XAI
system. Both hence relate to human utilization and exploitation of the explanations
obtained through XAI methods.

2.2.1 Attributes for XAI validation

The desirable attributes of the obtained explanation, either from explainable or inter-
pretable methods, can be summarized into four main classes which, in our view, are sta-
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bility, consistency, plausibility and understandability, which encompass the attributes
proposed in the previous Section.

The stability answers to the question ‘Given similar instances, are also the relative ex-
planations similar?’. The concept of similarity is founded on two elements: (i) Instances
must be close in the feature space; (ii) model predictions must be close. Indeed, a simi-
larity based just on the values of the characteristics would not suffice to produce iden-
tical explanations. For instance, examining two sides of a model’s decision boundary
might result in distinct predictions and, consequently, explanations. However, feature
values may be very similar. Stability is often not addressed among the theoretical as-
sumptions on which the existing explainability approaches rely. Therefore, it does not
always follow. Consequently, it is essential to develop a measure for evaluating this el-
ement. Among the proxies proposed above stability encloses the sensitivity [45] as well
as the explanation selectivity and explanation continuity, which all represent different
shades of stability. Also, the proxy proposed by Herman et al. [48] referring to the testing
on simulated data can be fully framed in the stability analysis.

The second attribute is consistency, answering the question ‘Do different explain-
ability methods give, on average, similar explanations?’ In fact, it is important that given
an instance and a prediction, different XAI methods should return similar explanations,
hence feature importance should not depend on the chosen XAI method or its assump-
tions. This attributes encompasses the implementation of invariance proposed in [45],
which even if referring to different prediction models instead of different XAI methods,
is still an approach to test for consistency from a different point of view.

We proposed to add also plausibility among the validation attributes which assume
a fundamental role, especially concerning XAI in the medical field. Plausibility an-
swers to the question ‘Do the obtained explanations sufficiently associate with what is
known from literature?’. This assumes a fundamental role since, in order to enable AI
in medicine, clinicians must obtain confirmation that the results are, at least partially,
in line with what is already present in the literature and with the prior knowledge on
the faced problem. This has a double outcome. First, the literature validation of the ob-
tained results, and second the gain in the reliability of new results, pointing in different
directions which could really give a strong and original contribution to the research.

Finally, the understandability answers to the question ‘Are the obtained explanations
easily understandable by humans?’ For instance, even if the employed models are ba-
sic, there is no assurance that the explanations will be easily understandable as well. A
basic linear regression with 50 features reveals an issue in fact the number of features
has a significant impact on explanations. Importantly, in medicine, a good explanation
might vary depending on the area of expertise of the person receiving it. For instance,
a radiologist or a researcher specializing in medical picture analysis may find a visual
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description specifying the location of the illness to be adequate. Oncologists, neurolo-
gists, and hematologists would most likely welcome the addition of XAI to their clinical
decision-making framework. This framework would also include the patient’s medical
history, prior and current treatments, treatment choices, and anticipated consequences
or outcomes. It is hence fundamental to have the doctor in the loop in order to choose
the best XAI approach allowing to obtain the most useful explanations. Understand-
ability is inherently different from interpretability which indeed indicates a class of XAI
methods while understandability refers to human comprehension of the obtained ex-
planations. The completeness and the compactness defined in [47], as well as the three
metrics proposed in Lipton et al. [16] which are all human-related, namely the simu-
latability, the algorithmic transparency and the decomposability all fall in this class.

2.3 Conclusions

It is clear that there is still a lack of consensus in the literature on the taxonomy of XAI
methods. With this Chapter, we clarified the main concepts related to XAI, as well as
differentiating interpretability from explainability, each relating to clear and different
XAI approaches and not being used as synonyms. It is indeed fundamental to differen-
tiate between methods that are explainable by design (explainable) and methods that
can be interpreted post-hoc (interpretable), also to better understand when to use one
or the other approach. We also moved a step further defining four validation attributes
that encompass the different proxies present in literature namely stability, consistency,
plausibility, and understandability which could allow the evaluation of the quality of
the explanations provided by existing XAI methods. Importantly, our contribution is
the addition of plausibility to the list which is particularly relevant in the medical field.
Stated that explainability methods are vital to gain a deep understanding of ML and
DL model predictions their application must be faced with caution, verifying the pres-
ence of the four characteristics presented above in order to be practically used and earn
reliable and meaningful insights on the approached problem.

Part of the work presented in this Chapter was recently published in [51].
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General pipeline for XAI application to brain
imaging

In this Chapter we aim at proposing a general pipeline for eXplainable Artificial Intelli-
gence (XAI) application to medical imaging problems. Despite the multiple reviews on
the argument [7, 9], an overview of the steps needed starting from the definition of the
problem and concluding with XAI methods is still not present in literature. Here we will
try to elucidate some key steps which we consider as fundamental for a correct appli-
cation of Artificial Intelligence (AI) models in neuroimaging, with a focus also on the
input Imaging Derived Phenotype (IDP)s and the specific models considered. We also
add the XAI step proposing some example situations for when to use which method.
We will consider the problem of predicting Brain Aging (BA) as our working example.
Part of this Chapter was published in our recent review on XAI in BA.[51].

3.1 Use case: Brain aging

The study of BA has recently gained attention in the scientific community since devel-
oping accurate biomarkers for BA relying on neuroimaging data in combination with
ad-hoc statistical analyses would open new perspectives in different domains, allow-
ing to disentangle age-related from disease-specific changes and to track the disease
progression at the single-subject level [52]. The prediction model, generally trained on
large samples of controls, is fed with candidates endophenotypes and outputs the es-
timated, or predicted, age [53]. The so-called delta or gap is then defined, given by the
difference between the predicted and the chronological age [54]. These resulting delta
(hereafter referred to as brain-PAD [55]) reflects individual’s deviation from the popu-
lation norm, highlighting accelerated aging (positive delta) or resilience to aging (neg-
ative delta) [54], thus informing on the brain health status. brain-PAD measures are
of value for assessing normal aging and disease, with recent studies revealing patterns
of faster aging in several neurological and psychiatric pathologies, even prior to overt
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disease manifestations [53, 52]. An important example can be found in the context of
neurodegenerative conditions, where an initial study by [56] demonstrated significant
differences between brain-PAD scores of controls/stable Mild Cognitive Impairment
(MCI) and Alzheimer’s Disease (AD) patients, and a more accurate prediction of con-
version to AD when using the brain-PAD scores rather than neuropsychological tests.
Different solutions have been proposed for tackling this problem, from the choice of
the endophenotypes to the methodologies proposed for predicting BA. In the current
State-Of-the-Art (SOA), such methodologies range from classical linear regression to
Machine Learning (ML) models working with single/multi-modal data. The advent of
publicly available large repositories of heterogeneous data called for new methods al-
lowing to cope with high data dimensionality, Deep Learning (DL) being first in line
[57]. This made stringent the issue of explainability/interpretability of the models out-
comes especially considering the lack of ground-truth that is inherent to BA estimation.

3.2 XAI pipeline and guidelines

The initial steps required for the XAI process are presented in what follows, aiming at
clarifying through SOA examples, the fundamental steps for XAI application in brain
imaging studies. A similar analysis was recently proposed in [58], however multiple
steps that we included were not present in their proposed pipeline, as well as the brain
age literature examples. Interestingly, they propose XAI as a step of a feedback loop
where firstly the chosen models is debugged and then tested extracting also explana-
tions, at this point the end user can give feedback about the decisions obtained and the
parameters which can be re-tested by retraining the model.

In our view, XAI has a twofold aim. The first is to obtain explanations for the models’
decision once the AI model is well tested and validated and the achieved accuracy is
satisfactory. The second aim is to use XAI in a feedback loop where, when dealing with
a poorly performing model having no hints about the reason, XAI can help for checking
the presence of issues related to the input data and also to select which features ex-
cluding/including in the following tests. In what follows we will present a possible XAI
pipeline describing all the necessary steps enabling the building of a correct AI model,
including XAI steps.

A. Data definition and pre-processing

This initial phase describes the choice of the appropriate data for the selected task, data
cleansing, recovery/imputation, and top feature analysis. Some steps could be the pro-
cessing of inaccurate, duplicate, corrupted, or incomplete datasets, whereas based on
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the adopted model, data imputation refers to the replacement of missing data with sub-
stitute values, if the model does not account for missing data.

For BA, in the current literature, most predictive models rely on T1-weighted (T1-w)
images as inputs [55], given their larger availability, reliability and easiness of interpre-
tation. Depending on the granularity and on the given framework, several features are
generally extracted from the T1-w images to be used as predictors in BA models. The
easiest solution consists in using the raw whole-brain T1-w data, avoiding the step of
feature engineering. Conversely, more recently there was a shift from voxel-based to-
wards region-based approaches and extracted summary statistics for different Regions
Of Interest (Region Of Interest (ROI)s), in particular cortical thickness, surface area and
volume.

Nevertheless, neuroimaging modalities other than conventional T1-w Magnetic Res-
onance Imaging (MRI) can complement the picture provided by these data and inform
on other relevant aspects, such as tissue microstructure or brain functioning. From dif-
fusion Magnetic Resonance Imaging (dMRI) for example it would be possible to extract
IDPs from diffusion maps obtained after model fitting, for which details will be given in
Appendix A. Starting from these maps, the IDPs generally extracted are represented by
the mean values calculated over WM maps or along different tracts, the latter identified
either with tract-based spatial statistics (TBSS) [59, 60, 54, 55, 61] or tractography [62,
60, 55].

Besides analysing the brain architecture, important information on its functionality
can be extracted by relying on functional MRI based on the Blood Oxygenation Level
Dependent contrast (BOLD) functional Magnetic Resonance Imaging (fMRI) and Arte-
rial Spin Labelling (ASL). fMRI scans can either be acquired during the execution of a
given task (task-fMRI) or while resting (Resting State functional Magnetic Resonance
Imaging (rs-fMRI)). Among the works here selected, task-related IDPs were used only
within the United Kingdom Biobank (UKB) framework [60, 54, 55], and were repre-
sented by activation measures in regions derived by the group-level maps (i.e., median
and 90th percentile for both the percent signal change and z-statistics). Conversely, sev-
eral IDPs based on rs-fMRI data have been explored in this context. While measures
related to the amplitude of low-frequency fluctuations and regional homogeneity were
reported in a single study [61], features describing the Functional Connectivity (FC) pat-
terns were usually employed in such studies. Moreover, in this step standardization and
deconfounding could be applied. Those actions can be very crucial as well as highly in-
fluence the obtained results. Deconfounding is really common particularly in medical
image analysis, yet no agreement is still present in the community.
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Confounds

Confounds are variables which might introduce spurious associations between inde-
pendent variables and strongly bias the resulting estimates. The criteria defining the
role of confounds are far from trivial and are heavily context-dependent. In the neu-
roimaging and in general in neurodegeneration framework, for instance, age plays the
role of variable of interest but also of a possible confound. These variables can be as-
signed to some common categories depending on their nature, such as subject-specific
features (e.g. age, gender, education, intracranial volume, APOE), scanner / acquisi-
tion / processing parameters (e.g. centre, coil, head motion) and non-linear interaction
terms [63]. Once the confounds are defined, common practice is to regress them out
from the data as a pre-processing step (deconfounding) or add them as regressors in all
the analyses. In the specific case of DL and 3D Convolutional Neural Networks (CNN)s,
besides the deconfounding strategy, two main approaches were observed: 1) testing
with a linear regression model the main effects of the covariates on the cross-validated
brain-PAD estimates [19]; 2) adding them as inputs to the final CNN layer [64]. These
play as additional constraints during training to limit the solution space of the network
enforcing the net to more accurately capture the relevant factors and their interactions.
All these aspects deserve further investigations, as they would have a great impact on
the statistical power of the analysis as well as on the outcomes of the association anal-
yses.

B. Feature selection

This step can be considered as optional since it highly depends on the chosen data and
model. Dimensionality reduction is usually applied before feeding the IDPs to the pre-
diction model. This is generally based on Principal Component Analysis (PCA) [56, 65,
66], Canonical Correlation Analysis (CCA) [66] and Independent Component Analysis
(ICA) [67, 60] to find the ’modes’ which embed the information deriving from either sin-
gle or multi-modal data in a smaller feature space. These were recently complemented
by feature handcrafting as in [59]. It might be useful to remind that while PCA projects
the data along the dimensions of maximum variance, CCA maximises a given similarity
measure, most commonly the correlation, among the data [66]. When ICA is applied for
dimensionality reduction, data are projected in a space where the components are as-
sumed to be non-Gaussian and as much independent as possible. Such data projection
can provide additional information on the population regarding its intrinsic variance or
similarity. The latent variable models yield loading vectors for every component, which
quantify the contribution of each feature to each component. This could be also con-
sidered a preliminary step towards explainability since the obtained feature grouping
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more than increasing the performance of the model, the associated loading still allow
to understand which feature contributed mostly to each latent component.

C. Data modeling

In this step the aim is the choice of the data modeling technique to be applied. In partic-
ular, if the addressed problem is quite simple linear approaches which are intrinsically
explainable could be the right choice. The choice of the model depends on multiple
factors such as data availability, feature number, multimodality, data input type etc.

For example, for BA the classical linear regression approach is still widely used in
literature. From a design perspective, most BA studies use large training sets of sub-
jects within a supervised learning framework to build the age prediction model having
brain IDPs as independent (predictor) variables along with chronological age as the
dependent (outcome) variable. Simple Linear Regression (SLR) and its extension to ac-
commodate multiple predictors (Multiple Linear Regression (MLR)) have been initially
proposed as simple though effective methods to model their statistical relationship.

However, more recently, CNN architectures were proposed to estimate BA using 3D
T1w images (for more details on the CNN please refer to the Supplementary Materials-
S3). While numerous variants of CNNs are present in the current literature, the solu-
tions explored in the BA context so far are mostly based on Visual Geometry Group
(VGG) Network and Residual Neural Networks (ResNet) architectures.

In order to reduce the model reliance on pre-processing steps such as image realign-
ment or registration, all the studies tend to apply only minimal pre-processing to the
input data. In addition, different regularization and data augmentation strategies, in-
cluding dropout, data rotation, translation, mirroring, scaling or addition of random
noise, are usually applied during the training phase to avoid overfitting and improve
generalization.

D. Training, validation and testing

In order to validate an AI model, most studies employ a cross-validation approach in
which a proportion of the samples from the entire training group is left-out (typically
ranging between 10 and 20%) whilst the remaining largest portion is used to train the
model. This is then applied to the left-out group to predict the individual ages. This
operation is performed until the whole set of disjoint partitions has been explored.
Spacifically for BA prediction, the model performance is evaluated relying on prede-
fined measures, typically: Mean Absolute Error (MAE), Root Mean Square Error (RMSE)
and Pearson correlation coefficient (r-value) between the estimated BA and the chrono-
logical age. Whilst these measures are largely used to assess the accuracy of the models,
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they should be interpreted with caution especially when comparing the results across
studies as they are affected by several factors, including the age range of the sample
which could lead to changes in the performance.

Usually, the best model is retained for testing on an unseen set of samples (testing
set), comprising healthy and/or diseased subjects, and generating individual predic-
tions. This operation allows to further validate the model and to prove its generalizabil-
ity across several samples, possibly coming from different sources and databases.

E. Explanations

This phase gives an explanation for each choice so that the algorithm’s significance and
behavior may be understood. The explanation includes extensive justifications for ev-
ery model decisions, including preprocessing, prediction method, classification, eval-
uation, and conclusion. As the explanations comprise the core content of XAI, it in-
creases the end user, domain experts, and client acceptance of the deployed system.

Ante-hoc models

• When to use them?
As presented in the previous Chapter, ante-hoc XAI methods are deeply linked to
the data analysis method, since they do not require an additional step after model
fitting. For their nature they are highly model specific, in fact the most common
ante-hoc methods are linear regression, logistic classification or decision trees for
which the explanations comes directly from the analysis of the coefficient or the ob-
tained rules. Other methods such as PCA, ICA for feature reduction are still ante-
hoc explainable methods since they allow to retrieve feature importance by observ-
ing weights and loadings. Such methods can be applied when, given the addressed
problem, they can reach satisfying performance not calling for the adoption of more
complex non linear and deep models. In this case explainability is hence achieved
through constraints imposed on the complexity of the ML model.

• How are they adopted in BA?
In [68], PCA was employed as a preliminary step for their linear model relying on
fMRI features. The latent variables corresponded to FC networks describing con-
nectivity patterns. A similar approach was presented by Smith et al. [60] which used
PCA and ICA to extract 62 modes of subjective variability, acting as aging brain-
prints. Each mode represented different aspects of BA, showing distinct patterns of
functional/structural brain changes as well as selective associations with genetics,
lifestyle, cognition, physical measures and disease. In the scalar-on-image proce-
dure proposed by Palma and colleagues [69] the obtained eigenfunctions encoded
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the main differences among healthy, MCI and AD subjects. They observed, for in-
stance, that the first eigenfunction allowed distinguishing the lateral ventricles from
the rest of the brain, concluding that the scores for this eigenfunction could be cor-
related with diagnosis and chronological age. Finally [66] directly employed CCA to
visualize the features significantly contributing to BA prediction.

Post-hoc models

• When to use them?
In this class fall the majority of XAI methods since post-hoc models are applied after
training of a complex model like a deep neural network or random forest for which
there is not necessarily access to the internal structure, commonly referred as ‘black
box’ models. With post-hoc methods it is hence possible to obtain explanations of ex-
isting models and are referred to as post-hoc explanations. Based on the input data
different explanations can be obtained. In neuroimaging the most common data
types are either images/volumes or tabular data. The most common approaches for
tabular data are feature importance based either in permutation on perturbation of
the input, while in the case of image/volumes saliency based explanations assume
the central role, either obtained through gradient backpropagation, decomposition,
input perturbation among the others.

• How are they adopted in BA?
– Permutation-based feature importance. Among the works exploiting the full vol-

umetric information, either considering T1-w volumes or other acquisitions, [70]
applied permutation feature importance to analyze the importance of different
White Matter (WM)/Grey Matter (GM) brain regions by quantifying their contri-
bution to their 3D-CNN predictions.
[71] used permutation feature importance, measured as an increase of Mean
Square Error (MSE), to interpret the outcomes of a Random Forest (RF) model
including T1-w, dMRI and fMRI tabular IDPs revealing that the model integrat-
ing all modalities was mostly driven by the cortical thickness, T1-w/T2-weighted
(T2-w) ratio and subcortical volumes. A similar approach was followed in [61]
where the feature importance was calculated over the reduction of the R2 of the
considered regression models which were Ridge regression, Support Vector Re-
gression, Gaussian Process Regression and Deep Neural Network (DNN). Finally,
Engemann et al. [72] proposed a stacked model composed by Ridge regression
and RF and interpreted the model through permutation feature importance over
the RF model given tabular metrics of fMRI, Magnetoencephalography (MEG)
and structural Magnetic Resonance Imaging (sMRI). They were able to unravel
the presence of an additive component between MEG and fMRI phenotypes.
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– Perturbation-based feature importance. SHapley Additive exPlanations (SHAP)
model is among the most famous perturbation-based feature importance meth-
ods, being model agnostic and hence applicable to any regression method. It was
employed for example in [19] on multiple ML methods, importantly revealing
that the anatomical changes in a common set of regions drive model predictions
of age, regardless of the model type. The regions found following the most im-
portant features reflected developmental growth patterns of the cortex in child-
hood and adolescence. On the contrary, input perturbation can be also applied by
training the model multiple times, each time with a different subset of features.
This approach was followed in [73], the authors assessed the specificity of spatial
brain-PAD patterns by training prediction models using each time only a subset
of tabular features derived from occipital, frontal, temporal, parietal, cingulate,
insula and cerebellum regions, respectively. They highlighted some differential
spatial patterns across the eleven different clinical groups that were analyzed.
This analysis allowed to uncover that relative aging across regions showed oppo-
site patterns in neurodevelopmental (schizophrenia) versus neurodegenerative
(Multiple Sclerosis (MS) or dementia) disorders.

– Saliency maps. Starting from gradient based methods, [74] exploited SmoothGrad
to produce explanation maps for their CNN model. Relying on a large data sam-
ple, they were able to create aggregated population-based explanation maps. The
similarity between each pair of group explanation maps was assessed and clus-
tering was applied to highlight the brain regions that contributed the most to age
prediction. Such regions showed the highest correlation to the brain-PAD, indi-
cating the specificity of the derived maps to their model. Grad-Class Activation
Mapping (CAM) approach was instead followed by both Wang et al. [75] and Feng
et al. [17] retrieved from their T1-w-based 3D-CNN to show the relative impor-
tance of different regions for BA prediction. In detail, [75] found that while the
network looks at the entire GM, the attention pattern is quite complex, suggest-
ing that brain-PAD is more related to specific features than to global measures of
GM volume when predicting BA. Feng et al. [17] moved a step forward. Besides
the post-hoc Grad-CAM derived saliency maps, they applied ablation analysis
methods, which indeed fall into input perturbation, focusing on part of the in-
put data. They highlighted patterns of neuroanatomical contributions of normal
aging providing evidence for the prominence of frontal regions in all age epochs
in the adult lifespan.
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F. Validation of XAI method

Evaluation of XAI as presented in Chapter 2, Section 2.2 is not yet a standard technique
in medical image analysis articles. Stability, consistency, understandability, and plau-
sibility should be tested for the specific XAI method chosen. For stability, tests such
as evaluating the explanations for similar instances could be performed, as well as re-
moving some features from the input data and recalculating the feature importance
to assess the stability of the obtained ranking. Concerning consistency, multiple XAI
methods can be applied to the same model in order to evaluate their consistency on
the same problem. Finally, plausibility should be tested by searching for validation in
the literature of the obtained results. This last attribute is really important in medicine
since in order to build trust in AI literature support is always highly preferred by clini-
cians. Concerning understandability, the chosen XAI methods should give explanations
with which it is possible to easily deal with, such as saliency maps or feature ranking.
For example, explanations referring to the model structure or connections, despite be-
ing interesting are not directly understandable and hence useful for interpreting the
model. Useful strategies to validate XAI models will be presented in Part IV.

G. Re-evaluation feedback loop

When explanations are obtained, if the model performance is not satisfactory, the end
user can interact with the algorithm by giving the system the necessary feedback for
each choice and parameter used, which can then be examined and changed in the
following tests. Sample situations can be realizing that the model is making decisions
based on the background or some biases present in the input images, or on trivial input
features. As a result, it improves future versions of training data and weight augmenta-
tion while also facilitating usability and incorporating the end user into the system.

3.3 Conclusions

In this Chapter we proposed a guideline that could help to unravel the huge world of
XAI, with a particular focus on medical framework. Even if our use case was BA esti-
mation, we described the general issues linked to data processing, feature extraction,
model selection and finally XAI application giving useful and valid hints expendable in
any other XAI application.

Part of this Chapter was recently published in [51].
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Explainable multivariate modeling suggests the
link between brain microstructure and cognitive
impairment in Multiple Sclerosis

In this Chapter we will present our preliminary work on Multiple Sclerosis (MS). MS
is a disease affecting Grey Matter (GM), usually devoted to executive functions possibly
susceptible of cognitive impairment. Potentially, diffusion Magnetic Resonance Imag-
ing (dMRI) can highlight microstructural changes associated with cognitive impairment.
Aiming at shading lights on the joint variation between the cognitive assessment in MS
and the dMRI derived GM microstructural alterations, we fitted a Partial Least Squares
(PLS) regression to data collected on a cohort of 36 patients. Results showed that 45%
variation of the data can be explained by an anti-correlation between anisotropy and re-
striction dMRI features, and diffusivity ones, together with relevant neuropsychological
tests scores. Moreover, the data projected to the PLS derived latent space were distinguish-
able between cognitively impaired and preserved individuals, with a model significance
p < 0.05.

4.1 Introduction

MS is a chronic, inflammatory, neurodegenerative disease of the Central Nervous Sys-
tem (CNS), characterized by the accumulation of White Matter (WM) and GM damage.
It affects the brain and the spinal cord, resulting in physical and cognitive disability due
to the damage of the myelin sheath wrapping WM axons as well as neurodegeneration
and axonal loss [76].

Different studies considered MS as WM disorder, considering WM derived features
for MS analysis and staging [77, 78] but more recently it has been hypothesized that the
distinction might be related to the appearance of lesions in the GM whose impairment
has been found to be associated with the early onset of the pathology [79, 80].

Along with the disease’s impact on the physical disability, another debilitating con-
sequence is the cognitive impairment that affects from 43% to 70% of the patients [81].
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It has been shown that an early diagnosis of cognitive impairment is particularly im-
portant because it has several consequences, e.g., it is able to predict the conversion to
definite MS [82], etc.

The cognitive impairment in MS, has been usually associated to a macro-scale brain
damage such as atrophy, whose information is extracted from classical T1-weighted
(T1-w) Magnetic Resonance Imaging (MRI) [83]. Compared to classical T1-w MRI, MRI
has the advantage to depict tissue alterations at a micro-scale level of detail. In particu-
lar, it captures the signal emitted by the water particles that diffuse within the structures
formed by the different coexisting neuronal cells. Signal reconstruction models, such as
Diffusion Tensor Imaging (DTI) MRI [84] or more advanced 3D Simple Harmonics Os-
cillator based Reconstruction and Estimation (3D-SHORE) [85], allow to extract several
maps describing the underlying microstructural properties of the brain.

Exploring the link between possible GM alterations in terms of dMRI derived fea-
tures and cognitive assessment of MS patients may reveal insightful aspects of the dis-
ease pathophysiology. To the best of our knowledge, only in one case this has been done
with advanced dMRI signal reconstruction models (different from 3D-SHORE) [86].
Of note, these studies usually employed classical univariate statistical approaches, al-
though they suffer from several disadvantages. e.g., i) they usually need mass-univariate
testing of several multivariate features, ii) the correlation between features must be
tested individually for each pair of them, iii) the aforementioned limitations introduce
the multiple comparison problems, iv) the significance of the results is severely com-
promised by the employment of high number of features, etc. Since many dMRI in-
dices can be extracted from a single subject, and they can be collected as features of a
values distribution within set of Region Of Interest (ROI)s, or even as voxel-level met-
rics, there is an inherent limitation when facing the problem with a univariate statistical
technique. In this context, the introduction of multivariate approaches to data analysis
allows to use of the entire information derivable from neuroimaging and clinical in-
formation and may reveal hidden characteristics of the link between the two. One of
these methods is the Partial Least Squares regression, which grounds on simultaneous
regression and dimensionality reduction of both the independent and dependent vari-
ables [87].

We chose to investigate the application of the PLS regression in our study to enable
a joint description of the correlation patterns between neuroimaging and cognitive as-
sessment with a relatively simple implementation. In particular, we aimed at highlight-
ing this variation in an MS cohort of patients divided in Cognitive Impaired (CI) and
Cognitive Preserved (CP) individuals.
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4.2 Materials and Methods

The study population included thirty-six MS patients with a suspected cognitive im-
pairment, who gave their written informed consent prior to undergoing MRI data ac-
quisition and neuropsychological cognitive assessment.

MRI data were acquired using a 3T Philips Achieva scanner (Philips Medical Systems,
the Netherlands) with an 8-channel head receiver coil. The MRI scan consisted of a
two-shells dMRI (Repetition Time (TR)/Echo Time (TE) = 9300/109 ms, flip angle = 90◦,
Field of View (FOV) = 112 × 112 mm2, 2-mm isotropic resolution, 62 slices, b-values
= 700/2000 s/mm2 with 32/64 gradient directions respectively and 7 b0 volumes). In
addition, T1-w (TR/TE = 8.1/3 ms, 180 slices, 1-mm isotropic resolution), T2-weighted
(T2-w) (TR/TE = 2500/228 ms, 180 slices, 1-mm isotropic resolution), and 3D Fluid-
Attenuated Inversion Recovery (FLAIR) (TR/TE = 8000/290 ms, 180 slices, 0.9 × 0.9 ×
0.5 mm2 resolution) images were acquired for anatomical information.

The neuropsychological evaluation relied on the Brief Repeatable Battery (BRB) of
neuropsychological tests, along with the Stroop Test comprising the Effect Interference
Time (ST-EIT) and the Stroop Test comprising the Effect Interference Error (ST-EIE).
The BRB is composed of the Selective Reminding Test including the long-term storage
(SRT-LTS), the Selective Reminding Test including the consistent retrieval (SRT-CLTS),
the Selective Reminding Test including the delayed recall (SRT-D), the Spatial Recall
Test (SPART), the Spatial Recall Test Delayed (SPART-D), the Symbol Digit Modalities
Test (SDMT), the Paced Auditory Serial Addition Task (PASAT) (with a rate of number
presentation of 3 s [PASAT-3], and 2 s [PASAT-2]), and the Word List Generation (WLG).
All the assessments were done within 2 years of distance from the MRI acquisition.

Grounding on this information, an expert neuropsychologist (M. P.) classified the
patients in CI and CP according to the results of a previous study [88]. The division led
to the first group of 25 CI (15 females, age: 48.0 ± 7.2 years [y], disease duration: 9.2 ±
7.6 y) and the second group of 11 CP (9 females, age: 41.9 ± 8.7 y, disease duration: 8.6
± 8.3 y).

dMRI data were corrected for motion, eddy-current and Echo Planar Imaging (EPI)
distortions. Brain extraction and masking were then performed, and the transforma-
tion matrix registering T1-w image to the subject’s mean b0 volume was calculated.
Preprocessed data were fitted with DTI and 3D-SHORE models, extracting Fractional
Anisotropy (FA) and Mean Diffusivity (MD) for the former, and Generalized Fractional
Anisotropy (GFA), Propagator Anisotropy (PA), Mean Squared Diffusivity (MSD), and
Return to the Origin Probability (RTOP), Return to the Axis Probability (RTAP), Return
to the Plane Probability (RTPP) for the latter. A rigid co-registration between FLAIR
and T1-w images of each subject was estimated since they were both acquired on the
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same person. Thus, MS lesions were automatically segmented on the first and sub-
sequently filled on the second image. This was done using the Lesion Prediction Al-
gorithm (LPA) available in the Least Segmentation Toolbox (LST) for SPM12 (www.
statistical-modelling.de/lst.html). The so-filled T1w image was then parcel-
lated according to the Desikan-Killiany atlas in Freesurfer software (http://surfer.
nmr.mgh.harvard.ed\u/). Only a set of regions including thalamus, caudate, puta-
men, hippocampus, posterior cingulate cortex, superior-frontal gyrus, insula, lateral
occipital cortex, lingual cortex, pericalcarine and precuneus were retained for further
analyses [89]. These ROIs were used as masks to calculate the median value for each
dMRI microstructural index, after the application of the previously calculated transfor-
mation matrix.

Both dMRI features and cognitive scores were individually standardized by the pop-
ulation’s mean and standard deviation, and subsequently deconfounded by covarying
for gender, age and disease duration. A PLS regression with Least Absolute Shrinkage
and Selection Operator (LASSO) regularization was then performed using dMRI fea-
tures as X (matrix of dimensions 36 × 88, where 88 is given by 8 indices for 11 ROIs) and
the neuropsychological scores as Y (matrix of dimensions 36 × 11). More in detail, the
Nonlinear Iterative PArtial Least Squares (NIPALS) algorithm [90] was used to decom-
pose both X and Y and find the principal components.

The PLS model’s eigen-vectors and eigen-values were then analyzed, and a permu-
tation test was performed to evaluate the regression’s significance. In detail, the rows of
the matrix Y were permuted with 10e4 permutations, and the resulting p was calculated
as the number of times that the sum of the obtained eigenvalues outperformed the one
obtained by the tested model divided by the number of permutations [91].

4.3 Results

The PLS regression applied to our data showed the first eigen-component as the most
relevant latent component retrieved by the model since alone accounted for 45% of
the total variation of the data versus the others 10. In Figure 4.1 is shown this eigen-
component, describing the covariance between dMRI microstructural features and
cognitive assessment. In detail, it highlighted for the dMRI features an anti-correlation
between anisotropy and restriction indices (FA, GFA, PA, RTOP, RTAP, and RTPP), and
diffusivity ones (MD and MSD). Moreover, it can be observed that cortical ROIs usually
had a higher impact on the eigen-component compared to subcortical ones (except
the hippocampus). This landscape of dMRI derived features correlations is completed
by the description of the cognitive assessment variation. In particular, the BRB derived

www.statistical-modelling.de/lst.html
www.statistical-modelling.de/lst.html
http://surfer.nmr.mgh.harvard.ed\u/
http://surfer.nmr.mgh.harvard.ed\u/
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Chapter4/Figures/PLS_canonical_LASSO_Ydeconfound.png

Fig. 4.1: PLS component’s weights for the dMRI and the cognitive assessment features.
dMRI derived weights are divided by index (colors). The ROIs’ order is the same for each
index and it is: thalamus, caudate, putamen, hippocampus, posterior cingulate cor-
tex, superior-frontal gyrus, insula, lateral occipital cortex, lingual cortex, pericalcarine
and precuneus. The opacity differentiates the subcortical (light) from the cortical ROIs
(dark).

scores showed a correlation in agreement with anisotropy and restriction indices, while
both ST-EIT and ST-EIE seems to be not relevant in the data variation description (low
PLS weighths).

The projections of X and Y features to the latent space represented by the mentioned
PLS component is shown in Figure 4.2. As it can be seen from the scatterplot, despite
the relatively low number of subjects, CI and CP patients can be easily distinguished by
a visual inspection.
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Chapter4/Figures/scatter_first_comp_lasso_Ydeconfound.png

Fig. 4.2: Latent representation of the study cohort. The two classes of patients are rep-
resented in different colors: CI in red and CP in blue.

Finally, the permutation test confirmed the significance of our model resulting in p
= 0.018.

4.4 Discussion

The PLS model performed in this work enabled the representation of different types of
features, such as dMRI and neuropsychology, to a common space describing their co-
variance. Moreover, the data projection of the data to the latent space appeared optimal
to classify CI and CP MS subjects of the study.

As aforementioned, to the best of our knowledge, few studies investigated the link
between the cognitive assessment of MS patients and the possible GM microstructural
alterations as derived by dMRI. In the cases found, classical univariate statistics were
used, which did not allow the employment of the whole possible information for a joint
description of their link.

However, despite the different statistical approach and the low use of advanced
dMRI signal models observed in the literature, our results derived from DTI seem in
line with the findings of Preziosa et al. [92]. In particular, they considered a population
of relapse-onset MS patients divided in CI and CP like us. They found an opposite trend
of cortical MD and FA as they significantly increased and decreased, respectively, in CI
compared to CP. Besides this, Planche et al. [93] focused on microstructural modifica-
tions of the hippocampus in MS patients compared to healthy controls, looking for a



4.6 Compliance with Ethical Standards 41

correlation with memory impairment. They also found an opposite trend between in-
dices defined by a decreased FA together with an increased MD, characterizing patho-
logical subjects. Interestingly, they found that MD was able to distinguish between pa-
tients with and without memory impairment.

Concerning the additional indices used in this study, we observed coherence be-
tween FA and the other anisotropy indices (GFA and PA) in agreement with the similar
tissue property mapped. The same can be said for the MD compared to MSD, while
restriction indices confirmed the expectation of coherence with anisotropy indices. In
fact, they grow when the structure in which the represented diffusion process is more
restricted, e.g. in corpus callosum, as well as anisotropy [94].

In addition, our model showed a usually higher impact of the cortical ROIs on the
eigen-component compared to subcortical ones. This observation was in agreement
with the higher involvement of the cortex in high-order cognitive abilities [95]. How-
ever, despite the executive functions are usually associated with the frontal lobe, re-
cently, also posterior and subcortical ROIs have been found to play a role in cognitive
processing.

Finally, we acknowledge two main limitations of our study consisting of the small
size of our cohort and the absence of a group of neurologically healthy subjects. Over-
coming these two issues would be helpful for the improvement of our PLS model gen-
eralization potential, and to reveal more specific differences between disease stages.

4.5 Conclusions

The joint variation of dMRI derived indices and neuropsychological test scores could
significantly model the variation of the data. Moreover, different forms of cognitive im-
pairment were qualitatively distinguishable in the latent space created by the PLS re-
gression. Thus, multivariate approaches to statistical analysis combining neuroimag-
ing and clinical study may have the potential of depicting subtle differences in different
forms of the MS pathology.

The work presented in this Chapter was published in [96].

4.6 Compliance with Ethical Standards

This study was performed in line with the principles of the Declaration of Helsinki. Ap-
proval was granted by the local Ethics Committee (MSBioB Biological bank - A.O.U.I.
Verona, protocol no. 66418, 25/11/2019).
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Interpretable Deep Learning as a means for
decrypting disease signature in multiple
sclerosis

Acknowledged the relevance of diffusion Magnetic Resonance Imaging (dMRI) indices in
Grey Matter (GM) for Multiple Sclerosis analysis, and its relation with cognitive impair-
ment resulted from the study described in the previous Chapter, here, our aim is to decrypt
the microstructural signatures of the Primary Progressive Multiple Sclerosis (PPMS) ver-
sus the Relapsing-Remitting Multiple Sclerosis (RRMS) state of disease based on diffusion
and structural Magnetic Resonance Imaging (MRI) data.
Firstly, as a benchmark, we relied on structural T1-weighted (T1-w) MRI and a 3D Convo-
lutional Neural Networks (CNN) trained to stratify PPMS and RRMS subjects. Within this
task, the application of feature visualization methods, based on relevance decomposition
such as Layer-wise Relevance Propagation, allowed detecting the voxels of the input data
mostly involved in the classification decision, potentially bringing to light brain regions
that might reveal the disease state. In particular, the so-called ‘winning class’ Layerwise
Relevance Propagation (LRP) was adopted in this study.
In the second step, a selection of microstructural descriptors, based on the 3D Simple Har-
monics Oscillator based Reconstruction and Estimation (3D-SHORE) and the set of new
algebraically independent Rotation Invariant Features (RIF), was considered and used to
feed as well 3D CNN models. Classical Diffusion Tensor Imaging (DTI), which are Frac-
tional Anisotropy (FA) and Mean Diffusivity (MD) were used as benchmark for dMRI.
Finally, T1-w images were also considered for the sake of comparison with the State-Of-
the-Art (SOA). A CNN model was fit to each feature map and LRP heatmaps were gener-
ated for each model, target class and subject in the test set.
Average heatmaps were calculated across correctly classified patients and size-corrected
metrics were derived on a set of Region Of Interest (ROI)s to assess the LRP contrast be-
tween the two classes.
Our results demonstrated that dMRI features extracted in GM tissues can help in dis-
ambiguating PPMS from RRMS patients and, moreover, that LRP heatmaps highlight
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areas of high relevance which relate well with what is known from literature for Multiple
Sclerosis (MS) disease. Within a patient stratification task, LRP allows detecting the in-
put voxels that mostly contribute to the classification of the patients in either of the two
classes for each feature, potentially bringing to light hidden data properties which might
reveal peculiar disease-state factors.

5.1 Introduction

MS is a chronic, inflammatory, neurodegenerative disease of the Central Nervous Sys-
tem (CNS), characterized by the accumulation of White Matter (WM) and GM damage.
It affects the brain and the spinal cord, resulting in physical and cognitive disability due
to the damage of the myelin sheath wrapping WM axons as well as neurodegeneration
and axonal loss [76]. Four principal clinical phenotypes of MS have been described,
among which RRMS and PPMS MS are the most common [97, 98]. While demyelina-
tion and atrophy characterize both forms, their patterns and distribution vary across
the brain, suggesting that different driving mechanisms might underpin these two main
clinical manifestations [99]. Therefore, there is a growing clinical need to find specific
fingerprints to distinguish between them in order to enable precision medicine, that
is patient-specific treatments with clear clinical impact on treatment decision-making
[98]. However, the mechanisms driving MS are still largely unknown, calling for new
methods allowing to detect and characterize tissue degeneration since the early stages
of the disease.

dMRI is increasingly exploited for assessing microstructural alterations occurring
in MS [100, 101]. This technique allows to define numerical indices that describe the
brain tissue microstructure based on the measurements of signal decay along a pre-
defined set of directions, providing an in-vivo indirect measure of the geometry of the
diffusion pores [102, 85]. In particular, novel acquisitions based on multi-shell schemes
have opened the way to the definition of a wider set of indices capturing microstructure
degeneration and informing on the underlying disease process [100].

Diffusion signal models are generally tailored on WM [103] and are well suitable for
modeling WM damage and structural connectivity alterations due to the disease. How-
ever, their exploitability for deriving neuroanatomically plausible microstructural de-
scriptors from GM is far from trivial and has still to be proven. In recent years, several
studies have attempted the characterization of GM modulations through dMRI acqui-
sitions in different pathologies such as Alzheimer’s Disease (AD) [104] and migraine
[105]. In MS both classical and advanced diffusion models were employed to investi-
gate the disease patterns in different phenotypes [78, 106] and to longitudinally moni-
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tor patients over time [107]. Their findings strengthened the hypothesis of a GM mod-
ulation in MS and highlighted the dMRI sensitivity in detecting those changes. For the
specific task of disambiguating PPMS from RRMS subjects, microstructural indices de-
rived from the 3D-SHORE model [102, 85] were used to demonstrate that the proba-
bility density function of the Return to the Plane Probability (RTPP) was significantly
different between the two groups in Hippocampus relying on histogram features [108].

In the context of patient classification from neuroimaging data, CNNs have recently
gained popularity thanks to their ability in solving complex classification tasks, though
in general require large amounts of data for training due to the high number of pa-
rameters that need to be calculated. Besides the availability of big data, one of the main
bottlenecks for the use of CNNs for clinical purposes is that they are notoriously hard to
interpret in retrospect. For this reason, Deep Learning (DL) methods, including CNNs,
are often criticized to be non-transparent and still considered “black boxes". Therefore,
the availability of a means allowing to interpret the network decisions becomes the key
element for their exploitability.

In the last years, a number of solutions have been proposed for visualizing what is
actually learned by a CNN. Besides straightforward methods such as the extraction of
activations and weights of the different layers, among the most widespread methods
are: (i) sensitivity analysis or BackPropagation (BP) [109], in which the relevance score is
calculated as the gradient of the output probability given the input, computed through
the backpropagation algorithm; (ii) Guided BackPropagation (GBP) [22], which modi-
fies BP by setting to zero the negative gradients; (iii) Deconvolution and occlusion [110],
where recursively a part of the input image is covered by a black patch and the network
output recalculated in order to assess the changes in the classification probability un-
der the assumption that the covered region was relevant for the classification; and (iv)
LRP [32], which allows to detect and visualize in a relevance heatmap the voxels of the
input data that mostly contributed to the classification decision. To this end, the LRP
algorithm uses the network weights and the neural activations resulting from the for-
ward pass to propagate the output back through the network up until the input layer, in
a backward pass.

5.2 XAI: application to Multiple Sclerosis

Focusing on eXplainable Artificial Intelligence (XAI) applications, this precise task was
previously approached by [33], which employed 3D-CNNs for the classification be-
tween MS subjects and healthy controls based on structural MRI data. They initially
pre-trained a 3D-CNN consisting of four convolutional layers followed by exponential
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linear units and four max-pooling layers on a large data sample (921 subjects) from
the Alzheimer’s Disease Neuroimaging Initiative. Afterward, they specialized the CNN
to discriminate between MS patients and controls on a smaller dataset of 147 subjects,
reaching a classification accuracy of 87.04%. As the final analysis, they used the LRP
heatmaps to assess the most relevant regions for the classification, analyzing both pos-
itive and negative relevance given their patients versus controls classification task. Fea-
ture visualization was also employed in [111] to distinguish 66 control subjects from
66 MS patients. They relied on Susceptibility-Weighted Imaging (SWI) and a 2D-CNN,
since for each SWI volume they considered only one single 2D projection in a trans-
verse orientation. The CNN was composed of five convolutional layers with ReLU ac-
tivation functions followed by max-pooling layers and two final fully-connected layers.
To interpret the classification decisions they investigated three different feature visu-
alization methods, namely LRP, Deep Learning Important FeaTures (DeepLIFT) [112]
and BP as reference. The resulting maps were analyzed with perturbation analysis. In
perturbation analysis, information from the image is perturbed region-wise from most
to least relevant according to the attribution map. The target output score of the clas-
sifier is affected by this perturbation and quickly drops if highly relevant information is
removed. The faster the classification score drops, the better an interpretability method
is capable to identify the input features responsible for correct classification. Their re-
sults highlighted the outstanding performance of LRP maps and DeepLIFT over simpler
methods, strengthening the suitability of such methods to address clinically relevant
questions.

However, the specific problem of stratifying MS patients according to their pheno-
type is still unexplored in literature. Only a few works were found addressing this task.
[113] combined graph-based CNN with structural connectivity information from dMRI,
relying in particular on a network-based representation of the structural connectome.
They aimed at distinguishing between 90 MS patients divided into four clinical profiles,
namely clinically isolated syndrome, RRMS, Secondary-Progressive MS (SPMS) and
PPMS, and 24 healthy controls. The combination of different local graph features, such
as node degree, clustering coefficient, local efficiency, and betweenness centrality al-
lowed to achieve accuracy scores higher than the 80%. Zhang and colleagues [30] moved
a step further by introducing feature visualization methods to investigate the MS pa-
tients’ stratification. They relied on structural MRI and compared six different 2D-CNN
architectures for classification into three classes, namely RRMS, SPMS and controls.
Furthermore, they applied three different feature visualization techniques (Class Acti-
vation Mapping (CAM), Gradient (Grad)-CAM, and Grad-CAM++ [24, 25]) to achieve
increased generalizability for CNN interpretation. Their results showed that Grad-CAM
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had the best localization ability in finding differences between RRMS and SPMS for dis-
criminating brain regions.

Among these, we consider the LRP to be the most promising tool for two main rea-
sons. First, it provides an individual heatmap for each subject lying in the same space
as the input image, indicating the weight of each voxel for the final (individual) classi-
fication decision. Second, LRP heatmaps have proven to be more eloquent than those
provided by GBP [22] in that they reflect image-specific relevance, whereas GBP, rely-
ing on gradients, tends to emphasize the areas that are more susceptible to changes
that might not coincide with the areas on which the CNN bases the decision [26].

In [33], LRP was employed on CNNs for classifying between MS subjects and healthy
controls based on structural MRI data while [111] compared multiple visualizations
methods applied to the same task relying on SWI. The specific problem of MS patients
stratification was addressed from a DL point of view in [113] by combining CNNs and
graph metrics derived from structural connectivity. Finally, [114] and [115] used a 2D-
CNN model on structural MRI data for classifying physiological versus pathological
subjects without stratification.

To the best of our knowledge, no attempts have still been made for exploiting LRP in
the PPMS versus RRMS patients stratification task. Therefore, the objective of this work
is twofold: disambiguating the considered groups of MS patients relying firstly on T1-w
MRI and secondly on advanced dMRI models and DL techniques focusing on GM, and
decrypting CNNs decisions through the adoption of LRP.

For the first aim, we relied solely on T1-w MRI input in order to obtain a bench-
mark for the subsequent analysis. This preliminary work will be presented in Section
5.3. Then in Section 5.4, considering the increased interest in assessing the role of GM
in the MS disease fingerprinting, we will present our work relying on three dMRI signal
models to derive microstructural indices with the specific goal of assessing their sensi-
tivity to the microstructural contract between the PPMS and RRMS phenotypes. Being
aware of the potentials and limitations of the considered models, we specifically aimed
at capturing possible feature modulations in GM leaving the biophysical interpretation
of the results to further investigations relying on multimodal acquisitions.

For both the second objectives we build on the claim in [26], that LRP has the po-
tential to answer the question “What speaks for AD in this particular patient?" provid-
ing guidance to understanding the mechanisms ruling the disease. In our work, such a
question can be reformulated as “What speaks for PPMS in this particular patient?",
which is the core question that was addressed. This is a key issue to be solved and
a very challenging problem because of the subtle intra-pathology tissue modulations
differentiating the two stages of the disease. In this respect, the goal of this work was
to investigate whether CNNs were able to blindly capture such subtle differences while
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providing insightful information about the underlying mechanisms through the obser-
vation of LRP maps. Restraining to these two categories represents the worst case from
the classifier perspective, because of the subtle microstructural differences across the
two phenotypes. However, we consider this as an important task because it is close to
clinical practice conditions where a matched cohort of control subjects could not be
available. In particular, as LRP allows to map the value of the network decision function
onto the input voxels shedding light on the reasons behind the classification decisions,
it can potentially provide hints for the interpretation of the mechanisms at the basis of
the MS disease course besides the primary classification task, opening new perspec-
tives for diagnosis, prognosis and treatment.

5.3 Preliminary analysis based on T1-w MRI and winning

class LRP feature visualization

This Section will present the preliminary results for the stratification of RRMS and
PPMS patients based on T1-w MRI. The LRP visualization, in particular the so called
‘winning class‘ LRP, was used to emphasize the critical brain regions for appropriately
identifying the two patient populations in a 3D-CNN that was proposed to achieve this
goal. A Spearman’s association between the mean relevance for each ROI and the indi-
vidual Expanded Disability Status Scale (EDSS) scores strengthened the results in the
end.

5.3.1 Materials and Methods

Population, Data Acquisition and Image Processing

The population consisted of 91 subjects, including 46 RRMS (35 females, 52.5 ± 10.4
years old) and 45 PPMS (25 females, 47.2 ± 9.5 years old) patients. The EDSS score was
2.8 ± 1.4 and 4.8 ± 1.3 for the two groups, respectively. Group differences in age and
EDSS score were tested through t-test, while differences in gender numerosity were
evaluated through χ2 test.

MRI acquisitions were performed on a 3T Philips Achieva scanner (Philips Medi-
cal Systems, the Netherlands) equipped with an 8-channel head coil. The following
sequences were used for all patients: 1) 3D T1-w Fast Field Echo (Repetition Time
(TR)/Echo Time (TE) = 8.1/3 ms, FA = 8◦, Field of View (FOV) = 240 × 240 mm2, 1-mm
isotropic resolution, 180 slices); 2) 3D Fluid-Attenuated Inversion Recovery (FLAIR) im-
age (TR/TE = 8000/290 ms, Inversion Time (TI) = 2356 ms, flip angle = 90◦, FOV = 256
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Fig. 5.1: 3D CNN architecture with single channel T1-w input.

× 256 mm2, 0.9 × 0.9 × 0.5 mm3 resolution, 180 slices). All patients were recruited in
our center according to their diagnosis based on the McDonald 2010 diagnostic crite-
ria. The study was approved by the local ethics committee, and informed consent was
obtained from all patients. All procedures were performed in accordance with the Dec-
laration of Helsinki (2008).

For each subject, the FLAIR was linearly registered to the T1-w (FSL flirt tool) and the
Lesion Prediction Algorithm (LPA) [116] was used to automatically segment and fill the
WM lesions in the native T1-w image. Each filled T1-w image was then imported in the
FreeSurfer software [117] to perform a complete brain parcellation with 112 anatomical
ROIs. The binary mask representing the GM tissue probability thresholded at 95% was
derived for each subject (FSL fast tool) and applied to all the filled T1-w.

Network Architecture

A 3D-CNN Visual Geometry Group (VGG) net architecture [21] was used. This architec-
ture has been well assessed in combination with MRI data in few recent studies [118,
26, 119], and it has been shown to achieve comparable performance with respect to
the Residual Neural Networks (ResNet) model [120] in distinguishing AD patients from
controls [118]. In addition, the VGG model allows for a straightforward application of
visualization techniques and is thus particularly suitable for this work aiming at inter-
pretability.

The network structure consists of four volumetric convolutional blocks for feature
extraction, two fully connected layers with batch normalization, and one output layer
with softmax nonlinearity. Each convolutional block consists of a convolutional layer
followed by a ReLU, batch normalization, and 3D pooling. A graphical representation of
the 3D-CNN structure highlighting the main parameters for each layer is provided in
Figure 5.1.
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Training, Validation and Testing

Data augmentation was performed during the training/validation phase in order to im-
prove the generalization capabilities of our models. In detail, the data augmentation
consisted of: addition of random Gaussian noise (µ = 0, σ = 0.1); random affine trans-
formation from −5 to +5 degrees in the Z axis, and from −3 to +3 degrees in the X
axis; random volume translation from −3 to +3 voxels along each of the three axis; flip-
ping across the X axis. In addition, clipping of the values to the 99th percentile was
performed.

The CNN was trained using a 5-fold Cross Validation (CV) strategy over a train-
ing/validation set of 71 subjects. On each fold, the 71 subjects were randomly split in
five groups, each of 14 subjects (except one of 15 subjects). The experiment was re-
peated five times and, for each repetition, four groups were considered as training and
the remaining one was kept unseen for validation. The cross-entropy loss was opti-
mized by means of the Adam optimizer [121] during the training phase. Twenty sub-
jects were kept unseen and considered as a testing set. In detail, the five models derived
from each fold of the 5-fold CV, were used to perform the prediction over the test set,
and the performance metrics were computed for each of them. The test subjects did
not undergo the data augmentation transformations.

In this work, True Positive (TP)s and True Negative (TN)s represent the number of
correctly classified PPMS and RRMS subjects, respectively. The CNN performance was
reported, averaged over the five models, in terms of accuracy, sensitivity and speci-
ficity, while precision for each class was defined as precisionPP MS = TP/(TP+FP) and
precisionRRMS = TN/(TN+FN). The whole deep learning analysis was carried out us-
ing Pytorch [122]. The computation was performed on a laptop (Ubuntu 18.6, Nvidia
Geforce GTX 1050, Intel Core i7, 16 GB RAM). Torchsample wrapper was used as high-
level interface.

CNN Visualization

LRP visualization was employed to identify which voxels in the input volume con-
tributed most to the classification output. This technique is based on a backward pro-
cedure which is a conservative relevance redistribution of the output prediction prob-
ability through the CNN layers till the input volume.

The core rule of the LRP backward procedure is the relevance conservation per layer.
Let s and s + 1 be two successive layers of the network and j and k two “neurons" of
those layers, respectively. The relevance of the neuron k for the prediction f (x), where
x is the input, can be written as R s+1

k . This relevance is redistributed to the connected
“neurons" in layer s through the following equation:
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∑
j

R s
j←k = R s+1

k (5.1)

The iteration of Eq. 5.1 through all the CNN layers allows the decomposition of the
relevance of prediction function f (x), R f , in terms of the input in the first layer.

Multiple rules can be applied for the distribution of the relevance [46]. In this work
we used the β-rule [32, 123], setting β = 0, hence allowing only positive contribution to
the relevance score, following [26] where they demonstrated the LRP robustness rela-
tively to theβ-value. Higherβ-values decompose the relevance in positive and negative
contribution, the latter usually considered when dealing with patient control classifica-
tion task, not the object of this study. In this work, the classification aim of differenti-
ating two groups of patients led to the computation not only of the TPs (PPMS) re-
lated LRPs, but also the TNs (RRMS) related ones by computing the so-called winning
class LRP. In fact, to obtain LRP maps, a target class has to be defined and the result-
ing maps are strongly related to such class. In this work, since the two classes share the
same importance, the backward procedure starts, for each subject, from the highest rel-
ative prediction probability present in the prediction function f (x) (hence, there is not
a fixed target class). In this way, widening the definition of LRPs given in [26] for AD,
the resulting winning class LRPs will answer two questions: (i) ’What speaks for PPMS
in this subject?’, for the subjects predicted as PPMS, (ii) ’What speaks for RRMS in this
subject?’ for the subjects predicted as RRMS. To compute LRP maps the iNNvestigate
library [124] was used.

LRP heatmaps analysis

The LRP heatmaps were generated for each subject of the test set, based on the best
model (in terms of accuracy) among the five derived from the 5-fold CV. After, they
were registered to the standard MNI space (voxel size = 1 mm) and averaged over the
two groups of patients, for visualization purposes.

Fifteen brain ROIs were selected based on MSliterature [125, 126, 127, 128]: thalamus
(Thal), caudate (Cau), putamen (Put), hippocampus (Hipp), insular cortex (Ins), tem-
poral gyrus (TpG), superior frontal gyrus (SFG), cingulate gyrus (CnG), lateral occipital
cortex (LOC), pericalcarine (PCN), lingual gyrus (LgG), cerebellum (Cer), temporal pole
(TP), pallidum (Pall) and parahippocampal gyrus (PHG). The reference atlas was the
Desikan-Killany available in FreeSurfer tool.

The average of the LRP derived relevance values for the 15 ROIs was computed across
the correctly classified subjects of the test set.
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Fig. 5.2: LRP heatmaps obtained from the T1-CNN model. The heatmaps are shown
for both RRMS and PPMS patients, and are overlaid to the MNI152 template in coronal,
sagittal and axial views (columns). Each LRP map is averaged across the correctly clas-
sified RRMS and correctly classified PPMS subjects of the test set, respectively. The re-
ported values are clipped to the range 60th−99.5th percentile, calculated over the RRMS
and the PPMS class group mean heatmaps.

Finally, as explorative analysis, we investigated the LRP neurological plausibility, fol-
lowing [33] and [26]. The Spearman’s correlation between the average LRP relevance for
each ROI and the EDSS score was calculated together with the corresponding p-value.

5.3.2 Results

A preliminary analysis revealed that the EDSS score and the age were significantly dif-
ferent between RRMS and PPMS subjects (p < 0.05). The same held with gender nu-
merosity (p < 0.05), this last observation reflecting the epidemiology of the disease.

The proposed T1-CNN achieved an average accuracy equal to 0.84 ± 0.10 over the
five models derived from the 5-fold CV, one for each fold. The sensitivity and specificity
were 0.74 ± 0.24 and 0.94 ± 0.08, showing that the CNN minimized the FPs, which are
the wrongly classified RRMS subjects. The trend was confirmed by the precisionRRMS
which was 0.82 ± 0.14 while the precisionPP MS was 0.94 ± 0.14.

Figure 5.2 shows the group LRP heatmaps, averaged over the correctly classified sub-
jects of the test set for each class. For ease of visualization, the maps are clipped be-
tween the 60th and the 99.5th percentile calculated over the respective LRP target group
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Fig. 5.3: Size-normalized importance metric extracted from the LRP maps. The mean
relevance value for each ROI is reported for all the correctly classified PPMS and RRMS
subjects in the test set. The median relevance for PPMS (orange circle) and RRMS (blue
circle) groups are also shown.

heatmap. As expected, considering how winning class LRP maps were calculated, high
relevance was found in both PPMS and RRMS classes. Even if widespread relevance
values were present in both classes, the pattern was slightly different. In fact, the RRMS
derived LRP map showed high activation in the temporal cortex and cerebellum, partic-
ularly evident in the coronal and sagittal views, respectively. On the contrary, the PPMS
derived LRP map showed low relevance in the temporal lobe, while high relevance was
assigned to the frontal lobe as can be observed in the sagittal view.

ROI-based analysis was performed to quantitatively assess the relevant areas for the
classification task, as a first step toward the clinical validation of the outcomes. Fig-
ure 5.3 illustrates the size-normalized importance metrics for the correctly classified
patients of the test set, separately for the two classes. As previously stated for the qual-
itative analysis of the LRP maps, the temporal pole showed the highest relevance for
both classes, as well as the highest distance between the medians, followed by the hip-
pocampus, which moreover presents the highest gap between the two distributions.
Other relevant ROIs were the insula and the cerebellum, the former showing a higher
distance between the medians of the distributions. The other considered ROIs showed
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Table 5.1: Spearman correlation results between the mean relevance for each ROI and
the EDSS score.

Ins PCN SFG CnG PHG

ρ -0.42 0.16 0.47 -0.16 -0.59

p-value 0.08 0.51 0.05 0.53 0.01

TP LOC LgG TpG Thal

ρ -0.44 0.42 -0.40 -0.52 0.08

p-value 0.07 0.08 0.10 0.03 0.74

Cau Put Hipp Pall Cer

ρ -0.25 -0.43 -0.50 -0.13 -0.22

p-value 0.38 0.08 0.03 0.61 0.38

The ρ score and relative p-values (rows) are reported for each ROI (columns). The significant correlations (p-value < 0.05) are
highlighted in bold.

lower relevance values and overlapped distributions, particularly evident for the supe-
rior frontal gyrus.

Finally, the results of the Spearman correlation analysis between the ROIs mean rel-
evance values and the EDSS scores are reported in Table 5.1. Significant negative cor-
relations were detected for the parahippocampal gyrus, the temporal gyrus, and the
hippocampus (p-value < 0.05), showing a ρ value of −0.59, −0.52, and −0.50, respec-
tively. On the contrary, a slightly positive correlation with ρ = 0.47 could be found for
the superior frontal gyrus.

5.3.3 Discussion

In this work, we addressed the stratification problem between RRMS and PPMS sub-
jects based on T1-w data. A 3D-CNN was proposed to this aim, and the LRP visualiza-
tion technique was applied in order to highlight which are the key brain regions for
correctly classifying the two patient populations. Finally, the outcomes were strength-
ened through a Spearman correlation between the mean relevance for each ROI and
the individual EDSS scores. Distinguishing PPMS from RRMS based on GM features is
one of the current challenges in MSresearch [129], and the identification of a biomarker
allowing to capture the differences between PPMS and RRMS patients is hence one of
the major challenges of personalized medicine [130].

The obtained accuracy of 0.84 ± 0.10 suggests that the combination of T1-w and
CNNs can help in the classification task between MSsubtypes. Performance is com-
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parable with that presented in [113] (average precision of 0.84 and an average recall
of 0.8 on a dataset of 604 acquisitions) although achieved with different methods and
data acquisitions. The other classification metrics, as formalized in this work, can be
strictly related to the ease of classification of each class of patients. In our results, the
precisionPP MS and the specificity were respectively close to the precisionRRMS and the
sensitivity, indicating that the CNN better minimized the FPs (the wrongly classified
RRMS subjects). This highlighted a probable better characterization of RRMS subjects
with respect to PPMS.

The differentiation between healthy and pathological subjects is much more com-
mon in literature. In this respect, a 3D CNN based approach was proposed by [33],
showing an accuracy of 87.04% on a set of 147 fully volumetric structural MRI ac-
quisitions. Moreover, to better interpret the CNN performance, Eitel and colleagues
adopted LRP visualization. The substantial difference in the research question makes
these works not directly comparable to ours.

Through LRP visualization it was possible to identify the regions based on which
the CNN model performed the classification between the two MS subtypes. The ROIs
deemed as more relevant, which were also significantly correlated with the EDSS score,
are generally involved in MS pathology. The parahippocampal gyrus and the hippocam-
pus have been shown to have a high probability of focal GM demyelination in MS
pathology [131, 132], and the temporal gyrus has been demonstrated to be correlated
with cognitive performance in MS [133], while the superior frontal gyrus has been
shown to be associated with fatigue, particularly in RRMS [79]. Interestingly, the su-
perior frontal gyrus resulted significantly correlated with EDSS despite it showing over-
lapping relevance between the two classes. This reasonably calls for clinical validation
of the outcomes. In fact, the relevance values allowed to understand how the voxels of
certain ROIs contributed to the classification, but still did not allow to identify the un-
derlying reasons (e.g. lesion load, atrophy, etc.) [26].

Despite the promising results obtained in this study, we acknowledge that our study
can be improved especially for what concerns the robustness of the outcomes, which
depends on the numerosity of the sample. This limitation also affected the hyperpa-
rameters optimization, which was performed on separate sets. A comparison with dif-
ferent classification techniques will be the object of future works.

Nevertheless, we consider these outcomes as the valuable first evidence of the po-
tential of the proposed method in splitting apart the two MR phenotypes and providing
hints on the possible subserving mechanisms of disease progression, and we leave the
open issues mentioned above for future investigation.



56 5 Interpretable Deep Learning as a means for decrypting disease signature in multiple sclerosis

5.3.4 Conclusions

This work corroborated the capability of T1-w combined with a 3D CNN classifier of
distinguishing the different typologies of MS disease. In addition, we could highlight,
through the application of LRP visualization, that the CNN classification was based on
clinically relevant ROIs that significantly correlated with EDSS score. From a clinical
perspective, our results strengthen the hypothesis of the suitability of GM features as
biomarkers for MS pathological brain tissues. Moreover, this work has the potential to
address clinically important problems in MS, like the early identification of the clinical
course for diagnosis, personalized treatment and treatment decisions.

5.4 The contribution of dMRI and class specific LRP feature

visualization

In what follows we will move a step forward proposing various CNN models for the
purpose of detecting PPMS patients and capturing the microstructural features and
key ROIs that influence the classifier decision. As dMRI derived indices, DTI (FA and
MD), 3D-SHORE (Propagator Anisotropy (PA), Return to the Axis Probability (RTAP),
Return to the Origin Probability (RTOP), and RTPP) and the recently proposed RIF
(RIF1, RIF2) were considered. Only GM tissues were given as input to the CNN, and
a T1-w-based CNN model was additionally trained for benchmarking. Confounds in-
fluence was deeply investigated proposing a post-hoc analysis after CNN training. LRP
was then applied to retrieve the regions leading the classification. Two heatmaps were
created for each CNN model, one for each target class in the test set, showing the im-
portance of each voxel. Following that, the relevance of the 15 chosen brain regions was
assessed and validated region-wise using three different importance metrics. Finally
the LRP neurological plausibility was also verified through a Spearman’s correlation be-
tween the relevant maps and a diffusivity index known for its role in MS stratification.

5.4.1 Materials and Methods

An overview of the complete process proposed in this work is presented in Figure 5.4.

Dataset

The population consisted of 91 subjects, including 46 RRMS (35 females, 42.5 ± 10.4
years old) and 45 PPMS (25 females, 47.2 ± 9.5 years old) patients. EDSS score was 2.8
± 1.4 and 4.8 ± 1.3 respectively for the two groups. A significant group difference in
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Fig. 5.4: Schematic overview of the proposed pipeline. DTI, 3D-SHORE, RIF and T1-w MRI are considered sep-
arately as input to different 3D CNNs models, resulting in one CNN model for each index. For each CNN, the best
model, derived from a 5-fold CV is retained and LRP maps are extracted for both target classes (RRMS-LRP and
PPMS-LRP).

age, EDSS score (p < 0.05, obtained via a t-test) and gender numerosity (p < 0.05, ob-
tained via a chi-squared test) were recorded, this last reflecting the epidemiology of the
disease.

MRI acquisitions were performed on a 3T Philips Achieva scanner (Philips Medical
Systems, Best, The Netherlands) equipped with an 8-channel head coil. The following
sequences were used for all patients: 1) two-shell dMRI (TR/TE = 9300/109 ms, flip an-
gle = 90◦,FOV = 112 x 112 mm2, 2-mm isotropic resolution, 62 slices, b-values = 700/2000
s/mm2 with 32/64 gradient directions respectively and 7 b0 volumes); 2) 3D T1-w Fast
Field Echo (TR/TE = 8.1/3 ms, FA = 8◦, FOV = 240 x 240 mm2, 1-mm isotropic resolution,
180 slices); 3) 3D FLAIR image (TR/TE = 8000/290 ms, TI = 2356 ms, flip angle = 90◦, FOV
= 256 x 256 mm2, 0.9 x 0.9 x 0.5 mm3 resolution, 180 slices). The study was approved by
the local ethics committee, and informed consent was obtained from all patients. All
procedures were performed in accordance with the Declaration of Helsinki (2008).

Data preprocessing

Diffusion MRI data denoising, Gibbs ringing removal, motion and Eddy currents dis-
tortion correction were performed using the DIFFPREP module of Tortoise software
(https://tortoise.nibib.nih.gov/tortoise).
These steps led to preprocessed dMRI data with a size of 90×125×125 voxels. The Brain
Extraction Tool in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/[134]) was used
for skull stripping and for deriving a binary mask for each subject. In addition, the

https://tortoise.nibib.nih.gov/tortoise
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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individual b0-weighted image were averaged across all the b0 volumes and the re-
sulting image was spatially normalised to the MNI152 standard space using first the
FSL epi_reg tool, to register the b0 image to the respective T1-w one, and then ANTs
(http://stnava.github.io/ANTs/), to normalise the T1-w to the standard MNI152
space.

For each subject, the FLAIR image was rigidly registered to the T1-w using the
FSL flirt tool. The LPA [116] available in the Least Segmentation Toolbox (LST) for
SPM12 (www.statistical-modelling.de/lst.html) was used to automatically seg-
ment and fill the WM lesions in the native T1-w image. Each filled T1-w image was
then imported in the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/,
Harvard University, Boston, MA, USA) to perform a complete brain parcellation with
112 anatomical ROIs. Filled images were also skull stripped (FSL bet tool) and pro-
jected back to the dMRI native space by inverting the previously estimated transforma-
tion matrix. The segmentation of the registered T1-w images into GM, WM and cere-
brospinal fluid was finally performed (FSL fast tool) and a binary mask representing
the GM tissue probability thresholded at 95% was derived for each subject. This was ap-
plied to all the indices maps and to the T1-w, as only GM tissue was considered through-
out the subsequent analyses.

Diffusion signal modeling

Microstructural indices were derived from three analytical signal models: DTI [84] (FA
and MD); 3D-SHORE [102] (PA, RTAP, RTOP and RTPP); and the recently proposed RIF
[135]. DTI and 3D-SHORE indices were calculated using DIPY [136] while in-house soft-
ware was used for RIF.

As opposed to DTI and 3D-SHORE indices, which are well known in the current lit-
erature [137, 138, 139], RIF have been only recently introduced. Basically, RIF are calcu-
lated on the Laplace-series expansion of a given spherical function and are high order
rotation invariants related to the spherical mean, power-spectrum and bispectrum in-
variants if calculated on the diffusion signal. Moreover, they can be linked to statistical
and geometrical measures of spherical functions, including the mean, the variance and
the volume of the function.

In this work, we used 4th order Spherical Harmonics (SH) to fit the diffusion signal,
but only the first two RIF, I0 and I22, were considered. Indeed, due to the characteristics
of the diffusion process in GM, the corresponding spherical signal is almost flat, such
that all the high order invariants vanish. The only two non negligible RIF are I0 and I22

and are given by (5.2) and (5.3), respectively. In this work we will refer to them as RIF1
and RIF2 for convenience of notations:

http://stnava.github.io/ANTs/
www.statistical-modelling.de/lst.html
http://surfer.nmr.mgh.harvard.edu/
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RI F 1( f ) = c00
p

4π (5.2)

RI F 2( f ) =
l∑

m=−l
|cl m |2 (5.3)

where, in this work, l = 2. If the RIF are calculated on the diffusion signal, as it was
the case here, RIF1 corresponds to the mean of the diffusion signal across one shell,
while RIF2 is related to the variance [135]. More details about RIF computation can be
found in Appendix A. Since RIF were calculated separately on each shell, two maps were
obtained for each RIF in our two-shells dMRI scheme. Overall, eleven features resulting
from the DTI, 3D-SHORE, RIF and T1-w models were handcrafted and used for each
patient.

Network architecture

Chapter5/Figures/F2.pdf

Fig. 5.5: 3D Convolutional Neural Network architecture with single channel diffusion Magnetic Resonance Imag-
ing index input.

A 3D-CNN VGG net architecture [21] as presented in Section 5.3.1 and shown in Fig-
ure 5.5 was used also for this study. A different CNN was used separately for each input.

Of note, throughout the manuscript, we will refer to the eleven derived CNNs models
as FA-CNN, MD-CNN, PA-CNN, RTAP-CNN, RTOP-CNN, RTPP-CNN, RIF1-CNN, RIF2-
CNN and T1-CNN, respectively, based on the input feature.
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Training, Validation and Testing

The feature maps resulting from the DTI, 3D-SHORE, RIF models and T1-w, separately
masked to retain GM voxels only, were split in subsets to be used for training/validation
(78% of the total, 71 subjects) and testing (22% of the total, 20 subjects). For the RIF, the
two different maps for each index (one per shell) were considered together as separate
channels of input data. Therefore, the whole input of the network was a four dimen-
sional tensor of size 1×90×125×125 for DTI and 3D-SHORE indices, 2×90×125×125
for the RIF and 1×180×240×240 for T1, respectively. The optimal weights were learned
during training by minimizing the cross-entropy loss by means of the Adam optimizer
[121]. Training and validation were performed in all cases on batches of size four.

Data augmentation was performed keeping the same parameters described in Sec-
tion 5.3.1. Multiple tests were performed to fit the hyperparameter values over the train-
ing/validation phases. Their values were varied across the respective feasible and em-
pirical range and the ones leading to the best accuracy and lower loss were retained.
Validation was performed following a 5-fold CV strategy. The 71 subjects used for train-
ing/validation were randomly split in five groups, resulting in folds of 14 subjects each
(except one consisting of 15 subjects). The experiments were repeated five times and,
for each run, four folds were used for training and the remaining one for validation. The
best model, for each fold, was chosen as the one corresponding to the lowest loss and
highest accuracy values obtained over the validation sets. The remaining 20 subjects
were kept unseen and used for testing using the best model resulting from each fold of
the 5-fold CV procedure. No data augmentation was performed on the test set.

The whole DL analysis was carried out using Pytorch. The computation was per-
formed on a laptop (Ubuntu 18.6, Nvidia Geforce GTX 1050, Intel Core i7, 16 GB RAM).
Torchsample wrapper was used as high-level interface.

Performance Assessment

Performance was assessed following the objective of avoiding the misclassification of
PPMS patients. Accordingly, we called TP and TN the number of correctly classified
PPMS and RRMS subjects, respectively.

Performance metrics

The following measures were calculated to assess the performance of each CNN model:

Accur ac y = T P +T N

T P +T N +F P +F N
(5.4)

Sensi t i vi t y = T P

T P +F N
(5.5)
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Speci f i ci t y = T N

T N +F P
(5.6)

Pr eci si onPP MS = T P

T P +F P
(5.7)

Pr eci si onRRMS = T N

T N +F N
(5.8)

Results were reported for the testing set in terms of mean and standard deviation of
the classification measures over the five best models resulting from the 5-fold CV.

Controlling for confounding variables

In the biomedical field, great importance is attributed to the role of confounds, that
could bias the results hiding, contrasting or annihilating other factors that could hold
important clinical information. In general, when linear regression is used, deconfound-
ing is applied before modeling, regressing out the confounds directly from the data.
However, this is not a common practice when deep networks are used, relying on their
ability of capturing all the discriminating features. Though, this does not provide any
guarantee with respect to possible biases in the outcomes neither on the prevalence (or
not) of confounding variables in shaping the results. In this work the issue was faced
by following the post-hoc method described in [140] leaving the input data unchanged.
In particular, logistic classification models were used to assess the role of age, sex and
EDSS in the differentiation between PPMS and RRMS phenotypes. To this end, two lo-
gistic models were contrasted for each index through the Likelihood Ratio (LR) test, that
is predicting the outcomes using either the confounding variables or the confound-
ing variables and the CNN model predictions. The statistical significance of the LR, as-
sessed through a χ-squared test, would reveal that the role of the confounds in shaping
the classification outcomes is not prevalent.

Layer-Wise Relevance Propagation (LRP)

LRP visualization was employed to determine which features and voxels in the input
volume contributed most to the classification output. This technique relies on a back-
ward pass ruled by the conservative relevance redistribution procedure, proceeding
backwards from the CNN output values (i.e., the classification probabilities) to the in-
put layer. In this approach, each neuron of a layer receives a relevance score from the
next layer and redistributes it to its predecessors in equal amounts until the input layer
is reached. In this way, neurons that contribute the most to the deepest layer receive
more relevance. More details about the analytic formulation can be found in Section
5.3.1.
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In a multi-class classification task, f (x) consists of multiple values indicating the
probability for the input x to belong to each of the classes ci , e.g. f (x)={ fC1(x), fC2(x), . . . ,
fCN (x)} where N is the total number of classes. In order to calculate the LRP map, the
target class must be specified. Let n be the class index, then Cn −LRP (x) is obtained by
backpropagating fCn (x) through the network. Following this notation, in this work the
prediction f (x) is defined as f (x)={ fCPP MS (x), fCRRMS (x)}. Differently from the winning
class LRPs described in Section 5.3.1 and adopted in the previous work, here two targets
class-driven LRP heatmaps were derived for each subject, providing complementary
information about the significance of each voxel in the classification process.

It might be useful to point out here that the network behavior is not symmetric
across the two classes. To get the flavor of this let’s consider a toy example. Let PP MSi

be a Primary Progressive patient and let us assume that the patient is correctly clas-
sified by the network. Then, let f (PP MSi ) be the corresponding value of the decision
function. To get the corresponding LRP map (that we call PP MSi -LRPmap), such value
is backprojected through the network. Though this same patient is a TN for the other
class (e.g. the RRMS one) and it will contribute with the value 1 − f (PP MSi ) to the
RRMS-LRPmap. Then, since the TPs of one class coincide with the TNs of the other
and contribute with backprojected values that sum to one, in the computation of the
respective LRP maps, that is PPMS-LPR and RRMS-LRP, these two will in general be
different.

LRP heatmaps analysis

For each CNN model, PPMS-LRPand RRMS-LRPheatmaps were generated for each
subject of the test set, based on the best model among the five derived from the 5-fold
CV. This led to twenty-two LRP maps per subject, representing the performance of the
six diffusion indices, RIF1 (RIF1700 and RIF12000), RIF2 (RIF2700 and RIF22000) and T1-w
(thus eleven maps per target class).

Both qualitative and quantitative analyses were performed relying on a ROI-based
approach. To this end, 15 brain ROIs, which were previously demonstrated to be highly
relevant in the MS disease [126, 127], were selected. The chosen ROIs were: Thala-
mus, Caudate, Putamen, Hippocampus, Insula, Precuneous, Superior Frontal Gyrus and
Cingulate Gyrus, Lateral Occipital Cortex, Pericalcarine and Lingual Gyrus, Cerebellum,
Temporal Pole, Pallidum and Parahippocampal Gyrus.

Inspired to [26], size-normalized importance metrics were derived for both the PPMS-
and RRMS-LRPheatmaps. In particular, the median of the relevance values of both the
target and non-target classes were extracted and averaged for each ROI across the cor-
rectly classified subjects (TPs and TNs) of the test set. Then, two additional measures,
which we call gain and differential gain were calculated. The first is inspired to the gain
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metric used in [26], which was given by the ratio between the LRP median values of
the two categories. In this work, we propose to use the difference between such values
to avoid the divergence of the measure that could occur in sites with vanishing LRP.
Following the definition of the LRP, we consider the difference in relevance to be more
representative of the actual contribution of a given ROI in forming the classification
decision. All these steps resulted in two values per ROI, named as PPMS-LRPgain and
RRMS-LRPgain, respectively. The differential gain was calculated as the difference be-
tween RRMS-LRP gain and PPMS-LRP gain. This was computed to measure the differ-
ence in gain brought by a given ROI when switching across the target class.

As a final explorative analysis, we aimed at investigating the LRP neuroanatomical
plausibility, following [33] and [26]. In particular, in [26] the hippocampal volume was
used as a biomarker for AD, while in [33] the WM lesion load was considered for MS and
the correlation between the LRP relevance sum and lesion sum was assumed to provide
evidence in favor of the informative potential of the LRP. In a joint work [108], we have
shown that the RTPP mean value in the Hippocampus was significantly different for
PPMS and RRMS in a subset of the cohort of patients considered here. In this work,
four LRP maps were available for each index (including RTPP), one pair for each tar-
get class. Relying on that, our working hypothesis was that the statistical significance of
the Spearman correlation coefficient between the mean LRP value of either of the four
maps in the Hippocampus and the RTPP mean value in the same region would pro-
vide the first evidence in favor of the neuroanatomical plausibility of LRP as a potential
staging signature. Accordingly, four correlation coefficients were assessed.

5.4.2 Results

Qualitative microstructural assessment

In Figure 5.6, RIF, DTI and 3D-SHORE index maps are shown in a coronal slice for two
representative subjects, one per phenotype. For ease of visualization, RIF values out of
the range between the 5th and the 95th percentile were clipped, while the square root
of the RTAP and the cubic root of the RTOP were computed to report the values in the
same units as RTPP.

The contrast of DTI and 3D-SHORE indices is in agreement with previously reported
results [141, 138]. In detail, the maps of anisotropy indices (FA and PA) revealed hy-
perintensity in regions where the diffusion orientation profile has one main direction
(e.g. Corpus Callosum) and low contrast in regions with diffusion spread in many di-
rections (e.g. Ventricles). RTAP, RTOP and RTPP had similar behavior, reporting high
values in tissues featuring restricted diffusion, such as WM, that decrease in GM and
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Fig. 5.6: dMRI based indices for one representative RRMS patient and one PPMS pa-
tient (columns). Coronal slices are reported for each index (rows). Images are displayed
in radiological convention.

reach the minimum in the cerebrospinal fluid. As expected, MD presented a comple-
mentary pattern being higher in tissues where diffusion is unconstrained. Finally, RIF
maps appeared inline with the results in [135], showing reduced intensity at increasing
b-value, RIF degree and order. Both RIF1 maps were brighter in WM compared to GM,
while RIF2 patterns were similar to FA/PA. In the two classes of patients, the maps had
very similar contrast.

3D-CNN classification performance

The classification performance for each CNN model is reported in Table 5.2 for the test
set in terms of accuracy, precision (for each class), sensitivity and specificity. Average
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values and standard deviations were calculated from the five best models resulting from
the 5-fold CV.

CNNs models for PA, RTAP, RTOP, RTPP, RIF1 and T1-w reached an accuracy ≥ 0.75.
In particular, T1-CNN was the most accurate with an average score of 0.84, while for
the dMRI-based models RTPP-CNN reached an accuracy of 0.81, followed by PA-CNN
and RTAP-CNN achieving a mean accuracy score of 0.80 and 0.76, respectively. RIF2-
CNN showed the worst performance with an average score of 0.58. Considering the
two different classes, the highest precision for RRMS was reached by PA-CNN with a
mean score of 0.96, followed by T1-CNN and RTPP-CNN showing a mean score ≥ 0.80.
For the PPMS group, while T1-CNN provided the highest precision (average precision
0.94), good performance was also reached by RIF1-, RTAP- and RTPP-CNN, all providing
a precision ≥ 0.80. The highest sensitivity was reached by PA-CNN with a score of 0.96,
followed by RIF2-CNN and RTPP-CNN (having mean sensitivity of 0.82 and 0.80, re-
spectively). Finally, T1-CNN achieved the highest specificity of 0.94. Classification per-
formance measures for the validation set were inline with those obtained on the test set,
providing evidence of the absence of overfitting despite the relatively low cardinality of
the sample with respect to the number of the network parameters.

Concerning the influence of the three confounds on the CNNs classification out-
comes, the LRtest highlighted that all the logistic classification models to which the
CNNs outcomes were added as predictor were significantly different (χ2 test, p < 0.05)
from the logistic classification model employing only the confounds as predictors, ex-
cept for the RIF1-, RIF2- and RTOP-CNN.

Test Accuracy Precision RRMS Precision PPMS Sensitivity Specificity

RIF1-CNN 0.75±0.04 0.71±0.04 0.82±0.05 0.64±0.08 0.86±0.05

RIF2-CNN 0.58±0.15 0.73±0.26 0.58±0.16 0.82±0.16 0.34±0.28

FA-CNN 0.70±0.08 0.76±0.15 0.77±0.13 0.68±0.31 0.72±0.20

MD-CNN 0.70±0.06 0.67±0.07 0.74±0.04 0.60±0.13 0.80±0.05

PA-CNN 0.80±0.04 0.96±0.09 0.73±0.04 0.96±0.08 0.64±0.08

RTAP-CNN 0.76±0.09 0.75±0.11 0.80±0.04 0.68±0.20 0.84±0.05

RTOP-CNN 0.75±0.03 0.77±0.08 0.77±0.05 0.74±0.15 0.76±0.10

RTPP-CNN 0.81±0.05 0.81±0.10 0.82±0.03 0.80±0.11 0.82±0.04

T1-CNN 0.84±0.10 0.82±0.14 0.94±0.07 0.74±0.24 0.94±0.08

Table 5.2: Classification performance metrics calculated in the test set for each CNN model. Values were calcu-
lated by averaging the results of the five best models derived from 5-fold CV and reported together with the respective
standard deviation values.
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LRP heatmaps
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Fig. 5.7: LRP heatmaps obtained from CNNs models based on the first RIF1 and PA. The heatmaps are shown for
both target classes RRMS-LRP and PPMS-LRP, columns), and are overlaid to the MNI152 template in coronal, axial
and sagittal views (rows). Each LRP map is averaged across the correctly classified RRMS and correctly classified
PPMS subjects of the test set, respectively. The reported values are clipped to the range 60th−99.5th percentile,
calculated over the RRMS and the PPMS class group mean heatmaps.
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Fig. 5.8: LRP heatmaps obtained from CNNs models based on RTAP, RTPP and T1-w. The heatmaps are shown
for both target classes (RRMS-LRP and PPMS-LRP, columns), overlaid to the MNI152 template in coronal, axial and
sagittal views (rows). Each LRP map is averaged across the correctly classified RRMS and correctly classified PPMS
subjects of the test set, respectively. The reported values are clipped to the range 60th−99.5th percentile, calculated
over the RRMS and the PPMS class group mean heatmap.

Figure 5.7 and Figure 5.8 show the group LRP heatmaps (RRMS-LRP and PPMS-LRP),
averaged over the correctly classified subjects of the test set for both RRMS and PPMS
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classes. Only the maps derived from the best indices in terms of mean accuracy are
shown (see Subsection 5.4.1 for details). For ease of visualization, the maps are clipped
to the range 60th−99.5th percentile calculated over the respective LRP target group
mean heatmap.

As expected, higher contrast, reflecting higher relevance, characterizes the average
LRP map of the target class (i.e., PPMS in PPMS-LRP and RRMS in RRMS-LRP) in all
CNNs models. This follows from the LRP relevance propagation algorithm, which starts
from a larger number in the output layer for the target class and the correctly clas-
sified subjects. Even if a widespread activation of the GM regions was present in all
the heatmaps, the patterns of the two families of LRP maps were not overlapped and
PPMS-LRP resulted in more scattered activations compared to the others. The LRP
maps corresponding to the different indices revealed different activations, highlight-
ing that these could mirror specific microstructural properties. In particular, for both
the target classes and both LRP heatmaps, RIF1-CNN (RIF1700 and RIF12000) showed
a widespread activation over the GM regions, involving both cortical and subcortical
structures. A similar pattern appeared also in RTAP-CNN, RTPP-CNN and T1-CNN LRP
maps, showing higher frontal activation in PPMS-LRP maps of T1-CNN. A different pat-
tern can be observed in both PA-CNN derived LRP heatmaps, revealing higher activa-
tion values in deep GM structures and considerably lower values in cortical structures.

Moving to the non-target class, high relevance values were present in the PPMS aver-
age heatmap for the RRMS-LRP, which were not found in the counterpart group for the
PPMS-LRP maps. This is particularly evident for RIF1 and T1-CNN derived heatmaps.
Of note, these maps showed lower relevance scores compared to the others. However,
this depends on the higher number of voxels on which the relevance had to be redis-
tributed for these two inputs (two maps for the RIF1-CNN and a larger map for the
T1-w).

LRP ROI-based analysis

ROI-based analyses were performed to assess the relevant areas for the classification
task. Figure5.9 illustrates the size-normalized importance metrics for the correctly clas-
sified patients of the test set, separately for the two classes and for the two LRP types.
The ROIs mean relevance values for the wrongly classified subjects revealed an always
positive and the non target class (TNs for the PPMS-LRP and TPs for RRMS-LRP follow-
ing the notations) featured relevance values following the same trend of the correctly
predicted ones across ROIs. It is important to highlight that the non-target class still
owed some relevance for all the CNNs models in both cases, which was particularly
high for PPMS-LRP.
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Fig. 5.9: Size-normalized importance metrics extracted from the LRP maps derived for the two classes, PPMS-LRP
(top) and RRMS-LRP (bottom), from the CNNs models based on the first RIF1, PA, RTAP, and RTPP. For each LRP
type, the mean relevance value for each ROI is reported for all the correctly classified PPMS and RRMS subjects in
the test set. The median relevance for PPMS (orange circle) and RRMS (blue circle) groups are also shown.
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Fig. 5.10: Relevance gain measures. The gain score for each LRP type is shown for different regions. The gain per
area for each class derived LRP type, respectively RRMS-LRP (blue) gain and PPMS-LRP (orange) gain, is defined as
the difference between the median relevance of the target and the non-target classes in a given area, calculated over
all the correctly classified subjects of the test set.

Considering the different models, the same behavior was reported in PPMS-LRP for
RTAP-CNN and RTPP-CNN heatmaps. In addition, RIF1-CNN maps showed similar val-
ues between the two shells and, together with T1-CNN LRP maps, presented sensibly
lower LRP values compared to the other indices. All the CNNs models highlighted al-
most the same regions leading the classification between RRMS and PPMS, for both
RRMS-LRP and PPMS-LRP. Among the cortical ROIs, Parahippocampal Gyrus appeared
among the first five most relevant ROIs in all cases except T1-CNN, showing also the
greater distance between the PPMS- and RRMS-LRP values in RRMS-LRP for all CNNs
models except RIF1-CNN. Temporal Pole appeared highly relevant especially for PA-,
RTAP- and RTPP- and T1-CNN, for both LRP types. Moreover, it reached high relevance
values also for the non-target group in PPMS-LRP. Superior Frontal Gyrus showed a
large LRP value for all the CNNs models, particularly for PPMS-LRP but also for the
non-target class in RRMS-LRP for RTAP- and RTPP-CNN. Finally, Lateral Occipital Cor-
tex was highly relevant for RTPP in the PPMS group of PPMS-LRP heatmaps.

Concerning deep GM ROIs, Insula was among the most relevant ROIs for all CNNs
except RTPP-CNN, for both RRMS-LRP and PPMS-LRP, while Cingulate Gyrus was
highly relevant for RRMS-LRP of RIF1-CNN. Of note, those deep GM ROIs showed non-
overlapping sets of relevance values between groups in RRMS-LRP of all the CNNs mod-
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Fig. 5.11: Relevance gain measures. The differential gain for each LRP type is shown
for different regions. The differential gain per area for each class derived LRP type, re-
spectively RRMS-LRP (blue) gain and PPMS-LRP (orange) is defined as the difference
between the RRMS-LRP gain and PPMS-LRP gain in each ROI.

els. Cerebellum, lastly, was a remarkably relevant ROI for all the CNNs models and both
LRP types, showing also disjoint distributions of LRP values in RRMS-LRP.

In Figure 5.10, the results for the gain values are reported. This metric revealed
that the highest difference in ROI relevance between the two LRP types was found in
Parahippocampal Gyrus, Temporal Pole, Superior Frontal Gyrus, Cerebellum, Cingulate
Gyrus and Insula, confirming the previously presented qualitative results. This quan-
titative analysis demonstrated also a different sensitivity of the considered indices to
tissue modulations across separate ROIs, in particular of T1-w compared to the other
indices. Among the dMRI indices, PA was the most different compared to the others.
The results for the differential gain are reported in Figure 5.11.

The final Spearman correlation analysis revealed a significant and positive corre-
lation (ρ = 0.77, p = 0.016) for the non-target class (PPMS) between the mean RTPP
RRMS-LRP value in the Hippocampus and the RTPP mean value in the same ROI. No
other significant correlations could be detected.

5.4.3 Discussion

In this work, we introduced LRP as a forceful method for explaining individual CNNs
decisions in MS patients stratification. We trained different CNNs models to detect
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PPMS patients and capture the microstructural features as well as the main ROIs lead-
ing to the classifier decision. The dMRI considered indices were derived from DTI (FA
and MD), 3D-SHORE (PA, RTAP, RTOP and RTPP) and from a novel framework for the
extraction of rotation invariant features from dMRI signal (RIF1 and RIF2). Only the
GM tissues were fed to the CNN and a CNN model based on T1-w was also trained for
benchmarking. For each CNN model, two heatmaps indicating the relevance of each
voxel were derived, one for each target class in the test set. The relevance of 15 selected
brain regions were then evaluated region-wise using three different importance met-
rics: (i) the size-normalized PPMS (or RRMS) importance, which is the median value
of the LRP map for the target and non-target class, respectively; (ii) the PPMS-LRP
and RRMS-LRP gain, measured as the difference between size-normalized target and
non-target importance measures; and (iii) the differential gain, which combined both
RRMS-LRP and PPMS-LRP by measuring the difference between the RRMS-LRP gain
and the PPMS-LRP gain.

Our results demonstrated that: 1) dMRI features extracted in GM tissues can help
disambiguate PPMS from RRMS patients; 2) LRP heatmaps highlight areas of high rele-
vance which relate well with what is known from literature for MS disease.

Starting from the classification performance, 3D-SHORE derived indices, as well as
RIF1, outperformed the DTI-based ones, reaching comparable results with T1-CNN.
Moreover, while literature generally reports WM features as a signature of the MS dis-
ease, our study highlighted the GM potential role in identifying PPMS from RRMS pa-
tients, opening the way to a new type of potential numerical biomarkers focusing on
GM.

Moreover, the LRtest between the two models associated with each index in the post-
hoc assessment of the prevalence of the confounding variable revealed that the classi-
fication results were not dominated by the confounds for the DTI-, 3D-SHORE- (except
for the RTOP) and T1-CNN models.

These results provide evidence of the potential improvement brought by dMRI fea-
tures other than DTI for MS staging, as well as of the eloquence of microstructural infor-
mation in GM. In particular, the optimal performance reached by PA was in agreement
with the results reported in [142], suggesting the sensitivity of anisotropy measures to
MS modulation of GM tissues, although using classical DTI indices.

Precision, sensitivity and specificity values as defined in this work were tailored on
the ease of classification of PPMS patients. More specifically, the precision was calcu-
lated separately for PPMS and RRMS classes and measured, respectively, how well the
CNNs models could characterize the PPMS (RRMS) cohorts by minimizing the num-
ber of RRMS (PPMS) wrongly classified subjects. PA provided the best results for preci-
sion for RRMS, that is in minimizing the number of wrongly classified PPMS subjects,
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which was the main objective of this work. These results prove that dMRI is highly rel-
evant for detecting the first signs of the PPMS stage of the disease. Conversely, the T1-
CNN reached the highest precision for PPMS, demonstrating its ability to minimize the
number of wrongly classified RRMS. This behavior was further confirmed by the sen-
sitivity and specificity values. Regarding sensitivity, PA reached the best performance,
highlighting the index ability to distinguish the PPMS patients by minimizing the num-
ber of misclassifications. The maximum specificity was provided by T1-w that allows to
characterize the RRMS subject class.

Although these two models showed outstanding performance related to the correct
classification of one of the two classes, the performance metrics scores were relatively
low. The index showing the highest stability across all the proposed measures was RTPP,
which achieved an average value ≥ 0.80 in all the classification performance metrics
meaning that it minimized at the same time both the PPMS and RRMS wrong classifi-
cations.

Regarding the recently proposed RIF, even though they did not achieve significance
in the control for confounds analysis, are interesting to be analyzed. RIF1 outperformed
RIF2 in differentiating PPMS and RRMS. This was expected because in GM diffusion
signal tends to be mostly isotropic and thus poorly described by high order SH models.
High order RIF would be more suitable for WM, where the signal is highly anisotropic,
especially in regions having complex topology (crossing, fanning). In fact, since RIF
were calculated on the diffusion signal, RIF1 represents the mean of the signal across
one shell and thus it is proportional to the inverse of the diffusivity, while the second is
related to the variance of the signal across one shell and thus it is more sensitive to the
complexity of the tissue [135].

Comparing our results to the current literature, as pointed out in Section 5.1 the
stratification of MS patients is still largely underinvestigated and few studies addressed
this specific problem so far. Among these, [113] achieved an average precision of 0.84
and an average sensitivity of 0.80 on a dataset of 604 acquisitions (b-value 1000 mm2/s).
Although they relied on dMRI data, their focus was on connectivity while the methods
proposed in this work availed of microstructural information. Moreover, our RTPP-CNN
and PA-CNN achieved comparable accuracy values on a smaller dataset.

The differentiation between healthy and pathological subjects is much more com-
mon in literature than intra-pathology stratification. In [115] and [114], two different
2D-CNN architectures were combined with conventional structural MRI data to this
end reaching high accuracy scores (98.77% and 98.23%, respectively). Using the differ-
ent slices of each subject as a separate input led to a much larger sample size (e.g., [115]
amounting to 1357 images in total for the 64 subjects) which brings a clear advantage
for training.
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A 3D-CNN based approach was proposed in [33], reaching an accuracy of 87.04%
on a set of 147 fully volumetric structural MRI acquisitions. Despite the lower accuracy
compared to the 2D-CNN based approaches, the use of a 3D-CNN architecture facili-
tated the interpretation of the CNN performance through the use of feature visualiza-
tion techniques. However, the difference in the research question makes these works
not directly comparable to ours. Concerning the feature visualization, [111] compared
different techniques applied to a 2D-CNN trained on 66 healthy controls and 66 MS
patients SWI data. Their results highlighted the outstanding performance, based on the
quantitative image perturbation method, of LRP maps and DeepLIFT [112] over simpler
methods, strengthening the exploitability of such methods to address clinically relevant
questions.

Regarding neural network visualization, the application of specific techniques, such
as the LRP here adopted, provides a mean for CNNs interpretability and, when used in
combination with other clinical and imaging data could support diagnosis and treat-
ment decisions. To the best of our knowledge, this is the first work showing an appli-
cation of LRP visualization on a dMRI-based classification problem. By relying on this
technique, it was possible to identify the regions playing a prominent role in the clas-
sification between the two MS phenotypes, which were the regions of higher LRP gain
across groups. From the analysis of these maps, it was clear that the different indices
showed a selective pattern, being sensitive to modifications related to the disease in
different ROIs. In particular, for dMRI-derived CNNs models and for the target class,
both PPMS-LRP and RRMS-LRP group average heatmaps for RIF1-, RTPP- and RTAP-
CNN showed a complementary relevance pattern compared to PA-CNN ones, suggest-
ing that different regions encountered specific microstructural alterations. This result
pushes towards their integration within a unified model accounting for all the relevant
information at a time. Though, this would require a larger sample to compensate for
the input size and we leave it for future investigation.

RIF1-CNN mean LRP heatmaps showed a redundancy in the information provided
by the two different shells. For clinical purposes and applications, further investigation
should be carried on measuring the discriminative power of RIF1 as calculated on a
single shell. Determining whether one single b-value acquisition would be sufficient
would allow reducing the MRI scan time with clear clinical advantages.

Concerning ROI-based analysis, the regions playing a leading role were in agreement
with the literature. Indeed, the Parahippocampal Gyrus and Insular Cortex have been
shown to report high probability of focal GM demyelination in MS pathology [126],
while the Cerebellum has been demonstrated to be a major site for demyelination, es-
pecially in PPMS patients [143]. The Superior Frontal Gyrus has been associated with
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fatigue, particularly in RRMS [79], and the Temporal Pole appeared to be present in clin-
ically relevant MS cortical atrophy patterns [144].

Finally, it is important to note that the focus in interpreting LRP maps was not on
the absolute values of the relevance, but on the differences and overlaps between the
violin plots of the considered ROIs in the two classes of patients. This means that the
relevance values allowed to understand how the voxels of certain ROIs contributed to
the classification, but still did not allow to identify the underlying reasons (lesion load,
atrophy, etc.) [26].

In order to investigate whether higher importance scores could correspond to rele-
vant microstructural modulations, the association between RTPP average values in the
ROI and the mean value of the RRMS-LRP heatmap for the non-target PPMS class Hip-
pocampus was assessed. The Hippocampus was chosen in light of previous results [108]
showing RTPP sensitivity to GM differences between PPMS and RRMS. Though the in-
terpretation of this correlation is far from trivial, the straight meaning is that the PPMS
subjects showed some tissue modulations typical of RRMS subjects to which RTPP-
CNN was sensible and which were significantly linked to a biomarker for MS patients
stratification. Although a deeper investigation is needed, in a broader view, this result,
together with [26] and [33] provides evidence of CNNs ability to learn to identify impor-
tant disease biomarkers as relevant for the classification. Of note, a significant feature
for MS is a lower diffusion restriction and massive neuronal loss and demyelination in
Hippocampus [145] which is indeed well captured by RTPP in other studies [141, 146].
In the future, it could be valuable indeed to perform an assessment of the performance
of the dMRI indices in the tissues of the analyzed MS groups. This would enable a better
understanding of the pathophysiology beyond the microstructural changes induced by
the disease.

Limitations and Future Works

In what follows, some of the main limitations of this study are briefly summarized, and
some among the many possible future steps that will be taken to fully exploit the po-
tential of the proposed method are presented. First, the low numerosity of the sam-
ple could cast shadows on the statistical significance of the outcomes and also affect
the hyperparameters optimization that, in an optimal setting, should be performed on
separate sets. In this work data augmentation was used in both the training and the
validation sets of the 5-fold CV for simulating a larger sample of subjects.

The lack of healthy controls is a reason for concern as it impedes benchmarking the
performance of the proposed architecture in the patients versus controls classification
task. However, as mentioned in the discussion, the CNN architecture we chose was pre-
viously employed in [26] to differentiate AD patients from controls based on T1-w MRI,
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and a slightly modified version in [33] to classify healthy controls and MS patients based
on FLAIR and T1-w MRI. We acknowledge that their datasets were different from our
local cohort, however, their work can be considered as a literature benchmark for the
CNN in use. Our aim was to disentangle the relevance linked to the two groups of dis-
ease which is an important open issue per-se. In consequence, we focused on this and
investigated whether relying on sophisticated methods, such as advanced dMRI-based
indices and 3D-CNNs models, could help in differentiating the two MS groups.

The lack of a control class also impeded to assess the relevance of the voxels and
ROIs in distinguishing each of the phenotypes (PPMS, RRMS) from healthy matched
controls. This is an interesting issue because it could reveal shared features of the two
manifestations of the pathology that could not be captured by the proposed analysis
yet potentially being insightful for understanding the mechanisms of the disease. We
leave this for future investigation.

Finally, as a future work, including WM in the analysis, would widen the spectrum of
the microstructural features potentially distinguishing the two disease phenotypes as
well as unraveling the link with GM tissue modulations.

5.4.4 Conclusions

This work provides evidence in favor of the capability not only of T1-w but also of dMRI
indices of distinguishing the PPMS from the RRMS state of disease in MS. We proved
that 3D-SHORE based indices and RIF1 outperformed FA and MD, pushing to shift the
attention on dMRI features other than DTI ones. In addition, thanks to the use of a 3D-
CNN and LRP visualization, we could observe that the CNNs classification was based on
clinically relevant ROIs and that different indices were sensitive to GM modulation in
different brain regions. Our results support the hypothesis of dMRI based indices suit-
ability as numerical biomarkers for the characterization of pathological brain tissues.
Moreover, this work has the potential to address clinically important problems in MS,
like the early identification of the clinical course for diagnosis and provides evidence in
favor of the feasibility of precision medicine.

The work presented in this Chapter was published in [147] and [148].
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Benchmarking the link between Polygenic Risk
Scores and structural MRI

In this work we exploited Partial Least Squares (PLS) model for analyzing the genetic
underpinning of grey matter atrophy in Alzheimer’s Disease (AD). To this end, 42 features
derived from T1-weighted (T1-w) Magnetic Resonance Imaging (MRI), including cortical
thicknesses and subcortical volumes were considered to describe the imaging phenotype,
while the genotype information consisted of 14 recently proposed AD related Polygenic
Risk Score (PRS), calculated by including Single Nucleotide Polymorphism passing dif-
ferent significance thresholds. The PLS model was applied on a large study cohort ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database including
both healthy individuals and AD patients, and validated on an independent ADNI Mild
Cognitive Impairment (MCI) cohort, including Early Mild Cognitive Impairment (EMCI)
and Late Mild Cognitive Impairment (LMCI). The experimental results confirm the ex-
istence of joint dynamics between brain atrophy and genotype data in AD while provid-
ing important generalization results when tested on a clinically heterogeneous cohort. In
particular, less AD specific PRS scores were negatively correlated with cortical thicknesses,
while highly AD specific PRSs showed a peculiar correlation pattern among specific sub-
cortical volumes and cortical thicknesses. While the first outcome is in line with the well
known neurodegeneration process in AD, the second could be revealing of different AD
subtypes.

6.1 Introduction

Dementia is rapidly increasing around the world, with AD being its most common
cause, accounting for around 60–80% of the total cases [149]. A recent survey esti-
mated that over 50 million people are living with dementia worldwide and such a
figure is expected to triple by 2050, largely driven by the increases in life expectancy
(https://www.healthdata.org/gbd/2019). Given the projected trends in population

https://www.healthdata.org/gbd/2019
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ageing and population growth, AD is thus becoming one of the most burdensome
diseases, increasingly calling for a next generation framework of early diagnosis and
biomarker-guided targeted therapies. In recent years, advances with biomarkers have
sustained a shift in how the disease is considered, with AD being now conceptualized
as a biological and clinical continuum covering three well known phases (preclinical,
MCI, and dementia stages of AD) rather than as being part of the simple succession of
clinically defined entities [149, 150]. While the primary pathological hallmark of AD is
the accumulation of abnormal proteins (mainly amyloid-β and hyperphosphorylated
tau) in the brain, leading to a progressive synaptic, neuronal and axonal damage [151,
152], its etiology is complex and much remains to be fully elucidated. For these rea-
sons, an increasing number of studies have focused on exploring its biological/genetic
drivers and brain imaging correlates, and on shading lights on their possible interplay.
structural Magnetic Resonance Imaging (sMRI) is currently a key part of the diagnos-
tic criteria for the differential diagnosis and longitudinal monitoring of patients with
dementia. Several studies have consistently observed both global and local atrophic
changes in AD, lying along the hippocampal pathway (entorhinal cortex, hippocam-
pus, parahippocampal gyrus and posterior cingulate cortex) in the early stages of the
disease, while atrophy in temporal, parietal and frontal neocortices emerges at later
stages being associated with neuronal loss as well as with language, visuospatial and
behavioral impairments [151, 153].

On the genetic side, PRS are gaining popularity since they represent a single (or few)
score(s) combining the effects of multiple independent genetic variants in a subject’s
genome derived from a large Genome-Wide Association Study (GWAS) study. The PRS
are informative about the individual overall genetic disease risk enabling the associ-
ations between genetic profiles and imaging features on smaller cohorts. This in par-
ticular is the target of Imaging Genetics (IG) which aims at investigating the effects of
genetic variations on brain function and structure and in which our work is framed.
Such methods, applied in particular to AD onset, allowed a better understanding of the
genetic underpinnings on brain modulations [154]. PRS for AD have been shown to
be associated with clinical diagnosis and disease progression [155], cognitive decline
[156] and imaging biomarkers [157, 156, 158] both on healthy and cognitive impaired
patients. Previous studies have generally focused on the hippocampal volume solely to
evaluate its association with PRS for AD in cognitive impaired cohorts, considering its
central role in AD pathophysiology [156, 155]. A wider range of brain morphometric
features was investigated in association with PRS for AD in clinically normal cohorts
[158].

To the best of our knowledge, the interaction between PRS for AD and a complete
set of brain structural imaging phenotypes, such as cortical thickness and subcortical



6.2 Materials and Methods 81

volumes, has not been deeply investigated in a cognitive impaired cohort. Typically,
univariate models have been applied to characterize IG associations, however such
methods do not account for potential cross features interactions and are highly prone
to multiple comparison problems leading to underpowered discoveries of significant
associations [42]. Multivariate methods, on the other hand, can address such limita-
tions. Latent variable and multi-view models, for example, aim at finding a latent low
dimensional space by the optimization of a target function such that the projections
of the features hold some maximized joint properties. PLS maximizes the covariance
between the latent projections, further addressing features collinearity which generally
affects both imaging and genetics derived features. PLS is increasingly being exploited
in IG studies, particularly in imaging transcriptomics aiming at investigating the as-
sociation between imaging phenotypes and gene expression values in brain disorders
[159]. Moreover, relying on different genetic features, such as Single Nucleotide Poly-
morphism (SNP)s, Lorenzi et al. [42] exploited PLS to uncover the genetic underpin-
nings of brain atrophy in AD. Despite these promising results, the potentialities of a
classical statistical model as PLS in the AD domain are still under investigated, though
could help to disambiguate the associations between different feature sets considering
its inherent ability to provide a straightforward explanation of the outcomes, which is
not always the case for complex deep models.

The objective of our work was the characterization of the different stages of AD in the
PLS latent space representation, which is indeed generated by meaningful associations
found between brain morphometric features and PRS in AD. Moreover, in order to as-
sess the generalization capability of our model computed on AD and healthy controls,
an unseen cohort of subjects affected by MCI was used for testing.

6.2 Materials and Methods

Phenotypes and genotypes used in this study were derived from the ADNI database
(adni.loni.usc.edu). The full cohort comprehended 826 subjects from the ADNI-
1,ADNI-2 and ADNI-GO phases including 243 Controls (CN), 289 EMCI, 179 LMCI and
115 AD patients (age: 72.9 ± 6.2, 71.2 ± 7.2, 71.9 ± 7.7, and 74.8 ± 7.9; females/males:
131/112, 126/163, 79/100, and 47/68). AD and CN subjects were considered as the dis-
covery cohort, while EMCI and LMCI were kept for testing. The considered imaging
features were region-based morphometric descriptors derived from T1-w MRI images
extracted by UCSF using FreeSurfer version 5.1 and accessed through the ADNI website
(date accessed 18/02/2022). 84 anatomical Region Of Interest (ROI)s were included. The
average thickness and the volume were considered for cortical and subcortical ROIs, re-
spectively. The subcortical volumes were normalized by the intracranial volume of the

adni.loni.usc.edu
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respective subject. 42 features were finally obtained by averaging left and right hemi-
spheres and were considered as phenotype. The genetic information was represented
by the 14 PRS proposed in [155]. Briefly, each PRS was calculated by including all inde-
pendent SNPs passing a p-value threshold in the most recent GWAS [160]. The thresh-
olds adopted were 1e − 08, 1e − 07, 1e − 06, 1e − 05, 1e − 04, 0.001, 0.01, 0.05, 0.1, 0.2,
0.4, 0.5, 0.75, 1. The related PRS will be named as PRS_threshold_value. SNPs in the ex-
tended APOE locus were excluded from the PRS construction to enable investigations of
risk independent from APOE. We refer to [155] for further details on PRS computation.
A standardization to reach zero mean and unitary standard deviation was applied to
the feature sets. Age was then regressed out from the image-derived features, while the
first two principal components, describing the genetic information of the whole popu-
lation on which the PRS were calculated, were regressed out from the genetic features,
following [155].

6.2.1 Partial Least Squares

Among the available methods adopted in imaging genetics research, the most straight-
forward are multivariate approaches.

Considering the subject k, the respective imaging and genetics derived features can
be expressed as xk and yk respectively, where di m(xk ) = Di and di m(yk ) = Dg rep-
resent the number of features for the two sets. We can define then the matrices X as
the imaging feature matrix and Y as the genetics feature matrix, which for N subjects
will have di m(X ) = N ×Di and di m(Y ) = N ×Dg , respectively. The goal of classical
multivariate approaches is the identification of the linear transformation of X and Y
into a lower dimensional hidden subspace where the projected data exhibits statistical
similarity.

In this work we will focus on PLS [90], thus on the identification of linear transfor-
mation parameterized by the vectors wx and wy such that the covariance between the
projection Xwx and Ywy is maximized.

wx ,wy = ar g maxwx ,wy (
wT SXYwy√

wT
x wx

√
wT

y wy

) (6.1)

where SX Y is the cross-covariance matrix between the feature matrices X and Y .
The PLS problem, as well as the Canonical Correlation Analysis (CCA), can be straight-

forwardly optimized by the solution of an eigenvalue problem, but to avoid the insta-
bilities related to the decomposition of potentially large sample covariance matrices, it
can be computed by leveraging on stable numerical schemes. The Nonlinear Iterative
PArtial Least Squares (NIPALS), is a classical algorithm [90] to solve this problem.
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PLS was hence applied in order to model the joint variation between phenotype and
genotype observed in healthy and AD individuals, following [42, 157]. Then, the gener-
alization capability of our model was assessed on an unseen cohort of MCI subjects.

6.2.2 Model significance and validation

The data variability explained by each component was calculated, and the number of
components was chosen in order to allow to represent at least the 60% of it. A permuta-
tion test based on the obtained singular values was finally performed to assess the sig-
nificance of the model In brief, the test checked whether the singular values obtained
by the model were higher than the ones obtained by randomly permuting all rows of the
phenotype matrix (10e4 permutations were used). The Mann Whitney non-parametric
U-test was performed to assess the significance of the latent space projection differ-
ence across groups. Finally, the generalization of the PLS model was tested on the MCI
group by statistically assessing the ability of the estimated PLS components in splitting
EMCI and LMCI subjects, through group-wise comparison of the projections in the la-
tent space.

6.3 Results

Two latent components were needed to explain at least the 60% of data variability, ac-
counting for 54% and 18% of data variability, respectively. The PLS weights of pheno-
type and genotype in the first and second latent components of the model are shown
in Figure 6.1. The PLS model associates a weight to each input feature reflecting its rel-
evance in shaping the latent space, that is in the association between genotype and
phenotype.

Chapter6/Figures/PLS_weigths_small.png

Fig. 6.1: First and second PLS components weights (rows) for the phenotype and the
genotype features (columns).
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The first component revealed a widespread negative correlation between phenotype
and genotype. The five most relevant brain regions were postcentral gyrus, caudalante-
rior cingulate, insular cortex, lingual gyrus and cuneus. On the genetics side, the less
AD specific PRS, hence the ones having a less stringent p-value threshold for SNPs in-
clusion, showed the highest weights. Moving to the second component, pallidum, hip-
pocampus, caudate, entorhinal and inferiortemporal appeared as the most relevant re-
gions. More in detail, pallidum was anticorrelated to the hippocampus volume, and en-
torhinal and inferiortemporal thicknesses, while it appeared to be correlated with the
caudate volume. On the genetic side, this component highlighted the most AD specific
PRS, hence the ones including SNPs peculiar for AD. These were positively correlated
with pallidum and caudate volumes, while a negative correlation was found with hip-
pocampus. Moreover, the permutation test confirmed the significance of our model
resulting in p = 0.0428. The latent space representation of AD and CN groups is shown

Chapter6/Figures/Latent_space_training_validation.png

Fig. 6.2: Latent representation of the discovery set and MCI cohort validation set (rows)
on the first two PLS components (columns) (AD: blue, CN: grey, EMCI: green, LMCI:
violet).

in Figure 6.2 for the two PLS components. Both showed a separation between the two
classes, particularly evident in the second one. The projection in the latent space led to
significant group-wise differences for the phenotype on both PLS components, reach-
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ing p < 1e−12 on the first and p < 1e−17 for the second one. Conversely, a trend towards
significance was found for the AD vs CN difference in the genotype latent space projec-
tion, with p = 0.086 and p = 0.121 for the first and second components respectively.

Figure 6.2 proves also the model generalization capability by showing the projection
of the MCI independent set on the latent space generated by AD and CN subjects. While
the first component showed a major overlapping between EMCI and LMCI, the second
one allowed a clearer separation, with the LMCI being distributed in the same latent
space region as the AD and the EMCI being more central.

Finally, Figure 6.3 summarizes the PLS latent space projections scores for the MCI
group on both components, separately for genotype and phenotype. A significant dif-
ference was found for the phenotype in both components, p = 0.042 and p = 0.007,
respectively. The genotype differences did not reach significance, though a moderate
trend toward significance was present in the second component (p = 0.130).

Chapter6/Figures/Score_projections.png

Fig. 6.3: Latent space projection scores of the MCI cohort on the first two PLS compo-
nents. Significant differences between EMCI (blue) and LMCI (orange), as revealed by
the Mann Whitney non-parametric U-test, are highlighted in red for both phenotype
and genotype features.
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6.4 Discussion

In this work we modeled the relation between gray matter atrophy and PRS via joint
multivariate statistical modeling in AD, showing a good generalization of the results by
testing the model on an unseen cohort of MCI subjects. Results showed that two PLS
components explained a sufficient amount of data variability (> 60%). Both compo-
nents showed significant separation between AD and CN in the latent space, confirmed
also in the MCI projection. Moreover, the latent spatial distribution observed between
AD and CN was replicated by the distribution of EMCI and LMCI in the same space.

The association between PRS and brain atrophy has been mainly addressed in lit-
erature via general linear model regression. In Scelsi et al. [155], for example, the au-
thors focused on the hippocampus volume and found a significant negative correlation
between such measure and AD specific PRS in cognitively impaired subjects, in line
with our findings. The PRS association with a series of cortical features was explored
by Sabunco et al. [158] on a healthy cohort. They calculate PRS involving up to 26 in-
dependent common sequence variants associated with AD and showed a correlation
between late-onset AD PRS and cortical thickness in several AD-specific regions such
as entorhinal cortex, temporopolar cortex, lateral temporal cortex, inferior parietal cor-
tex, inferior parietal sulcus, posterior cingulate cortex, and inferior frontal cortex.

The PLS model, on the other side, is a well established method for multivariate anal-
ysis and has been widely employed in IG studies. In the work by Lorenzi and colleagues
[42], it was used to link brain atrophy to the complete set of SNPs from AD patients,
uncovering a significant link between the TRIB3 gene and the stereotypical pattern of
grey matter loss in AD. They relied on few structural MRI features for collecting IDPs,
while on the full set of SNPs for the genotype. A similar approach was followed in [161],
where they were able to stratify the early stages of AD in the PLS latent space by ex-
ploiting T1-w features and cerebrospinal fluid levels of t-tau, p-tau and amyloid-beta
biomarkers.

Thanks to the straightforward PLS explainability, we were able to recover the fea-
tures leading the correlation between imaging and genetic features. The analysis of the
weights associated with each feature can indeed allow to compare their relative im-
portance and directly evaluate the genotype/phenotype association, highlighting those
having a higher impact on the latent space derivation. In our model, the first compo-
nent represented the great majority of data variability (54%) revealing an anticorrela-
tion between less specific PRS scores and cortical thicknesses, that is in line with the
well-known neurodegeneration process in AD. Indeed, the PRS included in this study
were associated with disease progression and diagnosis, with an increasing score being
correlated with the worsening of the disease. The negative correlation with the pheno-
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type hence could be associated to a decrease in cortical thickness, typical of AD pro-
gression [153].

The second component, even if it explained a smaller fraction of the full data vari-
ability (18%), showed the most significant separation (p < 1e−12) between AD and CN,
for the phenotype, that was well preserved in the independent MCI cohort (p = 0.007).
The PRS having the highest associated weights were the ones showing low p-value cut-
offs, namely PRS_1e-07, PRS_1e-06 and PRS_1e-08, indeed scores that include estab-
lished AD risk variants. Such PRS showed an anticorrelation with hippocampus vol-
ume and entorhinal cortex thickness among the others, being among the well known
most affected regions in AD [153]. Of interest, they were also correlated with pallidum
and caudate volumes, with the former showing the highest associated weight. Single-
ton and colleagues [162] have shown that a significant difference in pallidum volume
was present between two AD subtypes, namely typical AD and behavioral AD, with the
former featuring an increased pallidum volume compared to the latter. Moreover, Chen
et al. [163] found a difference between AD subtypes related to the starting site of atro-
phy, and were able to identify three AD subtypes: (i) typical, for which atrophy begins
in hippocampus and amygdala, (ii) cortical, where atrophy starts in the temporal lobe,
followed by cingulate and insula and (iii) subcortical with atrophy beginning in pal-
lidum, putamen and caudate. Therefore, we hypothesize that the second component
obtained by our model could explain particular differences found across AD groups. In
fact, it appears to explain data variability highly specific for AD, due to the high weights
associated with the most conservative PRS. On the phenotype, at the same time, high
importance was assigned to regions that have been demonstrated to play a role in AD
subtypes identification. Further investigation is however needed to strengthen our hy-
pothesis.

6.5 Conclusions

The presented PLS model confirms that there exists a joint variation between grey mat-
ter atrophy and PRS in AD, spreading over all the regions considered in the study. More-
over, we were able to capture volumetric modulations that possibly relate to different
AD subtypes.

The work presented in this Chapter was published in [164].
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Assessing the link between diffusion and
functional MRI and Polygenic Risk Scores

In this work we exploit Partial Least Squares (PLS) regression to firstly analyze the joint
variation between genotype and White Matter (WM) phenotype indices and secondly be-
tween the genotype and the functional connectivity in Mild Cognitive Impairment (MCI).
Differently from the previous Chapter, we will adopt two separate feature sets for the
phenotype. The first set is represented by 192 WM features derived from diffusion Mag-
netic Resonance Imaging (dMRI) and extracted through a tract-based spatial statistics
(TBSS) analysis on four diffusion tensor based indices, while the second set is composed
by within/between network connectivity derived from functional Magnetic Resonance
Imaging (fMRI). The genotype information consists of two recently proposed, Alzheimer’s
Disease (AD) related, Polygenic Risk Score (PRS), namely PRS1 and PRS2. The study co-
hort is based on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database and
comprehends healthy subjects and MCI individuals, including subsets featuring patients
showing early and late conditions. Different subjects were considered for the dMRI and
fMRI studies due to data availability. The experimental results show that, for the dMRI, in
the latent space found by the PLS model, the phenotype revealed an anti-correlation be-
tween diffusivity and anisotropy in the WM tracts typical of neurodegeneration, to which
both the PRS features are correlated in the first PLS component, and only the PRS2 in the
second PLS component. Concerning fMRI, In the first component, all Functional Con-
nectivity (FC) coefficients had the same sign and were correlated with PRS2. Connectiv-
ities involving the dorsal attention (DAN) and frontoparietal control (CON) networks
reached the highest weights, while within/between network FC for the limbic (LIM) were
less represented. Overall, the within-network FC values were less pronounced compared
to the between-network ones. In the second component, most of the FC features had
zero weights. Visual (VIS) and somatomotory (SMN) showed a correlated trend while
being anti-correlated with LIM, CON and default mode network as well as with PRS1.
Our findings suggest that the two PRSs correlated with a possible pattern of aberrant
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within/between-network FC changes occurring in Resting State Network (RSN)s devoted
to higher cognitive functions and more vulnerable in this pathology.

7.1 Introduction

MCI is a syndrome showing cognitive decline greater than expected for an individual’s
age and education level. However, this does not notably interfere with daily life activi-
ties. Patients showing memory complaints and deficits have a high risk of progression
to dementia, in particular to the AD type [165].

While the interaction between genetic and environmental risk factors for AD with
brain degeneration have been recently investigated [166], their role for MCI subjects is
still less understood. Imaging Genetics (IG) methods can be applied to this aim, exploit-
ing imaging techniques to investigate the effects of genetic variations on brain function
or structure in order to better understand their impact on behavior and disease pheno-
types [154].

On the genetic side, according to the available data, two types of genetic feature ex-
traction can be performed: Genome-Wide Association Study (GWAS), and polygenic
approaches. GWAS consist of observational studies of a genome-wide set of genetic
variants in large populations of individuals, targeting the association of genetic vari-
ants with Imaging Derived Phenotype (IDP)s. Polygenic studies rely on genetic features
derived from available large scale GWAS, and aim at assessing the associations between
genetic profiles and IDPs, enabling focused studies on a smaller cohort.

PRS, in particular, are gaining popularity since they represent a single score combin-
ing the effects of multiple independent genetic variants derived from GWAS analysis in
a subject’s genome, capturing the individual overall genetic disease risk [167]. For AD,
these scores have been shown to be associated with relevant phenotypes such as dis-
ease progression and cognitive decline [155].

On the imaging side, among the available techniques, dMRI is an in-vivo technique
that allows defining numerical indices that well describe the brain tissue microstruc-
ture based on water molecules movement [84]. dMRI has been widely studied in the
IG field in relation to Schizophrenia disease, showing promising results [168] and re-
cently it started to be considered also to detect the potential correlation between brain
microstructure and genomics in AD. For example, Horguslouglu et al. [169] recently
showed that a single nucleotide variation in the gene CELF1 was significantly associ-
ated with WM microstructural changes in the hippocampus, while Elsheikh et al. [14],
performed a longitudinal study relying on structural brain connectivity defined by trac-
tography and genes.
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In order to evaluate also neuronal activity in the brain while performing a given task
or at rest it is possible to rely on the non-invasive Blood Oxygenation Level Dependent
contrast (BOLD) fMRI. Several authors have demonstrated the functional significance
of the spontaneous, low-frequency fluctuations (<0.1 Hz) occurring in the BOLD signal
at rest and have proved the existence of spatially distinct brain areas sharing a syn-
chronous BOLD activity, the so-called RSNs [170]. Different FC measures have been
devised so far focusing either on the coherence or on Pearson’s temporal correlation
between time-series measured at different locations in the brain [171]. These features
have been scarcely investigated in the IG framework, though could represent impor-
tant biomarkers for a timely characterization of the underlying functional modulations
in neurodegenerative disorders.

Multivariate methods can be used to uncover the interaction between IDPs and
genetics features. Among the multivariate approaches, latent variable and multi-view
models aim at finding a latent low dimensional space in which the projections of the
features show some maximized characteristics. In particular, PLS, which aims at maxi-
mizing the covariance between the latent projections, has been started to be exploited
in IG studies. Lorenzi et al. [42] exploited this method to uncover the genetic underpin-
nings of brain atrophy in AD.

In this work, we aim at building on top of [42] to the twofold aim of: (i) Investigat-
ing the genetic influence on WM microstructure modulation in MCI. To this end, mi-
crostructural indices were derived from dMRI and tract-based features were extracted;
(ii) Investigating the genetic influence on FC patterns in MCI under the working hy-
pothesis that FC measures in different RSNs could reveal subtle changes induced by the
onset of the disease, allowing to disentangle age-related from pathological functional
degeneration and thus potentially enabling early detection of the disease fingerprints.
PLS was then applied to investigate the relationship between such features and two re-
cently proposed PRS [172]. The Chapter will separately describe the works reflecting
the two aims, in detail Section 7.2 will be devoted to the association between dMRI de-
rived IDPs and PRS while Section 7.3 will describe the pipeline for the analysis of the
association between the same PRS and fMRI derived IDPs.

7.2 Association between dMRI derived IDPs and PRS

7.2.1 Materials and Methods

Phenotypes and genotypes used in this study were obtained from the ADNI database
(adni.loni.usc.edu). The selected cohort comprehended 86 subjects from the ADNI-
3 phase including 37 Healty Controls (HC), 5 MCI, 31 Early Mild Cognitive Impairment

adni.loni.usc.edu
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(EMCI), 13 Late Mild Cognitive Impairment (LMCI), aged 73.85 ± 5.74, 69.72 ± 9.27,
71.74 ± 6.85, and 67.27 ± 6.34, and with ratios of males/females equal to 17/20, 1/4,
15/16, and 8/5, respectively.

The considered phenotypes were tract-based features derived from dMRI images
(Repetition Time (TR)/Echo Time (TE) = 56/7200, 2-mm isotropic voxel, b=1000s/mm2).
The diffusion volumes were preprocessed using FSL software (version 6.0, https:
//fsl.fmrib.ox.ac.uk/fsl/fslwiki/) applying an initial step of brain extraction
(bet tool) followed by Eddy currents correction (eddy tool). The Diffusion Tensor Imag-
ing (DTI) [84] model was fitted to the corrected images and Fractional Anisotropy (FA),
Mean Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AxD) indices were
extracted. The TBSS pipeline from FSL was applied to FA to derive a group WM skele-
ton (FA threshold of 0.2) to which all subjects were linearly registered, and the same
transformations were subsequently applied for all other indices in order to obtain skele-
tonized values for each subject. For all subjects, the average value of each index was
extracted from 48 Region Of Interest (ROI)s derived from the JHU-DTI atlas available
in FSL. The resulting phenotype matrix, of dimensions 86×192, was considered as the
independent variable X of the PLS model.

The genotype was represented by PRS1 and PRS2 scores proposed in [172]. Briefly,
the PRS1 included all independent Single Nucleotide Polymorphism (SNP)s passing the
genome-wide suggestive (p=1.0e −05) threshold in the most recent GWAS [160], result-
ing in 55 SNPs. The PRS2 cutoff was p=0.5, thus including 101.450 SNPs. No correlation
was found between these two scores. We refer to [172] for further details on PRS com-
putation. Of note, the SNPs encoding APOE e4 and e2 were included in both scores,
and APOE dominated the PRS1 but had negligible effect on PRS2 [172]. The resulting
genotype matrix, of dimension 86× 2, is referred as the dependent variable Y of PLS
model.

A standardization to reach zero mean and unitary standard deviation was applied
to both X and Y . Age and sex were then regressed out from the X matrix. PRS2 was
standardized, and the first five principal components of the genetic information of the
whole population on which the PRS were calculated, were regressed out. In fact, these
represented the genetic population structure to which PRS2 was highly correlated.

The PLS regression was finally applied for modeling the joint variation between phe-
notype and PRS. Ten-fold Cross Validation (CV) was used to identify the number of PLS
components minimizing the Predicted Residual Error Sum of Squares (press) error on
non-overlapping datasets.

The data variation explained by each component was calculated, and a permutation
test was performed to assess the significance of the model. In detail, the test checked

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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whether the eigenvalues obtained by the model were higher than the ones obtained by
randomly permuting all rows of the Y matrix, with 10e4 permutations.

7.2.2 Results

Chapter7/Figures/fig1.png

Fig. 7.1: First and second PLS components weights for the phenotype and the genotype
features. The phenotype weights are grouped by index type (colors). The ROI order is
the same for each index and is shown under the barplots.

10-fold CV revealed that both components were needed for minimizing the press
error, accounting for the 45% and the 55% of variability of the data, respectively.

The PLS weights of phenotype and genotype in the first and second eigen-component
of the model are shown in Figure 7.1. The first component revealed an opposite trend
between FA and all other microstructural indices across all ROIs. Moreover, the coef-
ficient of FA usually had lower values compared to the diffusivity indices. This trend
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was also observed on the second component, though with opposite sign. Conversely,
in the second component, the magnitude of FA coefficients was generally higher com-
pared to the first, suggesting a stronger impact of this component on such anisotropy
measure. AxD showed the highest differences, being anti-correlated with FA for all ROIs
in the first component, while lemniscus and peduncle were correlated with FA in the
second, though with a low PLS weight. RD and MD showed correlated trends in both
components, being anti-correlated with the anisotropy index in all ROIs.

Concerning ROIs, other differences can be detected. In the first PLS component, the
corona radiata featured the largest PLS weight for all indices, while the RD and MD
showed relatively high PLS weights also in peduncle and thalamic radiation. The ante-
rior part of peduncle and thalamic radiation reached relatively high weight also in AxD.
For the second component, the external capsule showed the highest PLS weight, coher-
ently with FA, MD and RD. In general, an hemispheric symmetry was found for ROIs
showing the highest PLS weights.

Regarding genotype variation, the selected PRS resulted as anti-correlated with all
diffusivity indices in the first component, while in the second component only PRS2
showed this anti-correlation. In particular, the PRS1 showed the highest absolute weight
in the first component, while the PRS2 was the highest in the second one.

The p-value retrieved by the permutation test did not reach the significance.

7.2.3 Discussion

In this work we modeled the intrinsic relation between brain microstructure and PRS
via joint multivariate statistical modeling, identifying a link between PRS and the WM
damage seen in subjects with MCI as characterized by the dMRI-based indices.

The obtained results showed that the two PLS components explained a comparable
amount of variability, confirmed by the 10-fold CV applied to the model.

The anti-correlation between anisotropy and diffusivity indices detected by both
PLS components was coherent with the expectation for the MCI condition. In fact, MCI
patients are likely affected by a progressive WM degeneration due to axonal loss and de-
myelination, resulting in increased water diffusivity in the tracts [173]. The ROIs show-
ing the highest PLS score, hence the most relevant for the model were in agreement
with previous studies on the modulation of dMRI derived indices in MCI patients [173],
where the external capsule, the corona radiata and the tracts connecting the limbic re-
gions it showed an increased AxD and RD in MCI compared to healthy controls.

In this work, the absence of significance of the permutation test could indicate a low
specificity of the PRS scores to the MCI patients selected in this study cohort. However,
their link with the expected microstructural modulation for MCI subjects, is promising
and deserves further investigations.
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To the best of our knowledge, this is the first attempt to exploit PLS model in order to
link the PRS for AD with brain microstructure in people experiencing MCI. In the work
of Lorenzi et al. [42], PLS was used to link brain atrophy to the complete set of SNPs
from AD patients, uncovering significant link between the TRIB3 gene and the stereo-
typical pattern of grey matter loss in AD. They relied on structural Magnetic Resonance
Imaging (sMRI) for the imaging side and, more importantly, on a much larger dataset. A
similar approach was followed in [161] where, exploiting sMRI based features and cere-
brospinal fluid levels of t-tau, p-tau and amyloid-beta biomarkers, they were able to
stratify the early stages of AD in the PLS latent space.

Despite the promising preliminary results, the limitations of this study consisted of
the small cohort of subjects which did not allow a strong validation of the model on an
unseen cohort, and did not allow to completely exploit the PRS. In the future, we plan to
add more subjects to the model, including also AD patients, aiming at better depicting
the microstructural link with the genetic component of AD disease progression.

7.3 Association between fMRI derived IDPs and PRS

7.3.1 Materials and Methods

The data analyzed in the current study were collected from the ADNI database as part
of ADNI-3 phase (http://adni.loni.usc.edu/). The selected cohort comprehended 177
subjects, including 95 HC (among which 52 were classified as Cognitively Normal and
43 with Significant Memory Concern) and 82 MCI (comprising 52 EMCI, 4 MCI and 26
LMCI, according to the ADNI database).

Rs-fMRI acquisitions were performed on a 3T scanner with the following sequence
parameters: TR/TE = 3000/∼ 30 ms, FA = (90°), Field of View (FOV) = (220×220×163)
mm, 3.4-mm isotropic voxel size. 200 fMRI volumes were acquired in almost all sub-
jects, with minimal variations in a small subset (e.g, 197 or 195 volumes). T1-weighted
images were also available (main parameters: TR = 2300 ms, FOV = 208×240×256 mm,
1-mm isotropic voxel size). Data were preprocessed using the FMRIB Software Library
(FSL version 6.0) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

As minimal preprocessing, removal of the first five volumes, motion realignment
(MCFLIRT), 4D mean intensity normalization, spatial smoothing with a 6-mm FWHM
kernel and interleaved slice-timing correction were performed. A nuisance regression
pipeline was then applied to regress out from the minimally preprocessed data the
six motion parameters (plus their derivatives), the mean white matter/cerebro-spinal
fluid (WM/CerebroSpinal Fluid (CSF)) signals and a linear trend component [174]. WM
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and CSF signals were extracted from the corresponding partial volume maps after ero-
sion and binarisation with a threshold of 0.8. The residuals resulting from this analysis
were subsequently band-pass filtered (0.01-0.08 Hz). To further eliminate motion arti-
facts, scrubbing was applied to remove high-motion frames as defined by exceeding 0.5
mm framewise displacement, zero-padding these volumes together with one preced-
ing and two subsequent volumes to keep the number of data points consistent across
subjects. Lastly, the preprocessed Resting State functional Magnetic Resonance Imag-
ing (rs-fMRI) images were spatially normalized to the 2-mm MNI space (non-linear
registration). The FC matrices were generated using the Schaefer functional atlas [175]
with 100 parcels and 7 RSNs, namely visual (VIS), somatomotory (SMN), dorsal atten-
tion (DAN), ventral attention (VAN), limbic (LIM), frontoparietal control (CON), and
default mode networks (DMN). The symmetric connectivity matrices were calculated
using Pearson’s correlation coefficient.

In order to exploit the FC patterns in these well-known networks, summary mea-
sures representing the mean connectivity value inside a given network (within-network
FC) and across edges connecting regions belonging to different networks (between-
network FC) were derived from the full matrices. Within-network FC was calculated as
the mean value of all the region-to-region connectivities within a specific network (e.g.,
DMN), while between-network FC was derived by averaging across the edges connect-
ing a node in a network with the other nodes in the remaining networks (e.g, DMNSMN
or DMN-VIS) [176, 177]. These operations led to 28 single FC features per subject to
be used as IDPs. Regarding the genetics, two PRSs namely PRS1 and PRS2, proposed in
[172], were chosen. These scores were based on a recent GWAS study [160] and were cal-
culated according to SNPs passing the genome-wide suggestive threshold (p = 1.0e−05)
and the p = 0.5 cutoff, respectively. For further information regarding the PRS calcula-
tion please refer to [172].

Finally, a PLS model was applied to the data to capture the association between the
IDPs and genetics. The imaging features extracted represented the matrix X in the PLS
model (177×28), while the genetic features composed by the two PRSs were presented
as matrix Y (177×2). Before applying the model, genetic features and IDPs matrices were
standardized by subtracting the mean and dividing by the standard deviation. Decon-
founding was also applied to remove the bias from age and gender in the X matrix. Con-
versely, the first five principal components of the genetic information of the whole pop-
ulation on which the PRS were calculated were regressed out from PRS2 only, as these
represented the genetic population structures to which such PRS was highly correlated
[172]. The PLS model was applied with Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regularization using a penalty value of 0.15. A permutation test, based on
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Fig. 7.2: Mean FC matrices, averaged across all subjects belonging to a given group.
The 100 parcels were grouped according to the 7 resting-state networks in the Schaefer
atlas, keeping the two hemispheres separately.

1000 permutations of the rows of the Y matrix, was used to test the significance of the
obtained eigenvalues (p < 0.05).

7.3.2 Results

FC matrices were derived from all the subjects, leading to the final average matrices
reported in Figure 7.2 for the two groups. The 28 summary FC measures per subject
were included in the PLS model along with the two individual PRSs, and the resulting
two components accounted for 54% and 46% of variability of the data, respectively.

The PLS weights of phenotype and genotype in both eigen-components are re-
ported in Figure 7.3 In the first component, while all the coefficients had the same
sign, differences could be appreciated in terms of weights across the FC features. The
within/between-network connections involving DAN generally featured the highest
values, along with those encompassing the CON network. In particular, the between-
network FC related to CON appeared as having the highest weights in all cases. Con-
versely, the connections with LIM had lower weights, especially for the intra-network
one which reached the lowest value. Of note, in all cases the within-network FC val-
ues had generally lower weights compared to the between-network ones. In the second
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Fig. 7.3: PLS component’s weights for imaging and genetic features. Darker colors rep-
resent the within-network connectivity while the lighter shades show the between-
network connectivity.

component, most of the FC features had zero weights (or close to zero, as for LIM VIS).
The weights for the within-network FC were prominent in all cases except for DAN and
VAN, and these features presented an opposite trend across networks, differently than
before. Indeed, VIS and SMN showed a correlated trend, while being anti-correlated
with LIM, CON and DMN. The magnitude of LIM coefficients was generally higher com-
pared to the others, suggesting a stronger impact of this component on such FC mea-
sures. Conversely, connectivities related to the SMN, DAN and VAN networks, which
reached high coefficient values in the first component, appeared to have a negligible
contribution in this second one. Finally, DMN resulted to be the network with the most
surviving features either from within- or between-network connectivity (six out of the
thirteen). Regarding genotype variation, the PRS2 showed the highest absolute weight
in the first component, while the opposite pattern was found in the second one. PRS2
was correlated with all the FC features in the first component, while in the second one
PRS1 presented these correlated patterns only for a subset of connectivities involving
LIM, CON and DMN. Conversely, the three features related to the SMN network with
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high weights (SMN SMN, VAN SMN, DMN SMN) were anti-correlated with the PRS1.
Finally, the permutation test proved the significance of the model with p-value = 0.044.

7.3.3 Discussion

In this study, we investigated the associations between neuroimaging phenotypes and
genetics via joint multivariate statistical modeling in patients with MCI. The phenotypic
features were presented in terms of within/between-network FC derived from rs-fMRI
scans, while two PRSs were used as genetic features. These combine the effects of mul-
tiple independent risk variants into single scores, being able to capture an individual’s
overall genetic disease risk [172].

PLS model was applied to maximize the covariance between the two sets of data with
LASSO regularization retaining the most relevant features. Analysis of the PLS weights
showed associations between specific imaging features and one of the PRSs. In particu-
lar, all FC features were correlated with PRS2, while only LIM, CON and DMN were cor-
related with PRS1 in the second component. These two PRSs have been demonstrated
to be associated with clinical diagnosis, CSFtau levels and with progressive atrophy in
AD, although the second one has a poorer association with traits [172].

Our results showed that the 28 FC features were differently represented in the two
components and had a differential association with the two PRSs, as visible in Figure
7.3, suggesting these PRSs for AD might shape the FC fingerprints in a selective way
and deserving further investigations. Interestingly, the connectivities involving DAN,
VAN, CON and DMN featured the highest weights in either the first or second compo-
nent. These are all RSNs involved in higher cognitive functions, they comprise highly
connected regions, and are characterized by an increased vulnerability compared to
other networks, such as VIS or SMN, in MCI and AD patients. Previous authors argued
this might depend on their particular vulnerability to amyloid deposition since the pre-
clinical stages of dementia [178]. DMN in particular has been largely investigated in the
current literature, and both within- and between network changes have been reported
between HC, MCI and AD patients [179, 180]. However, several studies are going be-
yond DMN and have recently demonstrated aberrant internetwork changes involving
those brain systems that are closely correlated and play a crucial role in higher cognitive
function, underlying the central role of the interactions between RSNs in understand-
ing MCI and AD pathology [181]. To the best of our knowledge, this was the first attempt
to exploit a multivariate PLS model for linking the PRS for AD with brain FC measures
in MCI subjects.

In a previous work by Lorenzi and colleagues [42], PLS was used to associate brain
atrophy to the complete set of SNPs from AD patients, uncovering a significant link be-
tween the TRIB3 gene and the stereotypical pattern of grey matter loss in AD. A similar
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approach was followed in [161], where they were able to stratify the early stages of AD
in the PLS latent space by exploiting classical structural features and disease-specific
biomarkers such as cerebrospinal fluid levels of t-tau, p-tau and amyloid-beta.

Despite these promising preliminary results, we are aware of the small sample size
which represents the main limitation of the current study and the lack of AD subjects.
However, we consider the results as relevant as the within/between-network FC mod-
ulations that could be detected are in agreement with previously reported patterns in
MCI and AD, providing evidence in favor of the suitability of PRS scores for explaining
even in a selective way the genetic underpinning of such changes.

7.4 Conclusions

Concerning dMRI, the presented PLS model suggested that there exists a joint variation
between brain microstructure and PRS in MCI subjects. Moreover, the PRS correlated
with the expected pattern of WM degeneration identified by the dMRI indices. Moving
to fMRI, the proposed PLS model with LASSO suggested a joint variation between FC
and PRSs in MCI subjects. Moreover, the two PRSs correlated with a possible pattern
of aberrant within/between-network FC changes occurring in RSNs devoted to higher
cognitive functions and more vulnerable in this pathology.

The dMRI based work presented in this Chapter was presented in [182], while the
fMRI based study was published in [157].
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Describing genetics in a more informative way:
investigating the link between gene variant
scores and structural MRI

The joint modeling of genetic data and brain imaging information allows determin-
ing the pathophysiological pathways of neurodegenerative pathologies such as AD. Gray
matter atrophy is a well established biomarker and genetic variants play a prominent
role in disease development. Their joint modeling allows decoding their associations
while pointing towards new potential genetic determinants. In this work, the Partial
Least Squares (PLS) model was used for analyzing the genetic underpinnings of grey
matter modulations relying on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
phase 3 dataset.
Cortical thicknesses and subcortical volumes derived from T1-weighted Magnetic Reso-
nance were considered to describe the imaging phenotypes and gene variant scores were
extracted by the Sequence Kernel Association Test (SKAT) filtering model. Moreover, a
transcriptomic analysis was carried on to assess the expression of the resulting genes in
cortical and subcortical structures as a form of post-hoc validation. Results highlighted
meaningful genotype-phenotype interactions in each significant latent component. Two
genetic variants relevant for Alzheimer’s Disease (AD) were highlighted that are EPHX1
and BCAS1, respectively involved in neurodegenerative and myelination processes. In
particular, the first was associated to the decrease of subcortical volumes and the second
to a decrease in the temporal lobe thickness. Noteworthy, BCAS1 is particularly expressed
in the dentate gyrus. Overall, the PLS model allowed capturing genotype-phenotype in-
teractions in a restricted study cohort, inline with previous findings and suggesting new
potential disease biomarkers.

This Chapter proposes new ways to investigate the genotype phenotype interactions in
a restricted study cohort highlighting associations that are descriptive of the underlying
mechanisms of neurodegeneration in AD continuum.
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8.1 Introduction

Imaging Genetics (IG) has rapidly grown in the last decades, offering the possibility to
detect associations between genotype and neuroimaging data and opening new av-
enues to understand the genetic impact on individual’s phenotypes, traits or risk of de-
veloping a disease. Indeed, the primary aim of IG is to assess the genetic architecture
of brain structure and function, providing new insights into the brain mechanisms and
into their role in shaping complex neurological, psychiatric and neurodegenerative dis-
orders such as AD [13, 183]. AD is the most common cause of dementia, affecting 46.8
million people worldwide [184]. The pathophysiology of AD and its genetic drivers have
been widely studied in recent years as presented in previous Chapters (Chapter 6 and
Chapter 7).

On the imaging side, structural Magnetic Resonance Imaging (sMRI) represents a
key element of the diagnostic criteria for the differential diagnosis and longitudinal
monitoring of patients with dementia. Several studies have consistently observed both
global and local atrophic changes in AD, lying along the hippocampal pathway (en-
torhinal cortex, hippocampus, parahippocampal gyrus and posterior cingulate cortex)
in the early stages of the disease, while atrophy in temporal, parietal and frontal neo-
cortices emerge at later stages, being associated with neuronal loss leading to language,
visuospatial and behavioral impairments [151, 185].

On the other hand, AD has a strong genetic component with more than 40 AD-
associated genes/loci that have been identified by Genome-Wide Association Study
(GWAS) and sequencing projects over the last ten years, supported by large inter-
national GWAS consortia such as the International Genomics of Alzheimer’s Project
(IGAP) [186, 160]. Segregation analyses have linked several genes to early-onset famil-
ial cases that are often explained by rare variants with a strong effect, including APP5,
PSEN1, and PSEN2 [187]. Conversely, common risk variants for the more complex late-
onset type of AD have been identified thanks to the analyses of massive GWAS data, with
strongest genetic risk loci represented by TOMM40, APOE, CLU, PICALM and ADAM10
among the others [186, 187]. Therefore, combining the genetic information with quan-
titative traits of neuroimaging data to unravel the genetic causes of AD nicely fits within
the IG framework and is increasingly pursued in recent years, as demonstrated in sev-
eral reviews on the topic [13, 188]. Advances in this respect have been fostered by well-
know large-scale projects such as the ADNI [189, 190], the UK Biobank [191] and the En-
hancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) consortium [192].
ADNI in particular represents the landmark AD biomarker study, being a large and
rich repository of open-source genomics, neuroimaging (Magnetic Resonance Imag-
ing (MRI) and positron emission tomography), cognitive, behavioral, and clinical data.
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In particular, the last phase ADNI-3, started in 2016 and still ongoing, has introduced
updated MRI technologies [190] which are still partly investigated in the current litera-
ture.

As such, these initiatives have facilitated the availability of large databases coupling
imaging and genetics data acquired on the same subjects, greatly promoting the devel-
opment of novel methodologies and applications in IG. The earliest IG studies focused
on analyzing the influence of candidate genes and/or specific genetic variants on a
series of brain Imaging Derived Phenotype (IDP)s, usually modelled as separate out-
come variables in univariate / mass-univariate approaches [183]. These studies with
candidate genes and candidate IDPs have proven the validity of the IG approach, al-
lowing to test biologically plausible hypotheses and to cast light on the ways in which
genetic variants shape brain morphology and functionality in different disorders in-
cluding AD. However, such methods do not account for potential cross-feature inter-
actions, in particular, they might ignore the genetic correlation among multiple phe-
notypes (pleiotropy) and are highly prone to multiple comparison problems leading to
underpowered discoveries of significant associations [42, 13, 193]. Moreover, focusing
on a single variable at a time might misattribute the nature of genetic effects on the
brain and bias the interpretation of the results considering the complex relationships
between genetics and IDPs, especially when effects are spatially distributed and en-
compass the whole brain [194].
As such, multivariate analysis methods are being increasingly exploited in this domain,
in order to improve the discovery of multiple genotype-phenotype associations while
circumventing the limitations inherent to univariate approaches. Methods able to cap-
ture the integrated genetic effects of a set of genetic variants rather than consider-
ing each single Single Nucleotide Polymorphism (SNP) might be of help for perform-
ing whole-brain association studies, for example relying on Polygenic Risk Score (PRS)
[172] or SNP set approaches. For the latter, recent strategies [195, 196, 197] have pro-
posed grouping SNPs together into SNP sets based on their location in a gene, haplo-
type blocks given by linkage disequilibrium (LD) or according to a given pathway. The
SKAT represents in particular one of the most widely used SNP set approaches, being
a flexible and computationally efficient logistic kernel-machine regression method to
test for association between genetic variants in a region and a given trait while adjust-
ing for covariates [195]. SKAT has been successfully used to study variants in AD [198,
199], but its potentialities in the IG framework have been only partially investigated so
far. In this scenario, of note is the study by Lu et al. [197] where SKAT along with group
Least Absolute Shrinkage and Selection Operator (LASSO) and Bayesian latent variable
selection were tested on a cohort of AD subjects to identify associations between genes
and nine imaging phenotypes, represented by regional volume measures. The authors
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demonstrated the added value of such approaches which allow accounting for the cor-
relation among SNPs and detecting causal SNP sets, limiting the burden of multiple
comparison correction. However, these promising results were achieved by analyzing
each regional imaging volume separately, though, as the author recognised, these are
usually correlated and their joint modeling may hold an increased power borrowing
additional information.

Therefore, multivariate methods represent the key to address such limitations, al-
lowing to leverage the multiscale phenotype-genotype fingerprints while reducing the
multiple testing burden, resulting in higher statistical power to identify significant asso-
ciations [13, 188]. Latent variable and multi-view models, for example, aim at finding a
latent low dimensional space by the optimization of a target function such that the pro-
jections of the features hold some maximized joint properties. Canonical Correlation
Analysis (CCA)-based methods have been largely applied in the IG framework in the
past years, resulting into linear combinations of the two sets of variables which have
maximum correlation with each other. Such approaches demonstrated high precision
in assessing correlation patterns between the given features [193], for example when
considering SNPs and functional MRI features [200], or in its sparse and multi-view ver-
sion to establish associations between SNPs, sMRI IDPs and cognitive outcomes [201].
PLS analysis, which aims at maximizing at each step the covariance rather than the cor-
relation between the latent variables, has been less frequently applied for detecting the
multivariate genotype-phenotype associations. Although CCA and PLS are mathemati-
cally related, studies demonstrated that PLS may be more suitable and have improved
predictive power when dealing with high-dimensional datasets, especially those with
highly collinear variables common in IG experimental settings [202, 203]. Interestingly,
Lorenzi et al. [42] exploited PLS to uncover the genetic underpinnings of brain atrophy
in AD by relying on SNPs and T1-w sMRI, demonstrating the presence of a significant
link between TRIB3 and the stereotypical pattern of gray matter loss in AD. Despite
these promising results, the potentialities of a classical statistical model as PLS are still
under investigated, though could help to disambiguate the associations between dif-
ferent feature sets and provide a straightforward explanation of the outcomes.

Therefore, in this work, we aimed at investigating the genetic mechanisms underly-
ing brain atrophy in the AD continuum relying on a data-driven PLS multivariate ap-
proach to model their joint covariation with a twofold goal: (i) exploring the associa-
tion between imaging (sMRI IDPs) and genetics (SNP set) features identified in a study
cohort of healthy controls (CN) and patients on the AD continuum (PAT) from ADNI-
3 phase; (ii) analysing the common latent representation obtained from the model,
focusing on the components that clearly distinguish between the classes. A post-hoc
analysis was performed with dual objectives: to identify the input features driving the
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Discovery set Validation set

Diagnosis Controls (CN) Patients (PAT) CN PAT

Count 181 62 39 15

Age, y 71.19 (6.12) 72.21 (8.88) 70.45 (6.11) 72.83 (9.56)

Education, y 17.05 (2.11) 16.11 (2.56) 16.49 (2.29) 15.67 (2.74)

Sex, %fe-
males

60 39 64 27

Table 8.1: Sociodemographic characteristics of the study cohort. Age and education are
reported as years mean and standard deviation [Mean (SD)] while sex as the percentage
of female individuals.

genotype-phenotype associations using the model’s weights and to assess the expres-
sion of the detected genes through a transcriptomic analysis. The resulting model was
then furtherly validated on an independent cohort, representing the same class distri-
bution as the discovery set.

8.2 Materials and Methods

Figure 8.1 shows an overview of pipeline proposed in this work. In what follows all the
steps will be fully detailed.

8.2.1 Study cohort

Data used in this study were derived from the ADNI database (adni.loni.usc.edu),
in particular from the ongoing ADNI-3 phase. The ADNI was launched in 2003 as a
public–private partnership led by Principal Investigator Michael W. Weiner. Up-to-date
information is available at www.adni-info.org.

Summary sociodemographic, clinical, and genetic information is available in Table
8.1. Participants selection was based on the availability of MRI and genetic data and
ethnicity, restricting the analyses to participants with European ancestry. The final co-
hort comprehended 297 subjects divided into 220 healthy controls CN and 79 patients
PAT, 19 of which were AD while the remaining were Mild Cognitive Impairment (MCI)
subjects. 80% of subjects was considered as the discovery cohort, while the remaining
20% was kept for validation. A comparable proportion between PAT and CN was kept
in the discovery and validation sets.

adni.loni.usc.edu
www.adni-info.org
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Fig. 8.1: Overview of the proposed pipeline. Phenotype and genotype, representing re-
gion based cortical thicknesses and subcortical volumes respectively, were given as in-
put to Partial Least Square (PLS) modeling to model the underlying joint covariance.
For each obtained Latent Component (LC) the latent space as well as the separation
between patients (PAT) and controls (CN) was evaluated. Model explanations were ex-
tracted through the analysis of the PLS weights which allowed retrieving positive and
negative associations between the genotype and phenotype. The model was validated
through a permutation test as well as the projection of an independent validation set
on the obtained latent space which allowed to verify model generalizability. Finally, a
transcriptomic analysis was perform to investigate the brain expression of the most rel-
evant genes.

3D T1-weighted (T1-w) MRI volumes were considered for IDPs extraction (sagittal
accelerated MPRAGE, Repetition Time (TR)/Echo Time (TE) = shortest, Inversion Time
(TI)=900 ms, flip angle = 9o, Field of View (FOV) = 256×256mm2, spatial resolution =
1×1×1mm3, slices = 176-211). More details about the data acquisition can be found in
[190]. ADNI-3 participants were genotyped using the Illumina Infinium Global Screen-
ing Array v2.



8.2 Materials and Methods 107

8.2.2 Image processing and phenotype feature extraction

The T1-w volumes were minimally preprocessed for bias-field correction (fsl_anat tool
[204]). Subsequently, 84 anatomical Region Of Interest (ROI)s were extracted using
FreeSurfer version 7.0 [205]. The average thickness and volume were considered for
cortical and subcortical ROIs, respectively. The subcortical volumes were further nor-
malized by the estimated total intracranial volume of the respective subject. The ROIs
were averaged over hemispheres resulting in 42 features to be used in the subsequent
analyses.

Moreover, as preliminary analysis, a Mann Whitney non-parametric U-test was per-
formed to assess the group-wise differences between PAT and CN, separately for each
brain feature. This allows to gain a clear insight into relations already present in the in-
put features. false discovery rate (FDR) correction (p f dr < 0.05) was applied considering
42 comparisons.

8.2.3 Genetic processing and genotype feature extraction

Quality Control (QC) procedures were conducted on genotype data using the whole-
genome association analysis toolset PLINK 1.9 [206]. SNPs and subjects were filtered
out based on missingness (g eno > 0.2, mi nd > 0.1), minor allele frequency (M AF >
0.05) and deviations from Hardy–Weinberg equilibrium (hwe > 1e−06). QC kept 303150
SNPs out of the 759993 SNPs collected in ADNI-3. No subjects were filtered out.

GWAS analysis was performed as benchmark, including the top ten principal com-
ponents from a Principal Component Analysis (PCA) over genotype data, age and gen-
der as covariates.

SNP set analysis was then performed using the SKAT model [195]. SNP sets were de-
fined in order to correspond to different genes and will be referred as "genes" through-
out the paper. Of note, only SNPs located in the gene’s exon regions were included. This
led to 17295 genes containing a total of 132312 SNPs. SKAT was hence used to test the
association between each gene and the disease status (PAT or CN) using logistic kernel-
machine-based test adjusted by covariates. The R package SKAT was used to perform
the analysis, specifying a linear weighted kernel and the same set of covariates as for
the GWAS analysis.

More in details of the model, a SNP data vector, representing in this case a gene can
be defined as Gi = {gi 1, . . . , gi p }, where p is the number of SNPs in the selected gene,
for a subject i , where i = 1, . . . ,n. The relationship between the Gi and the subject’s
disease status yi , is given by yi =α0+α′Ci +β′Gi +ϵ, whereα0 is an intercept term, Ci =
{ci 1, . . . ,ci m} is the vector of the m covariates, α= {α1, . . . ,αm} is the vector of regression
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coefficients for covariates, β= {β1, . . . ,βp } is the vector of regression coefficients for the
p SNPs, and ϵ is the error term (mean µ= 0 and σ2 variance).

Evaluating whether the gene variants influence the disease state, adjusting for co-
variates, corresponds to testing the null hypothesis H0 :β= 0, hence βi 1 = 0, . . . ,βi p = 0.
SKAT tests H0 by assuming that each βν follows an arbitrary distribution with mean 0
and variance wντ, where τ is a variance component and wν is a predefined weight for
the SNP giν. The null hypothesis can be rephrased as H0 : τ = 0, which can be tested
through a variance-component score test, which it only requires fitting the null model
yi =α0 +α′

1Xi +ϵi .

The variance-component score statistics is given by Q = (y−µ̂)′K (y−µ̂)
2 , where K is the

weighting linear kernel, µ̂ = α̂0 +Cα̂ is the predicted mean of y under H0 and α̂0 and
α̂ are estimated under the null model by regressing y on only the covariates C. More in
detail of K , it is a n ×n matrix where each cell measures the genetic similarity between
two subjects i and i ′ in the gene given the p SNPs.

To derive a p-value for the considered gene, SKAT tests if Q follows a mixture of chi-
squared distributions. In our analysis a gene is considered as significant if its associated
p-value is É 0.05.

Once the significant genes were obtained through SKAT, a function to map the pop-
ulation significant genes to a subject specific measure was proposed. In detail, for a
subject i and for a significant gene G resulted from SKAT application, a gene based
variant score ηi (G) was extracted representing a measure of how mutated are the entire
SNPs located in G .

More in detail, the state of a SNP giν is 0, if no genetic variation between the specific
subject i and the reference genome is present, 1 otherwise. No distinction for diploid
variations at the same locus was considered. The gene variant score of G for the subject
i is defined as

ηi (G) =
∑p
ν=1 giν

p

and was calculated for each subject and each significant gene resulting from SKAT
application. Of note, as it has been done and described for the phenotype, a Mann
Whitney non-parametric U-test was performed to assess the group-wise differences be-
tween PAT and CN, followed by FDR correction (p f dr < 0.05).

In order to better analyze the genes resulting from SKAT analysis, their association
with the disease was furtherly assessed using Hetionet [207] and REACTOME pathway
analysis (R package ReactomePA, [208]). In detail, Hetionet is an open-source biomedi-
cal graph database that combines the information from 29 public databases into a sin-
gle resource. It contains 47031 nodes of 11 types (e.g. genes, diseases, pathways, com-
pounds) and 2250197 edges of 24 types (e.g. upregulates/downregulates, interacts). All
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the significant SKAT genes were searched inside Hetionet in order to retrieve their even-
tual link with AD. REACTOME was additionally used to perform enrichment analysis
starting from the full set of significant SKAT genes. Significant pathways were selected
based on the associated FDR-adjusted p-value (p f dr < 0.2). Moreover, pathways asso-
ciated with AD in Hetionet were furtherly selected.

8.2.4 Partial Least Squares analysis

Phenotype and genotype were organized in two separate data matrices, X and Y, respec-
tively, subsequently divided in discovery and validation. To ensure that the differences
in thickness and volumes magnitudes as well as with SKAT scores do not dominate the
statistical model, the X and Y data matrices were z-scored column-wise, by subtracting
the mean from each column and dividing by the standard deviation of that column.
Moreover, the influence of age was regressed out only from the phenotype.

Aiming at the modeling of the joint variation between the morphometric IDPs and
the gene variant scores observed in our cohort, the PLS model was applied following
[42, 157, 164]. Our focus is on the symmetric PLS formulation computed using the NI-
PALS algorithm [90], among the numerous versions of PLS proposed in the literature.
Within this setting, PLS is intended to estimate the Latent Component (LC)s that max-
imize the global covariance between the two input modalities. More in detail of the
formulation, this model aims at the identification of linear transformation parameter-
ized by the vectors wx and wy such that the covariance between the projection Xwx and
Ywy is maximized, namely:

wx ,wy = ar g maxwx ,wy (
wT SXYwy√

wT
x wx

√
wT

y wy

) (8.1)

where SX Y is the cross-covariance matrix between the feature matrices X and Y .
NIPALS algorithm optimizes this function iteratively. In each LC, each input feature is
hence given a weight according to its relative importance for describing the global mul-
timodal relationship of the input features. More in detail, the magnitude of the associ-
ated weight directly reflects the importance of each feature in the common latent space
definition, the sign, instead, relates to the direction of the association between different
features, direct or inverse, also referred to as correlation or anticorrelation. Importantly,
this sign does not necessarily entail an effective increase/decrease of that feature’s value
in a group of subjects compared to the other, but simply describes the associations be-
tween features found by PLS. The preliminary analysis on the input described in Sub-
sections 8.2.2 and 8.2.3 will aid the interpretation of the obtained associations
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The optimal number of PLS LCs was chosen by calculating the data variability ex-
plained by each of them based on model singular values, which reflects the data vari-
ability captured by the LC. The ratio of the singular value to the sum of singular values
from the decomposition was used to threshold the components in order to retain the
60% of explained data variability. A permutation test based on the obtained singular val-
ues was finally performed to assess the significance of the model [91]. In brief, the test
checked whether the singular values associated to each LC were higher than the ones
obtained by randomly permuting all rows of the phenotype matrix (1e4 permutations
were used).

LC related projection scores were derived separately for genotype and phenotype
by multiplying the inputs by the LC associated weights. The group-wise Mann Whitney
non-parametric U-test was then performed on the projection scores to assess group-
wise differences between PAT and CN. Only the associations generated by LCs showing
significant separation between the two groups on both the phenotype and genotype
projection scores were deeply investigated.

The generalization of the PLS model was tested on the unseen group by statistically
assessing the ability of the estimated PLS components in splitting patients and controls
through group-wise comparison of the projections in the latent space (Mann Whit-
ney non-parametric U-test). All the PLS analysis and validation was performed using
Python, relying in particular on scikit-learn library [209].

8.2.5 Transcriptomic analysis

Finally, a transcriptomic analysis was performed based on the Human Protein Atlas
(HPA) database (proteinatlas.org,[210]). The HPA provides normalized transcript
per million (nTPM) expression values within 13 brain regions based on RNAseq analy-
sis of 1324 samples from several donors. Each of the most relevant genes resulting from
the pathway analysis and the PLS model was checked for expression in brain tissues.
Of note, the HPA does not have a reference template for brain regions definition. Their
transcriptomic measures were hence aggregated in order to match the Desikan-Killiany
Atlas considered for the IDPs definition. A full matching was not however possible due
to missing infromation in HPA database, resulting in 39 regions out of 42 having tran-
scriptomic data.

proteinatlas.org
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Chapter8/Figures/venn_up.jpg

Fig. 8.2: Overview of the gene’s grouping. The Venn diagran is based on four main sets
representing genes resulting from SKAT analysis (light blue), genes in Hetionet database
(green), genes belonging to the significant pathways returned from the enrichment
analysis (pink) and the subset of the latter representing the genes belonging to AD re-
lated pathways (yellow). Darker colors are used to represent the intersections between
such principal clusters.

8.3 Results

8.3.1 SKAT results

GWAS [186] and SKAT [195] analysis was conducted on the study cohort after a QC pre-
processing in order to identify genotype association from case-control data (PAT and
CN subjects) as described in Section 8.2.3.
In our analysis GWAS approach failed to discover significant association between indi-
vidual SNPs and AD due to the involvement of small populations and low prevalence
disease [211] in the considered cohort.
The SKAT SNP set analysis highlighted 408 significant genes (p-value É 0.05). These
were almost equally distributed in all chromosomes, though a higher predominance
could be noted in chromosome 6 (48 genes, 12% of significant genes) and chromosome
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ID Pathway Genes p-value p-fdr

R-HSA-211999 CYP2E1 reactions CYP2D6 / CYP2E1 / CYP2C9 0.001 0.08

R-HSA-211897 Cytochrome P450 CYP2D6 / CYP2E1 / CYP2C9 / CYP4V2 / CYP11B1 / CYP4F12 0.005 0.12

R-HSA-211859 Biological oxidations
FMO2 / CYP2D6 / CYP2E1 / GSTM5 / CYP2C9 / EPHX1 /

0.007 0.14
CYP4V2 / MAT1A / UGT2B4 / CYP11B1 / CYP4F12 / MTARC1

R-HSA-112316 Neuronal System

CHAT / RPS6KA2 / KCNA7 / SLC1A2 / GABRG2 / KCNH5 /

0.010 0.17CACNA1A / KCNMB1 / CASK / SLC6A1 / KCNJ6 / KCNAB1

CHRNA5 / KCNMB3 / NRXN1 / ABAT / GRIN3A / GABBR1

Table 8.2: Significant pathway associated with AD in Hetionet. REACTOME was used
to conduct enrichment analysis. For each pathway is reported the Reactome ID, the
pathway name, SKAT genes included in the pathway (Hetionet genes are highlighted in
bold), p-value and false discovery rate adjusted p-value.

1 (33 genes, 8% of significant genes).
12 SKAT significant genes had been found associated with AD in Hetionet, and we refer
to these as "Hetionet genes", in details: PTGS2 and DPYD (Chr1), TF (chr3), PPARGC1A
(Chr4), CDH12 (Chr5), VEGFA (Chr6), LPL (Chr8), CHAT and ABCC2 (Chr10), BDNF
(Chr11), AKAP13 (Chr15), CYP2D6 (Chr22).
Enrichment analysis identified 53 significant pathways (FDR adjusted p-value < 0.2).
Among these, four pathways were associated with AD in Hetionet, reported in Table
8.2 together with Reactome ID, SKAT genes included in each pathway, p-values and ad-
justed p-values. The Hetionet genes included in these pathways (CUP2D6 and CHAT)
are highlighted in bold. Moreover, a schematic overview of the different gene subsets
adopted in this study can be found in Figure 8.2. While the association between the
Neuronal System pathway and AD is clear, for the other three pathways we highlight
the relationship below. Biological oxidation has been demonstrated to be associated
with cell toxicity in various neurodegenerative disorders such as AD or Parkinson’s Dis-
ease. An accumulation of nucleic acid oxidation indicates a decreased capacity to repair
the nucleic acid damage [212]. Furthermore, CYP2E1 reactions pathway is closely asso-
ciated with Biological oxidation. CYP2E1 gene is involved in oxidative stress and can
cause cell death [213]. Finally, Cytochromes P450 in the corresponding pathway consti-
tute a superfamily of enzymes that catalyze the metabolism of drugs. Polymorphisms
in cytochrome P450 genes may affect the enzyme catalytic activity and have been asso-
ciated with AD in several studies [214, 215].
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8.3.2 Phenotype and Genotype preliminary analysis

The preliminary analysis on the phenotype, aiming at assessing whether any between-
group significant difference was present in the original space, revealed selective alter-
ations surviving the FDR correction. Among the cortical IDPs, temporal regions were
the most significant (p-value É 1e-05 for enthorinal cortex, middle temporal gyrus and
temporal pole; p-value É 1e-04 for Fusiform gyrus, inferior temporal cortex, parahip-
pocampal gyrus, superior temporal gyrus) followed by few parietal regions (precuneus
and insular cortex, p-value É 1e-04) and by bankssts and inferior/superior parietal gyri
(p-value É 1e-03). Moving to the subcortical IDPs, amygdala was the most significant
one (p-value = 3.56e-08), followed by hippocampus and accumbens recording p-values
of 2.15e-07 and 1e-04, respectively. All the statistics revealed a decrease of the mea-
sured features in PAT compared to CN. No significant differences were recorded for the
remaining phenotype features. Moving to the genotype, 60 gene variant scores revealed
significant differences between PAT and CN. ChrX had the highest percentage of signif-
icant genes (42%) compared to its total number of SKAT genes. It was followed by Chr4,
Chr22, Chr1, Chr17 and Chr2 which showed a percentage of significant genes above the
15%. However, any comparison survived the FDR correction.

8.3.3 Partial Least Squares analysis

The X and Y matrices for PLS computation had dimension number of subjects (243 for
the discovery and 54 for the validation) times the number of respective features (42 IDPs
for X and 408 gene variant scores for Y). The PLS model calculation on the discovery
set returned a total of 14 LCs to explain at least the 60% of data variability, the first
accounting for the 12%, with the others monotonically decreasing till the 3%. In what
follows, out of the 14 LCs, we will focus on the components defining a latent space in
which a significant difference between groups was found, being the most informative
for our scope. Of note, the permutation test confirmed the significance of our model
resulting in a p-value = 0.001.

Latent space and projection scores

Among the 14 LCs, the 1st (LC1), the 2nd (LC2) and the 5th (LC5) where the ones gen-
erating a latent space showing significant differences between the projection scores of
PAT and CN groups for both the genotype and phenotype in the discovery set. Such
LCs accounted for the 12%, 7% and 4% of data variability, respectively. Figure 8.3 shows
the latent space generated by such LCs, as well as the distribution of the related pro-
jection scores, separately for imaging and genetics and for both the discovery and the
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Chapter8/Figures/latent_space_up.png

Fig. 8.3: Latent space and projection scores boxplots. The latent space generated by
the PLS components showing a significant difference for the projection between PAT
(blue) and CN (yellow) are shown in rows. The projection scores for phenotype and
genotype separately are then reported for both the discovery set and the validation set
(columns). Significant differences between CN and PAT projections, as derived from
Mann Whitney non-parametric U-test, are highlighted with red asterisks (*, **, ***, ****
refers to p-values É 0.05,1e −02,1e −03,1e −04 respectively).
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validation set. Focusing on the discovery set and particularly on the generated latent
space, a high correlation was present between genotype and phenotype projections for
all the considered LC (Pearson correlation coefficient equals to 0.82, 0.80 and 0.77 for
LC1, LC2 and LC5, respectively), while a clearer separation between classes was present
in LC2 and LC5, compared to LC1. Moving to the differences in projection scores be-
tween PAT and CN, LC1 showed a p-value É 1e-02, namely p-value of 0.002 and 0.001
for both phenotype and genotype projection scores. LC2 and LC5, despite accounting
for a minor data variability, appeared to be the most interesting regarding the differen-
tiation between PAT and CN. LC2 showed strong significant differences for both phe-
notype and genotype, with a p-value of 1e-04 and 4e-05, respectively. A similar trend
was found for LC5 which showed a p-value of 2e-08 and 2e-04 for the genotype and
phenotype, respectively.

The projection of validation data on the generated latent space showed a similar
distribution of PAT and CN subjects as the discovery set and confirmed some of the
significant differences recorded for the discovery set. In detail, for LC1, a significance
(p-value = 0.014) was found also on the validation set for the phenotype projection.
The validation set on LC2 showed a significant difference for the genotype (p-value =
0.008) found also on LC5 (p-value = 0.010). For both LC2 and LC5 the phenotype in
the validation set showed a trend towards the significance (p-values of 0.072 and 0.061,
respectively).

The remaining LCs of the model did not show any significant difference between PAT
and CN for both the phenotype and the genotype in the discovery or validation set.

Genotype - Phenotype relevance and associations

Figure 8.4 shows the phenotype (imaging) weights from our PLS model, separately
for LC1, LC2 and LC5. Overall, a different pattern can be appreciated in the consid-
ered LCs, highlighting that each of them explains different brain structure modula-
tions in the considered study cohort. Beginning from LC1, cortical areas featured high
positive weights, suggesting their predominant role in shaping this component espe-
cially over frontal (parsopercularis, rostral middle and superior frontal gyri, precentral
gyrus), temporal (inferior, middle and superior temporal gyri, fusiform gyrus, bankssts)
and parietal areas (supramarginal gyrus, inferior parietal gyrus). Lower importance
was instead given to all the subcortical regions. Conversely, LC2 assigned high (pos-
itive) weights to the subcortical features, showing an anticorrelation between them
and the cortical ones. Of note, the most important volumes were hippocampus, amyg-
dala, basal ganglia (putamen, globus pallidus, caudate, and accumbens), and thalamus.
These resulted to be positively correlated with the entorhinal cortex and temporal pole,
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Chapter8/Figures/Fig_brain_weights_seismic_up.png

Fig. 8.4: Significant PLS components’ weights for the phenotype. Positive weights are
shown in red, while negative ones are in blue. Drawings generated using BrainPainter
[216].

Chapter8/Figures/Heatmap_up_up.png

Fig. 8.5: Association between phenotype and genotype. Heatmap of the PLS weights
for the most significant components (rows), thresholded over the 75th percentile of
the respective distribution. Background shades highlight cortical (Cort) and subcorti-
cal (Subc) features for phenotype, and different chromosomes (e.g. Chr1) for genotype.
The corresponding feature name lists can be found in Supplementary Figure 8.10. Pos-
itive and negative PLS weights are shown in red and blue respectively.

similarly featuring high positive weights, and anticorrelated particularly with the cere-
bellum and rostral middle frontal gyrus. Finally, LC5 highlighted a strong separation
between frontal regions (frontal pole, parsorbitalis, parstriangularis, cingulate gyri, in
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particular caudal anterior, rostral anterior and posterior), medial temporal lobe (en-
torhinal cortex, parahippocampal gyrus), subcortical volumes (negative weights) with
temporal lobe regions (temporal pole, middle temporal gyrus).

Chapter8/Figures/Heatmap_SUPP.png

Fig. 8.6: Heatmap of the genotype PLS weights for the most significant components
(rows). Background shades highlight different chromosomes (e.g. Chr1) for genotype.
The corresponding feature name lists can be found in Supplementary Figure 8.10. Pos-
itive and negative PLS weights are shown in red and blue respectively.

Moving to the genotype (gene variant scores), Figure 8.6 shows the associated PLS
weights, separately for LC1, LC2 and LC5. Despite the relevance pattern resulted quite
uniform across chromosomes, some differences emerged. More in detail, in LC1 Chr2,
Chr3, Chr11, Chr21 and ChrX showed the genes featuring, on average, the highest neg-
ative weights in anticorrelation with Chr18 which had instead the highest positive ones.
In LC2, the chromosomes featuring the highest positive weights were Chr7, Chr18, op-
posed to Chr17, Chr19, ChrX. Finally, for LC5, Chr12 showed the highest positive and
negative weights. Chr4 and Chr11 (positive weights) were in negative correlation with
several chromosomes (Chr9, Chr18, Chr20, Chr21, Chr22, ChrX).

In order to better emphasize the association between phenotype and genotype, Fig-
ure 8.5 reports an heatmap illustrating the relative PLS weights for each feature and
component. For ease and clarity, imaging features were grouped by cortical (Cort) and
subcortical (Subc) regions, while genes were grouped by their position on chromo-
somes. A threshold to retain only the weights higher than the 75th percentile of the
respective distribution was applied. Moreover, Table 8.3 highlights the most relevant
associations commented below.

A first macro-analysis was performed on the genetic side, by analyzing the global
importance of each chromosome. In particular, the percentage of SKAT genes above
the threshold normalized by the total number of SKAT genes in a given chromosome
was computed. Results showed that the chromosomes featuring the highest percentage
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of relevant genes were Chr18, Chr21 and ChrX for LC1, including the 40% (Chr18 and
Chr21) and 42.8% (ChrX) of relevant SKAT genes. Chr7, Chr17, Chr18 and Chr19 had the
44.4%, 45%, 40%, 42.8% and 40% respectively covered by the most relevant SKAT genes
in the LC2. Finally, for the LC5, the Chr4, Chr9, Chr12 and ChrX resulted in percentages
of 41.2, 42.8, 40.9, 42.8 of SKAT genes with the associated weights above the threshold.

More in depth of the relevant genes in each component, the top 5 genes showing the
highest importance for LC1 were the RIF1, ATP6V1G2, NFASC and FBXO403 (negative
weights, Chr2, Chr6, Chr1, Chr8 respectively), in anticorrelation with MFSD6L (Chr17).
The first four genes were also found to be anticorrelated with the most relevant cor-
tical features on the phenotype, namely the frontal and temporal regions described
in the previous paragraph. No weights higher than the 75th percentile threshold were
recorded for the Hetionet genes in LC1. However, among the SKAT genes belonging to
the four AD pathways, KCNA7 and KCNJ6 (negative weights, Chr19 and Chr21) were
correlated with RIF1, ATP6V1G2, NFASC and FBXO43, inheriting the related relation
with the phenotypic counterpart detailed above. On the other end, CYP11B1 (pathway
R-HSA-211859, Chr8) was correlated with MFSD6L, hence in anticorrelation with the
relevant LC1 cortical thickness features.

Moving to LC2, the top 5 most important genes were HNMT (negative weight,
Chr2), in anticorrelation with PHF14, RFWD3, MORN1 and TEP1 (Chr7, Chr16, Chr1,
Chr14) on the genetic side as well as anticorrelated with the subcortical volumes for
the imaging features. Moreover, such PHF14, RFWD3, MORN1 and TEP1 in opposi-
tion, showed a correlation with the thickness of cerebellum cortex and rostral middle
frontal gyrus among the others. The Hetionet genes relevant in LC2 were the BDNF and
CYP2D6 (positive weights, Chr11 and Chr22). These were further correlated with the
relevant subcortical regions in LC2. Analysing the genes belonging to the AD pathways,
CACNA1A, FMO2, EPHX1 and CYP2D6 (negative weights, pathways R-HSA-112316 and
R-HSA-211859, Chr19, Chr1, Chr1, Chr22) had associated weights over the threshold
in LC2. More in details, CACNA1A, FMO2 and EPHX1 were correlated with HNMT and
hence inheriting its relation with the phenotype. CYP2D6 was instead found in corre-
lation with such aforementioned imaging features, as well with the genes in the top
positions in terms of weights (PHF14, RFWD3, MORN1, and TEP1) and BDNF.

Finally, the top 5 genes for the LC5 were BCAS1, GLT6D1, TMPRSS15, COL6A3 (neg-
ative weights, Chr20, Chr9, Chr21, Chr2) and were anticorrelated CEP164 (Chr11). The
latter was correlated with entorhinal cortex, fusiform gyrus and temporal pole, while
the others were in correlation mainly with cingulate gyri and frontal pole. Among the
Hetionet genes found in the SKAT set, CHAT, TF and BDNF (positive weights, Chr10,
Chr3, Chr11) were found in correlation between each other in this LC, as well as with
entorhinal, fusiform gyrus and temporal pole in the phenotype. An anticorrelation
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LC1 LC2 LC5

Imaging Genetics Imaging Genetics Imaging Genetics

supramarginal gyrus MFSD6L hippocampus PHF14 entorhinal cortex BCAS1

middle temporal gyrus RIF1 putamen RFWD3 caudal anterior cingulate GLT6D1

inferior parietal gyrus ATP6V1G2 globus pallidus MORN1 rostral anterior cingulate TMPRSS15

superior frontal gyrus NFASC caudate TEP1 fusiform gyrus COL6A3

inferior temporal gyrus FBDXD43 accumbens HNMT frontal pole CEP164

precentral gyrus KCNA7 amygdala BDNF parahippocampal gyrus TF

rostral middle frontal gyrus KCNJ6 thalamus CACNA1A parsorbitalis CHAT

parsopercularis CYP11B1 cerebellum FMO2 temporal pole MAT1A

bankssts entorhinal cortex EPHX1 posterior cingulate CYP2C9

fusiform gyrus rostral middle frontal gyrus CYP2D6 parstriangularis SLC1A2

superior temporal gyrus temporal pole middle temporal gyrus KCNH5

CYP4F12

Table 8.3: Most relevant association found though the PLS model in each significant
component. The features are ordered in terms of associated weight, positive and nega-
tive weights are highlighted in red and blue respectively.

was found instead with cingulate gyri and frontal pole. Of note, LC5 was the compo-
nent in which most of genes belonging to ADNI-related pathways were found with the
highest weights, namely CHAT, MAT1A, CYP2C9, SLC1A2, KCNH5 and CYP4F12 (posi-
tive weights, pathways R-HSA-211999, R-HSA-211897, R-HSA-211859, R-HSA-112316,
Chr10 for the first three, Chr11, Chr14, Chr19). All of them, with the exception of
KCNH5, were correlated with TF, BDNF and CEP164, inheriting their association with
phenotype, as well as with cingulate gyri and frontal pole.

Transcriptomic analysis

The transcriptomic analysis revealed that part of the relevant genes discussed in the
previous Sections was also expressed in brain tissues. Figure 8.7, 8.8 and 8.9 represent
the normalized expression profiles for the top 5 genes, hetionet genes and genes be-
longing to AD pathways in each significant component, respectively. More in detail,
among the top 5 genes in LC1, RIF1, ATP6V1G2 and NFASC were generally expressed
in brain. The NFASC and RIF1 showed also a peculiar expression pattern, the former
featuring markedly higher levels in frontal lobe, cingulus and globus pallidus while the
latter showing higher expression in the hippocampus. All the top 5 genes of LC2 were
expressed in brain, with PHF14 and HNMT showing the highest values overall the brain
tissues. Of note, the MORN1 was found to be highly expressed in cerebellar cortex com-
pared to the other regions. Finally, BCAS1 and CEP164, prominent in LC5, showed a
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Chapter8/Figures/top5_brain_expr.png

Fig. 8.7: Gene expression profiles for the top five genes in each significant PLS LC. Ex-
pression values are normalized in the range [0,10] and grouped in the same regions as
T1-w parcellation for the available regions.

Chapter8/Figures/Hetionet_brain_expr.png

Fig. 8.8: Gene expression profiles for SKAT genes belonging to Hetionet. Expression
values are normalized in the range [0,10] and grouped in the same regions as T1-w par-
cellation for the available regions.
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Chapter8/Figures/AD_pathways_brain_expr.png

Fig. 8.9: Gene expression profiles for the genes belonging to the four AD pathways
in each significant PLS LC. Epression values are normalized in the range [0,10] and
grouped in the same regions as T1-w parcellation for the available regions.

brain-wide expression, while COL6A3 was found highly expressed especially in superior
and middle temporal gyri. Among the genes involved in the AD pathways and showing
an associated PLS weight above the threshold of the 75t h percentile, high expression
levels were shown by KCNJ6, relevant in LC1, the EPHX1 and CACNA1A (LC2), and the
SLC1A2, CYP4V2, KCNH5 (LC5). The latter in particular was expressed in entorhinal
gyrus as well as in thalamus and middle frontal gyrus. Finally, all the Hetionet genes
found above the threshold were found to be expressed in brain with the exception of
CYP2D6. A particularly high expression was found for TF (LC5).

8.4 Discussion

In this work, we addressed the twofold objective of modeling the associations between
brain imaging and genetic in patients on the AD continuum, highlighting the genes
and the brain regions leading them. This was achieved by modeling the joint covaria-
tion between the region-based cortical and subcortical atrophy, represented by 42 fea-
tures, and 408 gene variant scores, calculated for the significant genes derived from
the SKAT SNP set approach which allowed to exploit gene-based genetic information
while reducing the number of genetics features considered. Compared with previous
approaches, this study hence proposes a method to summarize the genetic informa-
tion, overcoming the limitations of GWAS analysis. This is achieved by exploiting SKAT
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as SNP set approach (considering only SNPs located in its exon regions) and then pro-
jecting back the results to a subject level by computing a subject and gene specific vari-
ant score representing how varied is the gene for the specific subject compared to a ref-
erence genome. In this way, gene variant score allows to characterize each significant
gene highlighted by SKAT with a single value which can be then used along with imag-
ing variables in multivariate IG models. To the best of our knowledge, the interaction
between gene variant scores and a complete set of brain structural imaging phenotypes
has not been yet deeply investigated in a cognitive impaired cohort, though can convey
more meaningful information compared to considering each single SNP or summary
risk scores at a time. Moreover we focused on ADNI-3 to investigate the potentialities of
this dataset, as this is still under-investigated when considering IG associations mainly
due to sample size limitations inherent to the available genetic data for this study co-
hort. Indeed we considered 297 individuals, divided into healthy CN and PAT (either
MCI or AD) and further split into discovery and validation cohorts (80% and 20%, re-
spectively). We finally proposed few validation techniques as a transcriptomic analysis
on the obtained candidate genes and a preliminary statistical analysis on the input fea-
ture distribution to better interpret and validate the obtained results.

Summary of main findings

In terms of imaging and genetic variables, while the phenotype features are here repre-
sented by well-known morphometric measures for regions that have been proven to be
involved at different levels in the neurodegeneration process typical of the AD contin-
uum [151, 152], the significant genes resulting from SKAT method revealed twelve genes
belonging to the Hetionet database. Hence, this method, though applied in a some-
how limited cohort where conventional GWAS failed, was able to retrieve well known
genes known for their association with AD. Moreover, four out of the significant path-
ways obtained through the enrichment analysis on the significant genes were as well
associated with AD in Hetionet. The joint multivariate modeling between imaging and
genetics relied on the PLS, an explainable model which allowed to derive significant
genotype-phenotype associations as verified by permutation testing and returning LCs
in which a clear and significant difference between the PAT and CN projections scores
was recorded. In the LCs encompassing the most significant differences between PAT
and CN, the relevant genotype-phenotype associations can be summarised as follows:
(i) The correlation between the EPHX1 variant score (Biological Oxidation pathway),
whose role in neurodegeneration is highly investigated and strongly supported by pre-
vious findings, and a decrease in subcortical volumes, typical of neurodegeneration.
This result was also confirmed by the expression analysis which highlighted the EPHX1
to be widely expressed in brain; (ii) The correlation between the BCAS1 variant score
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and a significant decrease in temporal lobe thickness (PAT < CN). This gene is indeed
involved in the process of myelination, particularly investigated in the dentate gyrus,
part of the temporal lobe; (iii) Multiple associations, for which further exploration is
needed, between the decrease in cortical thickness or volume of well known brain re-
gions involved in AD continuum with genes whose function is still questioned, though
preliminary related to neurodegeneration and which will be further detailed below.

IDPs and genes preliminary analyses

Our investigation started from a preliminary analysis of the input features, where we
tested whether significant between-group differences were present, considering each
feature separately from the others and relying on Mann Whitney non-parametric U-
test. On the phenotype, the test highlighted differences in thickness or volumes for well
established brain regions affected by AD. It is a matter of fact that, while regions along
the hippocampal pathway were found to be affected by atrophy in the early stages of
the disease, temporal, parietal and frontal neocortices emerge at later stages [151, 153].
Moreover a very recent systematic review on prospective biomarkers of AD [217] per-
formed meta-analyses based on random-effect models on 84 articles, concluding that
20 biomarkers were globally associated with AD progression. Among them, hippocam-
pal volume, entorhinal cortex volume and middle temporal lobe volume resulted as
promising prospective sMRI biomarkers for AD progression. All the aforementioned re-
gions resulted as significantly different between PAT and CN also in our cohort, with
reduced volumes in patients as expected and in line with the neurodegeneration atro-
phy pattern. Moreover, interestingly, such regions were also among the most relevant in
the association with genetics computed through our PLS model. On the genetic side, no
genes survived the FDR correction, probably due to the high number of comparisons
to be considered (408). However, when no corrections were applied, 60 genes resulted
significantly different between PAT and CN. Four of them, namely RIF1, PHF14, KCNH5
and HNMT were then found among the most relevant ones in the PLS LCs, hence hold-
ing an important role in the latent space definition. Of note, differences in both direc-
tions (PAT < CN and PAT > CN) were found for such gene variant scores, suggesting that
variants in some genes could lead to increased resistance to the disease however they
could also represent biases in considering all SNPs in the genes.

PLS model significance, validation and generalizability

Aiming at analysing the multivariate association between the complete set of genetic
and imaging features typical of IG studies, latent view methods such as CCA or PLS
have gained increased popularity. An extensive review on the models applied to this
aim can be found in [13, 188]. Focusing on PLS, which is a tried-and-true technique
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for multivariate analysis, this method has been used with promising results to estab-
lish a connection between brain atrophy and individual SNPs from AD patients in a
recent paper by Lorenzi and colleagues [42], revealing a strong link between the TRIB3
gene and the characteristic pattern of grey matter loss in such disease. They used the
entire set of SNPs for the genotype and sMRI characteristics as IDPs, demonstrating
the generalizability of their model in a separate cohort. The same strategy was used
by Casamitjiana and colleagues [161], who were able to stratify the early stages of AD
in the PLS latent space by utilizing T1-w features and the amounts of the biomarkers
t-tau, p-tau, and amyloid-beta in the cerebrospinal fluid. Finally, in a previous prelim-
inary work this approach allowed us to uncover significant associations between brain
atrophy and 14 ADNI-related PRSs, possibly revealing different association for different
AD subtypes [164]. Interestingly, thanks to its advantages in scalability and its ability to
facing collinearity, PLS is starting to be applied also in the imaging transcriptomics field
[159], opening new opportunities to investigate how the spatial patterns of gene expres-
sion relate to anatomical variations in brain structure and function in both health and
disease. When applying PLS model, a solution maximising the covariance between la-
tent space projection is always found. The validation of the obtained results hence be-
comes stringent. The strategy that we followed to deal with the low number of subjects
in our cohort was firstly the analysis of the singular values defining the LCs, for which
the permutation test was implemented. The rows of the X matrix, representing the phe-
notype, were randomly permuted in order to break any existing connection between
the IDPs and the gene variant scores. The singular values obtained from the permuted
inputs were then compared with the true ones and it was hence possible to assess that a
significant distance was recorded between the random singular values distribution and
the true ones. This confirmed the importance of the genotype-phenotype association
described by the LCs associated with such singular values. Secondly, the observation of
the latent space, where, separately for each LCs, the IDPs projection was plotted against
the gene variant score one, allowed to assess whether the solution provided by the PLS
effectively found a covariance between features. Finally, the generalization of the model
was investigated through the projection on the obtained latent space of set of subjects
set aside from the full cohort.

Role of the input feature definition

Besides the study of the significance and generalizability, one main limitation of these
approaches is that, in order to handle a large number of input features, which is always
the case when considering the full set of SNPs or the total number of voxels for imag-
ing, a large number of observations is needed, hence they are poorly applicable when
dealing with small cohorts. To overcome this limitation, on the imaging side, features
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computed over brain regions, rather than single voxels, were applied to check the as-
sociation with genetics. These metrics for on sMRI data, could represent Grey Matter
(GM) volumes for a set of regions of interests [218], or local gray matter density ex-
tracted through voxel based morphometry and then grouped by target regions [219]. A
complete overview on the commonly used IDPs in IG studies can be found in [13]. Re-
gion based volumes and thicknesses were indeed considered in the present study. On
the genetic side, features based on PRS [220, 221] or Polygenic Hazard Score (PHS) [222]
have been proposed, rather than using a series of individual SNPs. These are based on
the presence/absence of significant individual SNPs and allow to collapse all the ge-
netic information into a single score per subject. PRS is a statistical index to estimate a
subject’s genetic liability to a trait or disease involving the most significant SNPs accord-
ing to previous analyses, typically GWAS. Moreover, approaches based on genetic fea-
ture reduction have started to be investigated in IG studies. In particular, by relying on
a mass univariate approach, Hibar and colleagues [223], employed PCA to summarize
the SNPs for each gene and associated it with each brain voxel in T1-w MRI data from
the ADNI first phase. While no associations survived multiple comparison adjustment,
several genes known for their association with AD or brain functions were identified be-
fore correction. To further overcome the issues arising when the spatial information in
images or the effect of multiple genetic variants are not taken into account in the mod-
els, [224] developed a novel method based on the random field theory and multi-locus
least square kernel machines to evaluate the joint effect of multiple SNPs within each
gene on more than 30,000 brain voxels. The authors applied this approach to the same
ADNI cohort, demonstrating this was more sensitive compared with voxel-wise single-
locus approaches and identifying a number of genes as having significant associations
with volumetric changes, among which GRIN2B had a prominent role. Along the same
line, Le Floch et al. [202] demonstrated the importance of a pre-filtering step on individ-
ual SNPs before any multivariate analysis which can improve performance for both PLS
and CCA-based methods. In [225], Wang et al. proposed a sparse multivariate multiple
regression model, where SNPs were grouped by genes and the estimation of the regres-
sion coefficients was based on penalized least squares and grouping structure. More
recently, Greenlaw et al. [226] extended this approach by proposing a Bayesian group
sparse regression which takes into account the sparsity at the gene level. The above
methods were applied on the first ADNI cohorts (sMRI data) and using a preselection
of around 40 genes (and related SNPs) associated with AD in the literature.

An additional important approach in this framework is represented by the SNP set
analyses which allow to improve the detection power w.r.t. individual SNP analysis,
combining the effects of multiple variants together and identifying multi-locus mecha-
nisms for complex disease. SNP sets are defined by LD blocks, genes, pathways or other
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criteria, which may offer biological insights for interpreting results. Different strategies
have been proposed in this respect. Some methods select individual SNPs from differ-
ent genomic regions associated with a given disease from literature [227] or resulting
from independent analyses [220, 221]. Other methods select a single gene or SNP set
based on a priori knowledge and examine the joint effects of multiple SNPs within this
gene or set [228]. Finally, some methods exploit data-driven strategies to identify mul-
tiple SNP sets from the entire genome [197, 195, 196].

In IG, SNP set methods are used to select all SNPs belonging to significant SNP sets
and then create regression models for associations with IDPs using these individual
SNPs as a genetic feature. In this way, although the SNPs are selected according to a
SNP set approach, the association with IDPs is made at individual SNP level. To over-
come this limitation, global scores for each significant SNP set can be used as genetic
features in regression models to probe the association with IDPs at SNP set level. In this
work we firstly extracted genes from the selected ADNI-3 cohort using SKAT, then we
introduced a gene variant score that gives for each subject and each SKAT significant
gene a measure of the extent to which all the SNPs in a given gene are mutated. Such
gene variant score allows to reduce the number of variables in the multivariate model
switching to the gene-wise level approach which, starting from a set of SKAT genes,
takes into account the absence or presence of all SNPs in the respective gene. The gene
variant score computed on the 408 significant SKAT genes were considered as genetic
input for the PLS model.

Significant latent components

More in detail of the proposed PLS model, results highlighted that three PLS compo-
nents, namely LC1, LC2 and LC5, defined a latent space encompassing a significant
separation between PAT and CN for both genotype and phenotype. Such significance
was confirmed by the projection on the obtained latent space of the unseen validation
cohort, holding the same class distribution of the discovery set. In fact, the separation
between PAT and CN remained significant also for the validation set on either the phe-
notype or the genotype, the latter being particularly evident (p< 1e−02) in the LC2. The
global model significance was finally confirmed through the permutation test attain-
ing a p-value of 0.001. The great advantage of PLS model relies on its straightforward
explainability. In fact, by analysing the fitted feature weights it allows to retrieve the
features driving the association between imaging and genetic features, separately for
each component. A twofold result can hence be extracted: i) The intra-genotype and
intra-phenotype relationships, that is observing how the different features belonging
to the same data source are related to each other; ii) The analysis of the association
between genotype and phenotype, highlighting those features that have a greater influ-
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ence on the latent space derivation. Framing these concepts on our model allowed to
explore the association between brain morphometric measures, and the variant score
of genes selected from SKAT model. Multiple association patterns existed between the
input features in the latent space, however particular attention will be given to the an-
ticorrelations between IDPs and gene variant scores, which were indeed predominant
in the LCs. The statistical analysis on the input features was instrumental to further
elucidate the link found between genotype and phenotype.

Relevant IDPs-gene interactions in the first latent component

Analysing each component, in the LC1 the major role was played by the anticor-
relation between the cortical thickness features (in particular supramarginal gyrus,
middle/inferior/superior temporal gyri and rostral middle, superior frontal gyri) and
the variant scores associated to genes RIF1, ATP6V1G2, NFASC, FBXO43, KCNA7 and
KCNJ6. RIF1 resulted as significantly higher in PAT compared to CN, and this trend is
extended to all its correlated genes in this LC. Interestingly, RIF1, ATP6V1G2, NFASC
and KCNJ6 were generally expressed in brain, as a result of our transcriptomic analy-
sis, with NFASC being particularly expressed in frontal lobe among the other regions
and KCNJ6 in the hippocampus. NFASC gene is highly investigated in association with
AD, transcripts were shown to be involved in synapse formation and stabilization, and
were found as elevated in the subjects with MCI converting to AD compared with stable
MCI as well as significantly correlated with p-tau [229]. Moreover, Duits et al. concluded
that, together with other peptides, NFASC transcripts could have a role in early events in
the AD pathophysiological cascade. The other mentioned genes appeared also to have a
role in neurodegeneration, even if their involvement in brain is still under investigation.
Of interest, the RIF1 was found to protect telomeres and chromosome breaks, which is
in turn a process involved in brain ageing [230]. Concerning ATP6V1G2, its main role
appeared to be related to neurons energy metabolism, in particular lysosome acidifi-
cation. Noori et al. [231], found ATP6V1G2 was among the genes being downregulated
in neurodegenerative diseases. This downregulation may result in short ATP supply in
neurons due to the failure of energy metabolism, which is however highly needed for
protein clearance mechanisms. Finally, KCNA7 and KCNJ6 are part of the Neuronal Sys-
tem pathway (R-HSA-112316) and belong to the voltage-gated potassium channel gene
family. In particular, KCNJ6 is associated with Down’s syndrome [232], which has a well-
established increased risk for AD [233]. No direct interaction between KCNA7 and AD
was found, however potassium channel are becoming a target for the treatment of neu-
rological disorders and autoimmune diseases [234].
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Relevant IDPs-gene interactions in the second latent component

Moving to LC2, this showed the most significant differences between the latent projec-
tions of PAT and CN subjects. It was mainly defined by an anticorrelation between sub-
cortical volumes, among which hippocampus, putamen end pallidum had the most rel-
evant weights, and HNMT, CACNA1A, FMO2 and EPHX1 gene variant scores. Of inter-
est, HNMT was also among the genes showing a significant increase in the variant score
for PAT compared to CN (Mann Whitney U-test, uncorrected). In literature, it was found
to be correlated with intellectual disability [235] in a cohort of patients affected by non-
syndromic autosomal recessive intellectual disability. CACNA1A, FMO2 and EPHX1 in-
stead belonged to the four ADNI- related pathways highlighted in Section 8.3.1. More
in detail, CACNA1A (Neuronal System pathway, R-HSA-112316) was demonstrated to
be linked with familial AD in a cohort of patients presenting cerebellar damage with
amyloid plaques [236]. EPHX1 (Biological Oxidation pathway, R-HSA-211859)has been
highly investigated in literature so far. Transcripts have been detected in various areas
of the brain such as cerebellum, frontal, occipital, pons, red nucleus, and substantia
nigra regions. Indeed, EPHX1 was recorded as highly expressed brain-wide by our tran-
scriptomic analysis and its role in pathogenesis of neurodegeneration was supported
by previous findings demonstrating a differential expression in patients with AD [237].
This finding well relates with our results according to which the EPHX1 variant score
was anticorrelated subcortical volumes, which also showed a significant dicrease in PAT
compared to CN, while it was correlated with cerebellar thickness modulations. Finally,
FMO2 belongs to the Biological Oxidation pathway (R-HSA-211859), however its direct
role in neurodegeneration has not been yet demonstrated.

Relevant IDPs-gene interactions in the fifth latent component

Finally, LC5 was mainly defined by the anticorrelation of BCAS1, GLT6D1, TMPRSS15,
COL6A3 and KCNH5 with enthorinal cortex, fusiform gyrus and temporal pole thick-
nesses. Of note, KCNH5 showed a significant increase in its variant score for PAT com-
pared to CN (Mann Whitney U-test, uncorrected), hence strengthtening the assump-
tion that the increase in such gene variant score, as well as the one of its correlated
genes in LC5, is linked to a decrease in the thickness values of the mentioned brain re-
gions. More in detail of the genes, BCAS1 is involved in the process of myelination. In
fact, an explorative proteomic study of the dentate terminal zone showed that, in that
region, its transcripts were among the top 10 decreased proteins showing the largest
changes in AD [238]. Of interest, the dentate gyrus is part of the temporal lobe, which
is indeed among the most important regions for this LC. Moreover, as a result of our
transcriptomic analysis, BCAS1 also showed a brain-wide high expression. GLT6D1 was
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found to be associated with periodontitis. Despite its apparent distance from AD, re-
cent experimental studies indicated that a periodontitis-causing bacterium might be a
causal factor for AD since it was identified in the brain of AD patients, while in mice it
provoked brain colonization and increased production of amyloid-β [239]. However, a
recent bidirectional Mendelian randomization study to examine the potential causal re-
lationship between chronic periodontitis and AD did not result in significant evidence
[240]. Further studies are hence needed to deeply investigate such association. Con-
cerning TMPRSS15, in some early-onset patients with AD induced by APP duplication
(due to down syndrome), the duplicated region also contains TMPRSS15, which is hy-
pothesized to participate in neurogenesis and/or APP metabolism [241], as detailed for
gene KCNJ6, relevant in LC1. Interestingly, COL6A3 was found expressed in particular in
superior temporal gyrus, which is among the significant brain regions whose thickness
was decreased in PAT compared to CN. In literature, this gene has been associated with
the Collagen VI protein whose lack was demonstrated to have a role in neurodegen-
eration [242]. Moreover, variants in this gene were found in patients affected by reces-
sive isolated dystonia, a human brain disorder [243]. Finally, KCNH5 (Neuronal System
pathway, R-HSA-112316) was found to be particularly expressed in entorhinal cortex,
which in turn is among the most relevant regions in LC5. This gene encodes a member
of voltage-gated potassium channels. Members of this family have diverse functions,
including regulating neurotransmitter. It also appeared to have a role in neurodegener-
ation [244] even if an extensive analysis is not yet present in literature.

Overall, through the PLS model we obtained a latent representation of the input fea-
tures dominated by significant genotype-phenotype associations. Most of the variant
scores associated to the genes standing in the highest positions in the LCs weights were
correlated with what is well known for the phenotype in AD and moreover they were
found to be related to neurodegeneration as well as expressed in brain. The most rele-
vant findings were the correlation between the EPHX1 variant score and a decrease in
subcortical volumes and the correlation between the BCAS1 variant score and a signif-
icant decrease in temporal lobe thickness, as discussed in the previous paragraphs. Be-
sides these well assessed associations, with the PLS model we retrieved multiple addi-
tional genotype-phenotype associations which are still underinvestigated in literature.
Among the others the NFASC and the ATP6V1G2, were among the most relevant gene
variant scores for the LC1. They are highly studied in AD but still not related with brain
modulations. Our model, instead, found a significant association between the increase
of the associated variant score and a decrease in temporal and frontal gyri cortical thick-
nesses which deserves further analysis. Moreover, in the LC5 we found multiple genes,
namely GLT6D1, TMPRSS15 and COL6A3, whose involvement in AD has still not been
fully proven but which resulted as significantly associated with decreased morphome-
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tric values in well known AD affected regions as the entorhinal cortex, fusiform gyrus
and temporal lobe. Therefore, in summary, the PLS model allowed on one side to re-
trieve well assessed genotype-phenotype association for which their role in the disease
was already established in the current literature, and on the other side to unveil highly
relevant associations between still not AD-related genes and decreased morphometric
values in brain regions with a prominent role in AD, opening the way to further explo-
ration directions.

Limitations and future directions

We have to acknowledge some limitations in the current study. First of all we recog-
nise the small sample size of our cohort, especially concerning patients data. This was
due to the still limited number of subjects available in ADNI-3 phase (ongoing). How-
ever, this did not impact on the significance of the results thanks to the adoption of the
gene variant scores, even if, at the same time did not allow to use different validation
techniques such as bootstrap analysis. Meanwhile ADNI-3 cohort includes the most
complete set of imaging acquisition in ADNI database hence it will allow the inclusion
of different IDPs providing different views on the brain modulations. This approach
would be of high interest being the AD an intrinsically multiview disease, however the
present study based on T1-w MRI could be considered as benchmark and strting point
for future analysis. Diffusion MRI and functional MRI derived IDPs, such as tract based
measures or connectivity features could be included in order to investigate how both
the microstructure and function are affected by AD continuum and contemporary as-
sociated with gene variants. The gene variant score introduced in this work is com-
puted on all SNPs located in the same gene with each SNP being equally weighted. It
could be interesting to modify the gene variant score in order to weigh the SNPs dif-
ferently based, for example, on the associations of individual SNPs with the disease or
imaging phenotype (i.e. p-value from GWAS). In this direction more sophisticated, still
explainable or interpretable models could be introduced in order to account for the
multi-channel information which can’t be successfully addressed through the classical
definition of PLS model which allows only the inclusion of two channels, while keeping
a clear interpretation of the results, in the input matrices X and Y .

8.5 Conclusions

The presented PLS model confirms that there exists a joint variation between grey mat-
ter atrophy and gene variant scores in AD. Such associations described a latent repre-
sentation of the input features dominated by significant genotype-phenotype associ-
ations validated also through the transcriptomic analysis. This work hence proposed
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new ways to investigate the genotype phenotype interactions in a restricted study co-
hort highlighting that simple yet explainable models can still allow uncovering associ-
ations that are descriptive of the underlying mechanisms of neurodegeneration in AD
continuum.

The work presented in this Chapter is in preparation for journal submission [245].

8.6 Supplementary Figures

Chapter8/Figures/genes_table.png

Fig. 8.10: List of SKAT genes names organized by Chromosome and relative starting
position.
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An interpretability framework for a
multi-channel variational autoencoder

In this work we proposed an interpretability framework for the Multi-channel Varia-
tional Autoencoder (MCVAE) for analyzing the genetic underpinnings of Grey Matter
(GM) and White Matter (WM) modulations in the Alzheimer’s Disease (AD) contin-
uum.Three Channels were considered as the input. Cortical thicknesses and subcorti-
cal volumes derived from T1-weighted (T1-w) MRI represented the structural Magnetic
Resonance Imaging (sMRI) channel, WM features derived from diffusion Magnetic Res-
onance Imaging (dMRI) and extracted through a tract-based spatial statistics analysis
on four diffusion tensor based indices represented instead the dMRI channel while the
gene variant score calculated for all the significant genes resulting from Sequence Kernel
Association Test (SKAT) filtering as presented in Chapter 8 was considered for the genetic
channel. We put forth a metric to compare two alternative MCVAEs that account for a dif-
ferent amount of Latent Variable (LV)s. Finally, we suggested a modification of the MC-
VAE to apply post-hoc interpretability approaches. Our results showed a common latent
space well aligned across different channels and displayed a clustering across the vari-
ous stages of AD despite the poor reconstruction ability. We were able to retrieve the most
pertinent features for the decoding of the various channels using the SHapley Additive
exPlanations (SHAP) application were extremely comparable for each distinct decoded
feature.

This Chapter provides new approaches for using eXplainable Artificial Intelligence
(XAI) methods in a generative framework to examine genotype-phenotype interactions,
highlighting connections between GM, WM and genetics that are descriptive of the neu-
rodegeneration mechanisms in the AD continuum.
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9.1 Introduction

There is still much debate about the pathophysiology underpinning brain modulations
in AD. For example, while sMRI derived Imaging Derived Phenotype (IDP)s are well as-
sessed biomarkers for AD detection [151] it is not clear whether white matter alterations
are related to, or independent of, gray matter degeneration in AD. For this reason, the
role of microstructure was recently being considered in AD studies [169, 14]. Hence,
the joint analysis of biomedical data is fundamental for a deep understanding of the
relationship between biomarkers.

Moreover, the link between brain IDPs and genetics is an hot topic to such an ex-
tent that an entire research field, IG, focuses on this aim as already shown in Chapters
6, 7 and 8. On the genetic side, numerous methodologies have been employed to ex-
tract genotype traits linked with AD, with the majority of studies still concentrating on
the detection of Single Nucleotide Polymorphism (SNP)s. However, recent strategies
moved forward grouping SNPs into SNP sets [195, 196, 197]. A natural grouping tech-
nique consists of taking all SNPs that are found within a gene. The SKAT [195], a logistic
kernel-machine regression model for testing the association between SNP sets and dis-
ease, is one of the most popular methods for the SNP set approach. SKAT has been
utilized in several AD studies. In [198], for instance, the scientists discovered a gene (as
an SNP set) around APOE that is highly connected with the condition.

For the genotype-phenotype association the most straightforward method is the
massive univariate correlation analysis [246]. Unfortunately, the modeling capacity of
this method is very limited, and it is prone to false positives when the data dimension
is large. To overcome the limitations of mass-univariate analysis, more advanced latent
space based methods were proposed aiming at reaching a low-dimensional space rep-
resentation where desired statistical features, such as maximum correlation (Canonical
Correlation Analysis (CCA)) or maximum covariance (Partial Least Squares (PLS)) are
enforced. However, because they are not generative, these approaches provide limited
information regarding how this latent representation is reflected in the data as they do
not explicitly provide a mean to sample observations when the distribution of latent
variables and parameters is known.

To this aim the key work on the Variational AutoEncoder (VAE) [121], proposes a
powerful generative model for high-dimensional single-modality data. VAEs are models
that couple a recognition function, or encoder, to infer a lower dimensional representa-
tion of the data, with a generative function, or decoder, which transforms the latent rep-
resentation back to the original observation space. The VAE is a Bayesian model where
the LVs are inferred by estimating the associated posterior distributions. Inference is
efficiently performed through VI which is a well-known method for computing poste-
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rior distributions when conventional integrations are infeasible. Moreover, the poste-
rior moments can be parameterized through neural networks. For this reason, VAEs are
adaptable and capable of accounting for any type of data. Indeed, by combining various
data sources, the combined analysis of heterogeneous channels would be also possible
in this environment. However, representing concatenated multi-channel data with a
VAE may raise interpretability challenges because it is difficult to isolate the contribu-
tion of a single channel from the description of the latent representation. In addition,
at the time of testing, the model can often only be applied to data containing complete
channel information.

To address this issue, Antelmi and colleagues [247] proposed the multichannel VAE
proposed which generalizes the single-channel VAE by assuming that, in a multi-channel
scenario, the latent representation associated with each channel must match a shared
target distribution. This was achieved by imposing a constraint on the latent represen-
tations, where each latent representation is required to correspond to a shared target
prior. This technique was successfully adopted in multiple scenarios, the most out-
standing was the very recent work of Diaz Pinto and colleagues in which they achieved
the task of predicting myocardial infarction through retinal scans and minimal personal
information [248]. In relation to AD an extension of MCVAE was recently exploited in
[249] aiming to the modeling of the spatio-temporal dynamics governing the joint evo-
lution of longitudinal imaging and clinical biomarkers along the history of the disease
in order to simulate the effect of intervention time and drug dosage on the biomarkers’
progression.

The main drawback of these models is the lack of interpretability due to their in-
creased complexity. In detail, when considering a linear encoder and decoder architec-
tures it would possible to check the relationship between each input feature by analyz-
ing the weights associated to each LV, however, it would be impossible to analyze which
specific feature contributed the most to the reconstruction or generation of another
one. This step could be achieved by relying on interpretability methods, as presented in
Chapter 2 and Chapter 3 and would allow shedding light on a different level of features
associations.

The aim of this work is then to propose an extended interpretability framework for
the MCVAE in which perturbation based methods, such as SHAP, are employed to un-
cover the specific relationship between features. The clinical outcome is data fusion for
IG in AD continuum including genetics and different brain imaging techniques such as
the diffusion MRI other than the common structural MRI as different channels in the
MCVAE model.
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9.2 Materials and methods

9.2.1 Study Cohort

Data used in this study were derived from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu).

Phenotype and genotype were selected in particular from the ongoing ADNI3 dataset,
and were the same considered for the work presented in Chapter 8. Summary sociode-
mographic, clinical, and genetic information is available in Table 8.1. Participants selec-
tion was carried on April 2022 and was based on the availability of MRI and genetic data
and ethnicity, all participants had European ancestry. The final cohort comprehended
297 subjects divided into 220 CN and 79 PAT, 19 of which were AD while the remaining
were MCI subjects.

3D T1-w MRI and dMRI volumes were considered for IDPs extraction (3D T1-w:
sagittal accelerated MPRAGE, Repetition Time (TR)/Echo Time (TE) = shortest, Inver-
sion Time (TI)=900 ms, flip angle = 9o, Field of View (FOV) = 256×256mm2, spatial res-
olution = 1×1×1mm3, slices = 176-211; dMRI:(TR/TE = 56/7200, 2mm isotropic voxel,
b=1000s/mm2).

9.2.2 Phenotype and Genotype processing

The T1-w volumes were minimally preprocessed for bias-field correction (fsl_anat tool
[204]). Subsequently, 84 anatomical Region Of Interest (ROI)s were extracted using
FreeSurfer version 7.0 [205]. The average thickness and volume were considered for
cortical and subcortical ROIs, respectively. The subcortical volumes were further nor-
malized by the estimated total intracranial volume of the respective subject. The ROIs
were averaged over hemispheres resulting in 42 features to be used in the subsequent
analyses.

The dMRI volumes were preprocessed using FSL software (version 6.0, https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/) applying an initial step of brain extraction (bet
tool) followed by Eddy currents correction (eddy tool). The data was then denoised us-
ing Local PCA via empirical thresholds relying on Python dipy library. Subsequently
non linear registration to the MNI space was applied in order to correct for Echo Pla-
nar Imaging (EPI) induced distortions (ANTs toolbox [250]). The Diffusion Tensor Imag-
ing (DTI) [84] model was fitted to the corrected images and Fractional Anisotropy (FA),
Mean Diffusivity (MD) indices were extracted. The tract-based spatial statistics (TBSS)
pipeline from FSL was applied to FA to derive a group WM skeleton (FA threshold of
0.2) to which all subjects were linearly registered. The same transformations were sub-
sequently applied to all the other indices in order to obtain skeletonized values for each

adni.loni.usc.edu
https://fsl. fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl. fmrib.ox.ac.uk/fsl/fslwiki/
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subject. For all the subjects, the average value of each index was extracted from 48 ROIs
derived from the JHU-DTI atlas available in FSL.

Genetic processing was conducted as described in Chapter 8, Section 8.2.3. In brief,
SKAT [195] model was used to filter out genes relevant for the differentiation between
AD patients at various stages and healthy subjects. Then a gene variant score was cal-
culated for each subject and each gene in order to be associated with IDPs.

9.2.3 Multi channel Variational Autoencoder

MCVAEs are the multi channel extension of the Bayesian generative models VAEs. In
what follows, a brief overview of VAEs will be firstly given, being instrumental to the
subsequent MCVAEs description. Finally, details about the experimental setting of this
work will be presented.

Variational Autoencoder

VAEs are bayesian generative models composed of two main parts: i) the encoder, which
is used to obtain a lower dimension representation of the input data, ii) The decoder,
which decodes the latent representation to obtain back data in the original, higher-
dimension space [251]. VAEs are Bayesian model in the sense that they infer latent vari-
ables by estimating the associated posterior distribution.

Let X = {x(i)}d
i=1 be and observation set consisting of d i.i.d. samples of a continuous

or discrete random variable x. The following generative random process is assumed for
the observation set:

z ∼ p(z)

x ∼ pθ(x | z)
(9.1)

where p(z) is the prior distribution of the latent and unobserved random variable and
pθ(x | z) is the likelihood distribution for the observations conditioned on the latent
variables. It is assumed that the likelihood functions of these two families are differen-
tiable w.r.t. θ, z. In this context, solving the inference problem enables the identification
of the shared latent space that generates the observed data. The inference problem is
solved by determining the posterior pθ(z | x), which is not always analytically quantifi-
able. Variational inference can be employed as presented in [247] by introducing the
distribution qφ(z | x), to approximate the true posterior distribution. The distribution
qφ(z | x) then encodes a data point x(i ) the latent space distribution of z, while pθ(z | x, )
decodes the latent representation z over a possible distribution x values.
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Multi channel extension

MCVAEs are the multi channel extension of VAEs presented in [247]. Let now be x =
x1, ..., xC an observation set over C channels, which could represent the number of
modalities of the data, and xc is a d−dimensional vector, representing the measure-
ments for a specific channel. In the multi channel framework we assume that z is the
l−dimensional latent variable commonly shared by xc . The following generative pro-
cess hence holds for the observation set

z ∼ p(z)

xc ∼ pθc (xc | z),c ∈ 1. . .C
(9.2)

where p(z) is the prior distribution of the latent space and pθc (xc | z) is the likelihood
distribution for the observations conditioned on the latent variables z. As above for
VAEs, the solution of the inference problem is given by deriving the posterior pθc (z | xc ).
Of note, every likelihood distribution belongs to the same family P, but has a different
set of parameters θc. In a similar manner, as detailed for the VAE, due to the true poste-
rior intractability, every channel’s likelihood distribution is approximated by a function
(qφc (z | xc), belonging to the same family Q, parameterized by φc.

Every channel hence, brings some information about the latent variable distribu-
tion, however providing a different approximation. In this framework, Antelmi and col-
leagues [247] proposed to impose a constraint enforcing each qφc (z | xc) to be as close
as possible to the target posterior distribution, in terms of the Kullback-Leibler (KL)
divergence. This constraint was specified as

argmin
q∈Q

Ec
[
DK L(qφc (z | xc) || pθ(z | x1, ..., xC))

]
(9.3)

where Ec represents the average over channels computed empirically. Practically, solv-
ing the objective in the above equation allows minimizing the discrepancy between the
variational approximations and the target posterior. Optimizing equation 9.3 equals to
optimizing the following lower bound:

L(θ,φ, x) = Ec
[
Lc −DKL(qφc(z | xc) || pθ(z))

]
(9.4)

where Lc = Eq(z | xc)
[∑C

i=1 log pθi(x i | z)
]

is the expected log-likelihood of decoding
each channel from the latent representation of the channel xc only. Moreover, the Lc

term imposes to each channel c to reconstruct (decode) itself alongside every other
channel allowing to reconstruct a missing channel xmiss from the available ones {xav}.
More details about the derivation and optimization of the lower bound can be found in
[247].
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Antelmi et al. [247] highlighted that using a sparse version of the mcVAE ensures the
evidence lower bound generally reaches the maximum value at convergence when the
number of latent dimensions coincides with the true one used to generate the data.
Consequently, the sparse version of the MCVAE was taken into account in this work.

Experimental Settings

In this work a three channels MCVAE was applied considering 42 sMRI derived fea-
tures representing cortical thicnkesses and subcortical volumes as sMRI channel, 54
features representing tract based average values for FA and MD as dMRI channel and
408 gene mutation scores as the genetic channel. A gaussian distribution was assumed
for both q and p, hence the encoder aimed at finding the parameters φc representing
the mean and variance for each qc . A single layer architecture (linear) was employed af-
ter multiple empirical tests by varying the number of layers and introducing non linar-
ities, as well as dropout layers. The single layer linear architecture for the encoder and
the decoder was also the best performing in the experimental tests on a similar set-
ting as the one we propose, in [247]. Two models were compared in order to include
a different number of LVs. 20 LVs were firstly selected for the sparse MCVAE, after the
dropout probability analysis 3 LVs were then chosen for the second model. We will re-
fer to such models as 3LVs-sparse and 20LVs-sparse. For each model, validation was
performed following a 5-fold Cross Validation (CV) strategy. The 297 subjects used for
training/validation were randomly split in five groups, keeping the same class ratio in
each fold, resulting in folds of 60 subjects each (except one consisting of 59 subjects).
The experiments were repeated five times and, for each run, four folds were used for
training and the remaining one for validation. Performance was assessed through the
computation of Mean Square Error (MSE) and R2 averaged over each decoded feature
separately for each channel. Moreover, for the best reconstructed channel, the feature
specific MSE was also derived.

Comparisons across models were performed by analyzing the encoding matrix of
each fold for each MCVAE. This is particularly interesting for sparse models since each
LV has an associated dropout probability, and through this metric it is possible to con-
firm whether the LVs holding the least dropout probability in the 20LV-sparse are sim-
ilar to the ones obtained with the 3LV-sparse In fact, the last layer for each encoding is
a matrix in which each row vector represents the encoding weight defining each LV. A
measure of similarity between two vectors representing LVs across different models can
be hence calculated by computing the cosine similarity as

cosθ = |r⃗i | · |r⃗ j |
∥r⃗i∥

∥∥r⃗ j
∥∥ (9.5)



140 9 An interpretability framework for a multi-channel variational autoencoder

where ri and r j represent the i -th and j -th encoding row of two different models.
The resulting similarity ranges from −1 meaning exactly opposite, to 1 meaning exactly
the same, with 0 indicating orthogonality or decorrelation, while in-between values in-
dicate intermediate similarity or dissimilarity.

For the subsequent analysis the best split in terms of both reconstruction perfor-
mance and cosine similarity was considered.

9.2.4 Interpretability analyses

Among all the available XAI methods, in order to extract the importance of a set of tabu-
lar features, the SHAP model [252] was chosen. SHAP is starting to be widely applied be-
ing a model-agnostic explanation method, hence applicable to any kind of Deep Learn-
ing (DL) model. It belongs to the class of additive feature attribution methods which
builds on the game theory concept of Shapley values. In a generative task, it assigns a
quantitative value to each feature depending on its contribution to a specific feature re-
construction. The SHAP method represents Shapley values as a linear model of feature
coalitions. It requires retraining the model on all feature subsets S ⊆ F , where F is the set
of all input features. It assigns an importance value to each input feature that represents
the effect on the selected output feature reconstruction given by the inclusion of that
input feature. To do so, a model fS∪{i } is trained with that feature present, and another
model fS is trained with the feature withheld. Reconstructions from the two models are
compared on the current input, and this is performed for all possible subsets. Shapley
values are then computed as the weighted average of all possible differences and used
as feature attributions. SHAP has a solid theoretical foundation, making this approach
quite robust, and it allows to derive contrastive explanations comparing the individ-
ual prediction vs the average one. Moreover, SHAP values present properties of local
accuracy, missingness, and consistency, which are not simultaneously found in other
methods. An important drawback of SHAP is that it provides additive contributions of
the different variables. However, if the model is not additive, the Shapley values might
be misleading.

The SHAP method was applied to the best model obtained during CV in order to
uncover which input features contributed the most to the generation of the best re-
constructed output features. To this aim a subclass of VAE was created, with the only
difference being the forward method returning only the mean value of the decoded dis-
tribution, instead of a dictionary of values, as in the original model. In this way, SHAP
values are computed for an input feature vector (such as genetic), according to the con-
tribution of each component in the reconstruction of a desired output feature vector
(such as sMRI), with the decoded value being the mean of the decoded distribution.
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3LV-sparse

sMRI dMRI Genetics

from MSE R2 from MSE R2 from MSE R2

dMRI 0.923(0.189) -0.002(0.106) sMRI 0.812(0.246) -0.032(0.119) dMRI 1.009(0.154) -0.028(0.044)

Genetics 1.182(0.229) -0.299(0.186) Genetics 1.253(0.289) -0.655(0.303) sMRI 1.008(0.154) -0.027(0.044)

Genetics+dMRI 0.955(0.191) -0.036(0.086) Genetics+sMRI 0.882(0.252) -0.129(0.12) sMRI+dMRI 1.006(0.154) -0.026(0.042)

20LV-sparse

sMRI dMRI Genetics

from MSE R2 from MSE R2 from MSE R2

dMRI 0.886(0.182) 0.039(0.087) sMRI 0.785(0.243) 0.007(0.102) dMRI 1.009(0.154) -0.028(0.043)

Genetics 1.026(0.206) -0.117(0.119) Genetics 1.112(0.28) -0.457(0.242) sMRI 1.008(0.153) -0.027(0.043)

Genetics+dMRI 0.902(0.188) 0.024(0.075) Genetics+sMRI 0.843(0.251) -0.074(0.105) sMRI+dMRI 1.006(0.153) -0.026(0.041)

Table 9.1: Reconstruction performance of the 3LV-sparse and 20LV-sparse models
(rows) in terms of MSE and R2 [mean (SD)]

9.3 Results

The performance for the models 3LV-sparse and 20LV-sparse averaged over the 5 folds
of CV procedure, and over the features of each channel, are reported in Table 9.1. The
performance is expressed in terms of MSE and R2 of the reconstruction and its standard
deviation. The reconstruction of each channel is presented considering the other two
channels both separately and together as input. In order to better understand the ob-
tained results in terms of MSE, the feature range for the standardized input feature was
[-5.355, 4.847] for sMRI, [-5.611, 4.237] for dMRI, and [-2.989, 4.658] for genetics. There
is not an evident difference between the two models 3LV-sparse and 20LV-sparse, in-
deed the reconstruction performance is very similar with imaging channels being bet-
ter reconstructed one from the other than from genetics. The MSE of the reconstruction
of sMRI from dMRI was 0.923±0.182 and 0.886±0.87 respectively for the 3LV-sparse and
the 20LV-sparse. Adding the genetics to the reconstruction input sloped the reconstruc-
tion MSE to 0.955±0.191 for 3LV-sparse and 0.902±0.188 for the 20LV-sparse. Consid-
ering solely the genetic as input yields higher MSE values. Moving to the reconstruction
of dMRI features, considering as input the sMRI allows to obtain an average MSE of
0.812±0.246 and 0.785±0.243 respectively for the 3LV-sparse and 20LV-sparse. Also in
this case, adding the genetics as reconstruction input resulted in an increase of the MSE
with the 3LV-sparse reaching a value of 0.822±252 and the 20LV-sparse of 0.843±0.251.
As it was for the sMRI feature reconstruction, also for the dMRI, reconstructing only
from genetic features yielded the worst performance. Finally, the reconstruction of ge-
netic features was not successfully achieved either considering sMRI or dMRI as input
as it is possible to verify in Table 9.1.
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Chapter9/Figures/LV_comparison.png

Fig. 9.1: Dropout probabilities for each LV of the 3LV-sparse and 20LV-sparse models
(rows). Colors indicate the mapping between 3LV-sparse LVs and 20LV-sparse extracted
through cosine similarity.

9.3.1 Model comparison

We recall that this and the following analyses were performed considering the best
model obtained through the 5-fold CV process. During the training phase of sparse
models, a dropout probability is computed and associated with each LV. This informa-
tion is essential in defining the optimal number of LVs, which are deemed as necessary
when their dropout probability is lower than an empirical threshold. This threshold was
set as 0.5, after a few empirical tests as suggested also in [247]. Of interest, as shown in
Figure 9.1 the model 20LV-sparse has one LVs under the threshold, namely the LV 11
which is mapped to the LV 1 of the model 3LV-sparse. More in detail, the cosine dis-
tance between those LVs was equal to −0.79. The other two LVs of the model 3LV-sparse
did not map to any of the LVs of the 20LV sparse, however considering an MCVAE with
only one LV would have led to poorer feature reconstruction performance, hence the
3LVs were chosen for the reference MCVAE. This result was consistent among the five
different splits of the 5folds-CV procedure.

9.3.2 Latent space

Figure 9.2 shows the latent space generated by the first and the second LV separately
for each input channel (columns) for both the training and the validation set (rows).
The LVs were chosen based on the associated dropout probability, choosing the most
important ones. In general, the three latent spaces were well aligned, with the dMRI
and the genetic ones being more similar compared with the sMRI one. For the training
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Chapter9/Figures/Latent_space.png

Fig. 9.2: Latent representation of the training and validation sets (rows) considering
the two most significant LVs, separately for each input channel, namely dMRI, sMRI
and genetics (columns, AD: blue, CN: orange, MCI: green)

set, a clear class clustering was present and coherent among the input channels, with
the AD subjects being located in the right-down part, and the MCI being located in the
center and overlapped with CN mostly located in the up-left region. This clustering was
not clearly present for the testing set.

9.3.3 Best reconstructed features

Figure 9.3 shows the scatter plots of the ten best decoded sMRI features(above) and
dMRI features (below) for the validation set, starting separately from the genetic and
dMRI channels for sMRI reconstruction and from genetics and sMRI for dMRI fea-
tures. The reconstructed features are plotted against the respective ground truth. The
acronym tables for dMRI and sMRI features can be found in Section 9.6.

Table 9.2 quantifies the reconstruction performance of such features.
From the scattering plots it is evident a better reconstruction of dMRI features, com-

pared with sMRI ones, that was confirmed by the respective MSE values. In particular,
focusing on dMRI reconstruction, the best reconstructed features were the MD-derived
either considering genetics or sMRI as input. Considering the decoding performance
of genetic features, the best reconstructed dMRI metric was the pontine crossing tract
(PCT) with an MSE of 0.594, followed by some tracts of the internal and external cap-
sule (PLIC, ALIC, EC, MSE = 0.617, 0.686, 0.752), the corona radiata (PCR, SCR; MSE
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Chapter9/Figures/Recosntruction.png

Fig. 9.3: Scatter plots of the best reconstructed sMRI and dMRI features (above and
below, respectively) decoded from the other two respective channels.

= 0.817, 0.741), the corticospinal tract (CST; MSE = 0.643), the Superior Longitudinal
fasciculus (SLF; MSE = 0.784) and the cerebral peduncle (CP; MSE = 0.841). Some of
these features were also among the best ones decoded from sMRI achieving gener-
ally lower MSE values. In fact, decoding from sMRI, the tracts part of the external and
internal capsule were among the best reconstructed with MSE values of 0.260, 0.322,
0.389 and 0.395 for RLIC, PLIC, ALIC and EC. The SCR reached an MSE of 0.296, much
lower compared to the 0.741 reached by decoding from genetics. The other well dMRI
decoded features starting from sMRI were the superior longitudinal fasciculus (SLF;
MSE=0.313), the sagittal stratum (SS; MSE = 0.344), the fornix (FXST; MSE=0.365), the
PCT with MSE=0.393 and the superior fronto-occipital tract (SFO; MSE = 0.398).

Concerning the reconstruction of sMRI features, better reconstruction performance
was achieved decoding from dMRI compared to genetics. Starting from the best recon-
structed features decoded from dMRI, the Accumbens (AC) was the feature with the
lowest MSE of 0.790 followed by the bankssts (BSTS) with an MSE equal to 0.826, and the
posterior cingulate gyrus (PCG), MSE = 0.844. All the other top ten best reconstructed
features had an associated MSE higher than 0.9. Considering the genetic as decoding
input, all the sMRI reconstructed features had an MSE greater than 0.9, with the AC be-
ing the best reconstructed feature with an MSE of 0.926. The other features were mainly
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sMRI feature reconstruction

from Genetics from dMRI

MSE MSE

AC 0.926 AC 0.790

PCG 1.056 BSTS 0.826

CU 1.059 PCG 0.844

PaCG 1.085 PCU 0.923

RACG 1.099 FG 0.943

PCU 1.122 PoCG 0.953

ICG 1.144 STG 0.971

PA 1.203 CU 0.987

TTG 1.210 PCAL 0.988

FP 1.248 PaCG 1.001

dMRI feature reconstruction

from Genetics from sMRI

MSE MSE

PCT_MD 0.594 RLIC_MD 0.260

PLIC_MD 0.617 SCR_MD 0.296

CST_MD 0.643 SLF_MD 0.313

ALIC_MD 0.686 PLIC_MD 0.322

SCR_MD 0.741 SS_MD 0.344

EC_MD 0.752 FXST_MD 0.365

CST_FA 0.758 ALIC_MD 0.389

SLF_MD 0.784 PCT_MD 0.393

PCR_MD 0.817 EC_MD 0.395

CP_MD 0.841 SFO_MD 0.398

Table 9.2: Best feature reconstruction MSE for the decoding of sMRI and dMRI chan-
nels.

part of the cingulus (PCG, RACG, ICG) and the cuneus (CU, PCU), each having an MSE
value higher than 1.

9.3.4 SHAP feature importance

Figures 9.4 and 9.5 show the SHAP values associated with each input feature for the
reconstruction of the features in a different channel.

In detail Figure 9.5 shows the contribution of genetic (above) and sMRI features (be-
low) to the decoding of the top 10 best reconstructed dMRI features. Starting with the
decoding from genetics, the gene ranking was highly stable across reconstructed fea-
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Chapter9/Figures/SHAP_sMRI.png

Fig. 9.4: SHAP values associated to the most contributing features of channels dMRI
and genetics (rows) for the decoding of the best reconstructed sMRI features (columns).

tures, with the top 10 relevant genes being the same for all the dMRI IDPs with the
genes HDAC7, TRHDE and BCAS1 always in the top 3. The same behavior was recorded
for the decoding of dMRI from sMRI IDPs, where the most relevant features were TH,
RACG and SFG, being among the top three contributing features for all the top ten best
reconstructed dMRI IDPs.

Figure 9.4 instead shows the contribution of genetic (above) and dMRI features (be-
low) to the decoding of the top 10 best reconstructed sMRI features. The most relevant
genes were generally relevant for all the sMRI features but in different rankings based
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Chapter9/Figures/SHAP_dMRI.png

Fig. 9.5: SHAP values associated to the most contributing features of channels sMRI and
genetics (rows) for the decoding of the best reconstructed dMRI features (columns).

on the reconstructed feature. The most frequent gene was the PTPN13, being relevant
for PCG, PsCG, PCU, ICG, TTG and FP. It was followed by RIF1 and HABP4 which were
relevant for AC, PCG, PsCG, PCU, PA and TTG for RIF1 and PCG, CU, PsCG, PCU, TTG
and FP for HABP4. The decoding of the same channel from dMRI instead saw the same
dMRI IDPs being relevant for all the top 10 reconstructed sMRI features, with the MD
features being the most frequent and RLIC, SFO and ACR the most relevant tract. Only
the AC had different dMRI contributions having the RLIC and FX from FA and the EC
from MD as the most relevant dMRI features for its reconstruction.
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9.4 Discussion

In this work we proposed an interpretability framework for the MCVAE aiming at unrav-
eling the underlying association between brain structural and microstructural modula-
tion with genetics. We hence developed a three channels MCAVE considering ROI based
volumes and thicknesses as the sMRI channel, tract-based FA and MD values for dMRI,
and gene variant scores for genetics. We compared a different number of LVs, namely 20
and 3, as well as proposed a metric to compare the different LVs among different MC-
VAEs. We also analyzed the obtained latent space and retrieved the best reconstructed
features separately for each channel decoded from the other two. Finally, we proposed
a modification of the MCVAE which allowed to apply the SHAP model to retrieve which
feature of the input channel mostly contributed to the reconstruction of the features in
the output.

In literature, the MCVAE model recently proposed by [247] was applied in [248]
allowing to predict myocardial infarction through retinal scans. More in detail they
trained an MCVAE and a deep regressor model to estimate left ventricular mass and left
ventricular end-diastolic volume and predict the risk of myocardial infarction (AUC=0.80±
0.02, sensitivity=0.74±0.02, specificity=0.71±0.03) using just the retinal images and de-
mographic data. Their results indicated that it is possible to identify patients at high risk
of future myocardial infarction from retinal imaging available in every optician and eye
clinic. In relation to AD an extension of MCVAE was recently exploited in [249] and [253]
to model the dynamics governing the joint evolution of longitudinal imaging and clin-
ical biomarkers along disease progression. In their first work [249], they accomplished
to simulate the effect of the intervention time and drug dosage on the biomarkers’ pro-
gression in an ADNI study cohort. Their results were compatible with the outcomes
observed in past clinical trials, and suggest that anti-amyloid treatments should be ad-
ministered at least 7 years earlier than what is currently being done in order to obtain
a statistically powered improvement of clinical endpoints. In their second work [253]
they assessed the generalization of the model by testing it on an independent study co-
hort of the Geneva Memory Center (GMC). They showed that the difference between
the temporal evolution of similar biomarkers simulated on the ADNI and GMC cohorts
remained below 10%, confirming model robustness and good generalization and high-
lighting its potential for clinical and pharmaceutical studies.

To the best of our knowledge, our work is the first attempt of considering genetics
and dMRI as input to the MCVAE to investigate their association in AD proposing also
a metric allowing to compare models with different numbers of LVs. Moreover, the ap-
plication of SHAP to a generative framework is far from trivial and allowed to deeply
uncover feature associations.
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With this work we firstly demonstrated that the 3LV-sparse and the 20LV-sparse had
similar reconstruction performance, with the LV having the lowest associated dropout
probability in the models mapping one to the other. This confirmed that both models
reached a similar combination of the input channels leading to the definition of the
latent space, at least in the most significant LV. Moreover, the reconstruction perfor-
mance was comparable across the 20LV-sparse and the 3LV-sparse with the dMRI being
generally better reconstructed compared to sMRI and genetics. In particular, between
the two imaging channels, it was evident a better contribution of sMRI in decoding
dMRI than viceversa. The genetic channel did not achieve sufficient reconstruction per-
formance either decoding from sMRI or dMRI. At the same time, the reconstruction of
the imaging channels decoding from genetics achieved lower performance compared
with the decoding from imaging channels themselves. This behavior could be due to
the MCVAE assumption on the latent space. In fact, the posterior distribution estimated
for the latent space of each channel is a multivariate gaussian, which well fits the dis-
tribution of imaging data but not the genetic ones which instead follow a categorical
distribution. This represents the major limitation of this approach with the chosen in-
put data.

Leaving the genetics aside, moving to the best reconstructed imaging features, as
already stated for the general performance, the dMRI reached the best MSE score, in
particular when decoded from sMRI. The best reconstructed brain tracts were part of
the internal capsule and the corona radiata which were also among the dMRI derived
indices having a high associated weight in the PLS model discussed in Chapter 7, as-
sociated with two PRS, in MCI patients. Importantly, these tracts were also found with
increased diffusivity in MCI compared to healthy controls in [173]. In general, the MD
derived IDPs were the best decoded, with the exception of the corticospinal tract, which
was among the top ten tracts best decoded from genetics for both FA and MD indices.
Moving to the sMRI decoded features, the reconstruction performance was very poor
in decoding either from dMRI or genetics, highlighting that the model was not able to
find relevant associations between those channels.

Being aware that this is not compliant with what is stated in Chapter 3 we decided
to perform the additional step of post-hoc feature ranking following the aim of apply-
ing an interpretability method to a generative model in order to better investigate the
feature-feature interactions. In fact, through the adoption of perturbation based meth-
ods such as SHAP, we were able to retrieve, for an input and a decoded channels, which
features of the input contributed the most, hence obtaining higher Shapley values, to
the reconstruction of each feature in the output channel. This was possible thanks to
a slight modification of the forward method of the MCVAE, in which instead of return-
ing both the mean and the variance of the latent space distribution, only the mean was
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considered. This step has not affected the reconstruction performance since, by design,
the original MCVAE only considers the mean of the distribution for the decoding phase.
With this step, we were able to show that the features most contributing to the decoding
were relevant for multiple decoded features, with some of them being highly frequent,
especially for the reconstruction of dMRI IDPs. We will not go into much in detail about
the feature contribution due to the generally poor performance achieved. However, of
interest, there is a grain of truth since the genes that mostly contributed to the decoding
of imaging channel were also found in our previous work relating SKAT genes and sMRI
IDPs through the PLS model presented in Chapter 8.

9.4.1 Limitations and future works

Despite the presented results not being completely satisfactory in this preliminary
phase, we achieved promising results in the generation of an interpretability framework
for generative models such as the MCVAE. Future works will focus on the utilization of
a different prior latent space distribution from the gaussian used in this study in or-
der to better reflect the input feature distributions and hence allowing to reach also
better reconstruction performance. In this direction, it was recently proposed the het-
erogeneous longitudinal VAE (HL-VAE) which extends the existing temporal and longi-
tudinal VAEs to heterogeneous data providing efficient inference for high-dimensional
datasets and including likelihood models for continuous, count, categorical, and or-
dinal data while accounting for missing observations [254] which seems promising to
overcome the limitations of this work. Finally, The extension of the study cohort is also
a future step that would allow having an independent test set from the validation sets
of the 5-fold CV considered in this study.

9.5 Conclusions

In this work we presented an interpretability framework for MCVAE including two
imaging channels, the sMRI and dMRI derived IDPs and one genetics channel com-
posed by gene variant scores applied to the analysis of the AD continuum. Moreover,
we proposed metric to assess the similarities between two different MCVAEs account-
ing for a different number of LVs. Finally, we proposed a modification of the MCVAE in
order to apply of interpretability methods such as SHAP considered in this work. De-
spite the poor reconstruction performance the obtained latent space was well aligned
across different channels and showed a clustering between the different stages of AD.
Thanks to the application od SHAP we retrieved the most relevant features for the de-
coding of the different channels allowing us to verify that the most relevant features
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were highly similar for each different decoded feature. This work is the first step to-
wards the application of interpretability to the MCVAE allowing to deeply understand
the most relevant feature contribution and associations leading to the generation of a
common latent space across different input channels.

The preliminary work presented in this Chapter was partly submitted to the VIII
Congress of the National Group of Bioengineering (GNB) [255].

9.6 Supplementary tables

Tract Acronym

Middle cerebellar peduncle MCP

Pontine crossing tract PCT

Genu of corpus callosum GCC

Body of corpus callosum BCC

Splenium of corpus callosum SCC

Fornix FX

Corticospinal tract CST

Medial lemniscus ML

Inferior cerebellar peduncle ICP

Superior cerebellar peduncle SCP

Cerebral peduncle CP

Anterior limb of internal capsule ALIC

Posterior limb of internal capsule PLIC

Retrolenticular part of internal capsule RLIC

Anterior corona radiata ACR

Superior corona radiata SCR

Posterior corona radiata PCR

Posterior thalamic radiation PTR

Sagittal stratum SS

External capsule EC

Cingulum CgC

Cingulum CgH

Fornix/Stria terminalis FXST

Superior longitudinal fasciculus SLF

Superior fronto-occipital fasciculus SFO

Uncinate fasciculus UNC

Tapetum TAP

Table 9.3: dMRI tracts acronyms table.
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Brain region Acronym Brain Region Acronym

bankssts BSTS posteriorcingulate PCG

caudalanteriorcingulate CACG precentral PrCG

caudalmiddlefrontal CMFG precuneus PCU

cuneus CU rostralanteriorcingulate RACG

entorhinal EC rostralmiddlefrontal RMFG

fusiform FG superiorfrontal SFG

inferiorparietal IPG superiorparietal SPG

inferiortemporal ITG superiortemporal STG

isthmuscingulate ICG supramarginal SMG

lateraloccipital LOG frontalpole FP

lateralorbitofrontal LOFG temporalpole TP

lingual LG transversetemporal TTG

medialorbitofrontal MOFG insula IN

middletemporal MTG Cerebellum-Cortex CER

parahippocampal PHIG Thalamus TH

paracentral PaCG Caudate CA

parsopercularis POP Putamen PU

parsorbitalis POR Pallidum PA

parstriangularis PTR Hippocampus HI

pericalcarine PCAL Amygdala AM

postcentral PoCG Accumbens-area AC

Table 9.4: sMRI regions acronyms table.
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A new stability criterion for XAI methods:
Application to AD classification

This Chapter will present a new method to assess the robustness of feature rankings pro-
vided by eXplainable Artificial Intelligence (XAI) methods, especially in presence of mul-
ticollinear feature. The framework was tested to solve Alzheimer’s Disease (AD) classifi-
cation problem while interpreting the outcome. Our findings indicate that our method
was able to disentangle the list of the informative features underlying dementia, with
important implications for aiding personalized monitoring plans.

10.1 Introduction

The utilization of Artificial Intelligence (AI) systems in a growing number of sensitive
domains with ramifications for the social, ethical, medical, and safety sectors inevitably
raises problems of trust, bias, and interpretability due to the fact that the majority of AI
technologies in use today are effectively “black boxes".

Local Interpretable Model-Agnostic Explanations (LIME) [8] and SHapley Additive
exPlanations (SHAP) [252] are the two most popular and well-performing model-agnostic
methods for categorical variables. Particularly, the latter has a number of desired the-
oretical qualities (i.e., local correctness, missingness, consistency) and generates ex-
planations that are more consistent with human explanations [252], making it more
applicable than the others for a number of applications. There are now applications
of the SHAP approach in several fields of study, including neuroimaging and brain age
[19], coronary heart disease [256], chemistry [257]. However, the list of the most infor-
mative characteristics may be impacted if the predictor variables are highly collinear,
which may lead to erroneous explanations [258, 259]. This is a prevalent difficulty in
real-world issues, when a large number of variables are considered and correlations are
frequently unavoidable. Moreover, the inability of SHAP to appropriately handle mul-
ticollinearity between features might significantly hinder the understanding of relative
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explanations. Therefore, it is necessary to evaluate the results of SHAP and, more gen-
erally, XAI methodologies in order to create confidence in the chosen approach. Several
qualitative and quantitative methodologies and proxies have been developed to evalu-
ate the success of XAI methods and were already presented in Chapter 2. In this work,
we provide a novel heuristic for assessing the robustness of a given XAI method’s list of
useful predictors. Our idea is that the consistency of the explanations may rely on a) the
explanation technique, b) the selected classifier, and c) the data provided. All of these
criteria play a vital part in generating the list of model-determining attributes. In specif-
ically, we evaluated the suggested technique on a well-known biological topic, namely
the binary categorization of controls and dementia patients and the selection of the
most informative characteristics. To do this, data from a publically accessible database
(Alzheimer’s Disease Neuroimaging Initiative (ADNI) [260]) were analyzed to create a
set of characteristics to be utilized in conjunction with several classifiers, while SHAP
was selected as the XAI approach. This would also make it possible to validate the con-
gruence between SHAP explanations from various models and their behavior in facing
multicollinearity.

10.2 Materials and methods

The proposed pipeline examines how a given classifier and SHAP deal with multi-
collinearity between features to provide an overall robust and stable list of significant
features. For SHAP specification please refer to the Appendix A.

10.2.1 Proposed analysis pipeline

Given a selected classifier and SHAP values, the objective is to determine the stability of
the feature ranking supplied by SHAP, in relation to features context. In other words, if
the SHAP value assigned to a specific feature depends only on that feature, deleting the
others should not affect it. Based on this working hypothesis the proposed proxy is an
iterative procedure in which in each step the most significant features, according to the
associated SHAP values, were sequentially eliminated from the classifier input. SHAP
values and feature ranking were then recalculated for this new model and so on.

In order to evaluate the stability of the SHAP values the Normalized Movement Rate
(NMR) was calculated. The NMR is a metric ranging between 0 and 1, describing the
agreement between feature rankings. NMR = 1 indicates a drastic shift in the order
of predictors when features are eliminated repeatedly from the model, while NMR =
0 shows that the list of predictors does not change when the top features are eliminated
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at each iteration. The closer the NMR value is to 1, the more unstable the ordered list,
whereas a number near to 0 indicates a stable feature ordering.

More in detail, the steps of the proposed method are briefly outlined in the pseudo-
code (Algorithm 1). After training, testing, and obtaining the ordered list of informative
features for the classifier from SHAP, the NMR measure was calculated to determine
the method’s stability. Specifically, in the iterative technique, the top feature in terms of
associated SHAP values from the list is removed. At each iteration, the SHAP values and
feature ranking were recomputed, while evaluating how many predictors changed their
positions compared to the previous step as well as the movements they did across the
list. These steps were repeated until two features remained in the predictor list. NMR is
finally calculated as the ratio between the movement rate, given by the total sum of the
movements the features did across each list over the number of possible movements,
and the total Number of Features (NF) (minus 2). Therefore, the NMR value is calculated
by comparing sub-lists of informative features that have different lengths by removing
the top feature at each iteration.

Algorithm 1 Calculating NMR value
Ensure: NF=number of features
Require: Train the model for classification/regression etc.
Require: Test the model
Require: Apply SHAP and rank the feature importance in descending order

while N F ̸= 2 do
Remove the predictor with associated highest SHAP value
Apply SHAP and rank feature importance in descending order
Calculate M as the count of the predictors which changed their position compared to the list at the previous

step
Calculate the maximum possible movements as: MPS = 2×∑i+2

i=1(N F − i ) for i < N F

Calculate the movement rate as: MR = M
MP M

end while
Calculate NMR as: N MR =∑

(MR)/N F tot al −2

10.2.2 Data

To exemplify the presented strategy, it was applied on data collected from ADNI3
database (http://adni3.loni.usc.edu/). The selected cohort consisted of a total of 475
individuals, including 300 Healty Controls (HC) (254 Controls (CN), and 46 Signifi-
cant Memory Concern (SMC)) and 175 patients with dementia (comprising 70 Early
Mild Cognitive Impairment (EMCI), 55 Mild Cognitive Impairment (MCI), 34 Late Mild
Cognitive Impairment (LMCI) and 16 AD). Freesurfer v.7.1 was used to process T1-
weighted (T1-w) images (https://surfer.nmr.mgh.harvard.edu). The thickness/volume
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values corresponding to 25 regions of interest were considered as input variables (pre-
dictors). Age, gender, level of education, and APOE were considered as confounding
variables and regressed out.

10.2.3 Implementation settings

The first question concerned the relationship between the proposed stability proxy and
the chosen classifier. In order to forecast the class of each subject, five different classi-
fiers were investigated, namely Decision Tree (DT), Light Gradient Boosting Machine
(LGBM), Logical Regression (LR), Random Forest (RF), and Support Vector Classifier
(SVC). To determine the appropriate model parameters, the study cohort was divided
in training (80%) and test (20%) subjects. Hyperparameters tuning was then carried out
through 10-fold cross validation on training data, optimizing the following parameters:
max_depth, min_samples_leaf, min_samples_split, splitter and criterion for DT; max_-
bin, boosting_type, metric, num_leaves and min_child_samples for LGBM; penalty and
inverse of regularization strength for LR; bootstrap, min_samples_split, min_samples_-
leaf, max_features, max_depth and n_estimators for RF; cache_size, kernel type gamma
and regularization parameter for SVC. The parameters leading to the maximum accu-
racy value were selected, and the matching optimum model was then applied to the
test data. Finally, the SHAP model was globally applied to each of the five models to de-
termine the ranking (descending order) of informative predictors in the test data. SHAP
TreeExplainer was used for DT and RF, whereas KernelExplainer was utilized for LGBM
and SVC, and LinearExplainer was utilized for LR.

The second question instead concerned the effect of feature collinearity on the
model output. Consequently, we utilized Principal Component Analysis (PCA) to gen-
erate a list of independent characteristics. The number of components was determined
automatically so that 90% of the variation could be explained, resulting in 15 Princi-
pal Components (PC)s. To derive the NMR, the same procedures as in Algorithm 1 were
performed using a fresh set of uncorrelated PCs and applying the SHAP technique glob-
ally to these new features. The original ranks (before/after PCA) were then compared
across techniques using Spearman’s rank correlation to determine the inter-method
agreement.

10.3 Results

We used PCA on the initial set of 25 features and computed the correlation between the
15 PCs and the raw features, as well as between the PCs themselves. To demonstrate
that the PCA successfully eliminated the association between features, we provide their
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correlation in Figure 10.1. As predicted, the correlation between the features was ex-
tremely low, with values 1e-15 for all pairings. If we do not apply PCA to the feature
space (Figure 10.2), Spearman’s correlation coefficients between each pair of variables
indicate substantial correlations in the majority of cases, with values ranging from 0.01
to 0.79. This indicates the presence of a multicollinearity problem among the chosen
features and warrants the application of PCA.

Chapter10/Figures/Salih2.png

Fig. 10.1: Spearman’s correlation after applying PCA.

Consequently, we use the PCA, generate the SHAP ranking lists, and execute the iter-
ative approach, deleting successively the most relevant feature, before computing the
NMR according to Algorithm 1. The NMR values for each classifier using the original
features (NMRorig) and after PCA (NMRPCA) are shown in Figure 10.3. Our findings
demonstrated a drop in the NMR following PCA, indicating that the important rank-
ings supplied by SHAP are more stable and reliable following the elimination of fea-
ture collinearity. Particularly, the value decreased for four out of five models, when SVC
reached NMR= 0 and LR and RF values were near to 0. Only for DT did the NMR not
change after PCA was applied. The Figure also displays the accuracy of each model,
with ACCorig referring to the model’s accuracy when using the raw set of features and
ACCPCA equating to the model’s accuracy while employing PCs. For each model, two
values are reported: one when all predictors (original, 25 or after PCA, 15 features) are
used, and the other when only the final two variables are considered (i.e., the ones
deemed as having the lowest importance). When just the less significant characteris-
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Chapter10/Figures/Salih1.png

Fig. 10.2: Spearman’s correlation between the original features.

tics were maintained, accuracy decreased in both techniques, although the decline was
more pronounced when working with PCs. After PCA, the accuracy values of all mod-
els improved overall. To determine how much the results depend on the chosen clas-
sifier, we compare the SHAP lists from various models by computing their correlation
before/after PCA (Figure 10.4). The upper (blue) triangle highlights the Spearman’s cor-
relation between the ordered SHAP ranks. To determine how much the results depend
on the chosen classifier, we compare the SHAP lists from various models by computing
their correlation before/after PCA (Figure 10.4). The upper (blue) triangle displays the
Spearman’s correlation between the ordered SHAP ranks, showing low values (near to
0) in the majority of cases. In contrast, when examining the SHAP-provided sorted lists
for the 15 PCs (lower triangle, yellow), higher values were discernible. This implies that
reducing the dependence between predictors using PCA can result in feature ranking
that is independent of the classifier, as expected.

10.4 Discussion and Conclusions

In this study, we developed a straightforward yet practical way for evaluating any XAI
method and quantifying the predictor list’s stability. The suggested measure may be
applied easily to estimate the degree of confidence in the ordered list of informative
predictors provided by a certain collection of features, classifier, and XAI technique.
Our findings on SHAP indicate that if the original set of features is used and a signifi-
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Chapter10/Figures/Salih_tab1.png

Fig. 10.3: NMR and accuracy (ACC) values for each model combined with the raw fea-
tures or PCs. ACCorig: accuracy using the original features; ACCPCA: accuracy using 15
PCs.

Chapter10/Figures/Salih_tab2.png

Fig. 10.4: Spearman’s correlation for the ranked lists using the original 25 features (blue)
and 15 PCs (yellow).

cant correlation is present, there will be a degree of instability in the rankings from all
the models, but SVC is the classifier with the lowest NMR and hence the most stable
lists. In contrast, when PCA is applied, the new collection of uncorrelated variables re-
sults in stable ranks for the majority of classifiers. As PCs are combinations of traits,
one may argue that we might lose the semantic meaning of interpretability in this man-
ner. Consequently, it would be required in this case to understand each PC by assessing
the magnitude of the original variables in the eigenvector defining each component, so
providing information linked with the original space. XAI is commonly utilized in sensi-
tive areas, such as the prediction of long-term mortality [261], admission to the critical
care unit, and extubation failure [262, 263]. In such fields, it is crucial to select the most
informative predictors. Our pipeline may be applied in any domain using a wide range
of models and XAI techniques to evaluate the feature rankings’ dependability.

This work was led by my colleague Ahmed Salih and was published in [264].
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Consistency assessment of eXplainable Artificial
Intelligence (XAI) methods on tabular data:
application to upper limb rehabilitation outcome
after stroke

In this Chapter we propose a comparison between XAI permutation and perturbation
based methods applied to tabular data to assess their consistency on the same problem.
The clinical outcome is the prediction of Upper Limb (UL) functional recovery following
rehabilitation after stroke.

While stroke is one of the leading causes of disability, the prediction of UL func-
tional recovery following rehabilitation is still unsatisfactory, hampered by the clinical
complexity of post-stroke impairment. Predictive models leading to accurate estimates
while revealing which features contribute most to the predictions are the key to unveil
the mechanisms subserving the post-intervention recovery, prompting a new focus on
individualized treatments and precision medicine in stroke. In this study, we had the
twofold goal of evaluating whether Machine Learning (ML) can allow to derive accurate
predictions of UL recovery in sub-acute patients, and disentangling the contribution of
the variables shaping the outcomes. To do so, Random Forest equipped with four XAI
methods was applied to interpret the results and assess the feature relevance and their
consensus. Our results revealed increased performance when using ML compared to con-
ventional statistical approaches. Moreover, the features deemed as the most relevant were
concordant across the XAI methods, suggesting a good consistency of the results. In par-
ticular, the baseline motor impairment as measured by simple clinical scales had the
largest impact, as expected. Our findings highlight the core role of ML not only for accu-
rately predicting the individual follow-up outcome scores after rehabilitation, but also
for making ML results interpretable when associated to XAI methods. This provides clini-
cians with robust predictions and reliable explanations that are key factors in therapeutic
planning/monitoring of stroke patients.
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11.1 Introduction

While ML methods have been proven to be highly promising in different domains [265,
266, 267] quantitative methods to reliably assess the variables that are important in this
prediction are needed to disentangle the contributions of the different features shaping
the final estimates. XAI is still largely unexplored, especially in post-stroke UL recovery
framework. Indeed, providing details on the predictors contributing most to a given
outcome and on their relevance would provide meaningful information and make the
data-driven solution worth of the clinicians’ trust [268]. Some initial insights in this re-
spect have been given by [269], using conventional approaches to define a variable im-
portance such as the magnitude of the regression coefficients for Elastic Net (EN) or
the permutation feature importance for Random Forest (RF), that is the decrease in a
model score when a single feature value is randomly shuffled. However, a wider range
of interpretability methods could be applied to explain any black-box model, where
the information is hidden inside the model structure and should be jointly applied to
assess the consistency and reproducibility of the results given by a single method. In-
formation about feature importance could be gained by perturbation-based methods
as SHapley Additive exPlanations (SHAP) [270], recently explored in a predictive (classi-
fication) model for functional recovery after post-stroke rehabilitation [268], and Local
Interpretable Model-Agnostic Explanations (LIME) [8] that are, by far, the most com-
prehensive and dominant across literature methods for visualizing feature interactions
and importance [271].

Stroke is one of the leading causes of disability worldwide [272]. The World Health
Organization (WHO) estimates that European countries’ stroke events are likely to in-
crease by 30% between 2000 and 2025, with an expected increase in persistent disability
[273]. At the rehabilitation discharge, around 64% of patients regain walking functions
[274], while upper limb (UL) impairments chronically affect the functional indepen-
dence and satisfaction in 50−70% of all stroke patients [275]. Within this framework,
rehabilitation still plays a crucial role in promoting the highest functional recovery and
lowering the level of disability starting from the acute and sub-acute stages [275].

The last five years have witnessed a growing interest in ML for decision support and
functional outcome prediction in stroke [276, 277, 278]. ML methods have been ap-
plied to identify the factors affecting home discharge after stroke inpatient rehabilita-
tion [279, 280], to predict overall motor outcome after acute hemorrhagic or ischemic
stroke [281, 282, 283] and to predict post-stroke activities of daily living in sub-acute
stroke patients [284]. Almost all these studies in the current literature focus either on
classification tasks, for example to classify stroke patients into classes based on sig-
nificant changes or those likely to have favorable outcomes after a given time (e.g.,



11.1 Introduction 165

good and poor outcome), or on predicting longitudinal score changes [278]. However,
as stated by Bonkhoff & Grefkes [277], directly predicting the final follow-up scores of
functional recovery rather than focusing on coarse-grained classifications or on the pre-
diction of score changes is a desirable next step to enhance current scenarios. To the
best of our knowledge, only two studies have used classical statistical and ML meth-
ods to predict individual UL scores following rehabilitation so far [285, 269]. Tozlu et
al. [269] in particular assessed the performance of five ML methods in predicting UL
motor function in chronic stroke patients after six weeks of intervention (task-oriented
rehabilitation combined with TMS protocol stimulation) based on demographic, clin-
ical, neurophysiological, and imaging features. Their results showed that EN followed
by RF performed best when predicting post-intervention upper-extremity Fugl-Meyer
Assessment (FMA-UE) using demographic and baseline clinical data, and that pre-
intervention FMA-UE and hemispheric difference in motor threshold were the most
important predictors.

Therefore, in this study we aimed at extending the results obtained by classical statis-
tical analyses relying on a ML-based model to predict UL recovery in sub-acute stroke
patients admitted to a neurorehabilitation unit, with a special focus on model inter-
pretability with different XAI approaches. In particular, we aimed at directly predict-
ing the final follow-up scores of functional recovery rather than focusing on patient
classifications or on the prediction of longitudinal score changes, as generally done.
Firstly, we evaluated the performance of Multiple Linear Regression (MLR) and a well-
known ML approach (RF regression) in predicting UL motor function scores after six
weeks of rehabilitation in sub-acute stroke patients based on demographic, clinical,
and neuropsychological measures. RF has previously demonstrated good predictive
performance [269, 268], even with small sample sizes and high dimensional data, and
requires only limited hyperparameter tuning (e.g., the number of trees in the forest, the
maximum number of features considered for splitting a node, or the maximum number
of levels). Then, we focused on interpreting the results provided by the ML black-box
model in order to elucidate what are the features having a stronger influence on the
prediction task and what are their relative importance. To do so, four different XAI ap-
proaches, including permutation and perturbation-based methods, were used to verify
the consistency and robustness of the results, in light of the different nature of these
interpretability methods. To the best of our knowledge, this represents the first attempt
of using such methods for dealing with this crucial clinical issue, paving the way for
the implementation of solutions to aid the clinical support and treatment of sub-acute
stroke patients.
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11.2 Materials and Methods

The data were extracted from a local dataset, comprising all patients admitted to the
Neurorehabilitation Unit (AOUI Verona) between January 2018 and October 2020. The
initial cohort included 192 subjects. Inclusion criteria were confirmed diagnosis of
first-ever stroke (ischemic or haemorrhagic) verified by Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI), age ≥ 18 years old, no orthopedic limitation
and pre-existing neurological disorders affecting the UL, time from stroke < 6 weeks.
Exclusion criteria were severe comprehension (NIHSS score= 2) and cognitive deficits
(Mini-Mental State Evaluation < 18/30), premature discharged or admission to other
medical/surgery facilities for complications, having neurosurgery in the acute and sub-
acute stages, having a maximum score in all UL sensorimotor scales (FMA, Motricity
Index [MI] and FMA Sensory).

Starting from the initial cohort of 192 subjects, records that were incomplete at ad-
mission (T0) for one of the main clinical/cognitive scales or lacking the FMA-UE at dis-
charge (T1) were excluded. This procedure led to the final dataset including 95 records.
The mean time (± standard deviation) elapsed between stroke event and dismission
was 37.71 (±15.43) days. This study was approved by the local Ethics Committee for
Clinical Sperimentation (CESC) of Verona and Rovigo (no. 2320CESC). Patients gave
their consent to participate in the study as part of consent to usual care. The study was
conducted following the declaration of Helsinki.

Demographic and clinical information was retrieved from the patient medical chart
and rehabilitative log. All patients underwent the same assessment protocol at admis-
sion and discharge from the Neurorehabilitation Unit.

We selected a comprehensive set of assessment measures based on the International
Classification of Functioning, Disability and Health (ICF) framework, outlined in Table
11.1. In particular, they represent features that are relevant to the patient in the sub-
acute phases of recovery and that are routinely collected in neurorehabilitation depart-
ments.

All patients underwent intensive, multidisciplinary UL rehabilitation treatment con-
sisting of 2 hours/day for six days/week for all the length of stay [286]. This was fo-
cused on passive mobilization and stretching, exercises based on active motility tasks
and normal daily living activities selected by the physiotherapist according to the resid-
ual UL movements and the patient preference for activities. Tasks were tailored to the
patient functioning and progressively increased in difficulty as the patient improved
in performance by tuning the speed or accuracy, repetition, or creating performance-
sensitive adaptations.
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Table 11.1: OVERVIEW OF THE EXTRACTED FEATURES. Abbreviations: L = left; H = hemorrhagic; I = ischemic;
TACS = Total anterior circulation stroke; PACS = Partial anterior circulation stroke; POCS = Posterior circulation syn-
drome; FMA-UE = Fugl-Meyer upper-extremity; FMA-UE-S = Fugl-Meyer upper-extremity Sensory; MI-UE = Motric-
ity Index upper-extremity; MI-LE = Motricity Index lower-extremity; TCT = Trunk Control Test; BI = Barthel Index.

Domain Type Feature

Demographical Continuous Age

& Clinical Dichotomous Diabetes

Hypertension

Dysphagia

Aphasia (Mild-moderate)

Thrombolysis

Somatosensory deficits

Affected hemisphere (L)

Bilateral involvement

Categorical Sex

Stroke Type (H,I)

TACS, PACS, POCS

Cognitive Continuous Picture naming

Broken Heart Cancellation

Space asymmetry

Object asymmetry

Body function Continuous FMA-UE

FMA-UE-S

MI-UE

MI-LE

TCT

Disability Continuous BI

Based on all the collected data, 24 relevant variables were derived for each patient.
These included 14 features on demographic and clinical domains that are age, gen-
der, stroke type, affected hemisphere, presence of a bilateral hemisphere involvement,
Bamford classification, thrombolysis treatment in the acute stage, presence of hyper-
tension, diabetes, dysphagia, presence of mild-moderate aphasia and somatosensory
deficits [287, 288, 289, 290, 291, 292]. For the latter, a baseline score ≤ 11 points was
chosen as threshold to indicate somatosensory deficits, accounting for a measurement
error of 10% [293].

Within the International Classification of Functioning, Disability and Health frame-
work (ICF), we selected features exploring the cognitive, body function and disability
domains in the sub-acute stage [288, 289, 290, 292], as also detailed in Section II.B. Four
variables related to the cognitive domain included the Oxford Cognitive Screen (OCS)
sub-items "picture naming" and "Broken Heart cancellation task", space and objective
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asymmetry. Body function and disability measures (6 features) included the FMA-UE,
FMA-UE-S, TCT, MI-UE, MI-LE, and BI.

11.2.1 Data modeling

Chapter11/Figures/Fig1.png

Fig. 11.1: Overview of the proposed pipeline. Twenty-four pre-treatment features, grouped in demographical
and clinical, cognition, body function and disability metrics, were given as input to two separate data modeling
techniques, namely forward and backward stepwise MLR and RF regression, with the aim of predicting the individ-
ual post-intervention FMA-UE score at follow-up, after inpatient stroke rehabilitation. 5-folds Cross Validation (CV)
was employed for RF hyperparameters optimization. Finally, aiming at a clear interpretation of the outcome, MLR
coefficients were analysed to retrieve the most important features for the prediction, while four XAI methods (Per-
mutation Feature Importance (PFI), Random forest Feature Importance (RFI), LIME and SHAP) were employed and
compared to explain RF outcome.

The general workflow of our study is displayed in Figure11.1. Descriptive statistics
were used to assess patients’ demographic and clinical characteristics. Stepwise MLR
based on sum of squared errors criterion was initially applied to predict the outcome
variable, represented by the post-intervention FMA-UE score at T1. This approach
used both forward and backward stepwise regression to determine the best prediction
model, starting from a constant model (Penter=0.05, Premove=0.10). In terms of pre-
dictors, any possible issue related to multicollinearity was preliminary studied using
the Belsley collinearity diagnostics [294]. Multicollinearity was considered to occur if a
component associated with a condition index > 30 contributes strongly (variance pro-
portion > 0.5) to the variance of two or more variables. This analysis confirmed that all
the 24 variables derived at the baseline (T0) were non-collinear and were thus consid-
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ered as possible independent variables in the stepwise. Of note, three out of the four
Bamford classes were considered as variables as the fourth one could be derived from
the others. All these analyses were performed using MATLAB R2020a (Mathworks Inc).

A RF regression analysis was then carried out with Python software (version 3.7) and
scikit-learn library (version 0.24.1), using the 24 abovementioned features (Table I) to
predict the individual post-intervention FMA-UE scores. RF is a supervised ML algo-
rithm that uses ensemble learning method for regression (and classification). It is based
on two concepts, that are regression trees and bagging, i.e., bootstrapping and aggre-
gating. A regression tree divides in a recursive way the input data by finding combina-
tions of thresholds associating the value ranges of the input variables to the outcome.
Each sample can fall into a single leaf, according to the unique path that this sample
cover across the tree, which depends on the different threshold combinations. These
thresholds are optimized according to an impurity criterion, chosen to be the Mean
Square Error (MSE) in our case. To limit the risk of overfitting, several regression trees
are randomly generated by bootstrapping the original data, that is selecting a subset of
variables for building each tree. Outputs from the forest are finally averaged to obtain
the final prediction.

RF has a series of hyperparameters to be set, defining the main structure and associ-
ated characteristics of the model, which impact on model accuracy and performance.
In our study, four main hyperparameters were tuned, relying in particular on a grid
search 5-fold CV to define the best combination of parameters using the same scoring
criterion as for the evaluation of the model performance (MSE). The simplest one is
represented by number of trees (n_estimators), for which the range 200−800 by in-
crements of 20 was here tested. The total number of features to be randomly selected
for defining each regression tree is given by the max_features parameter, and three
possible values were considered (4,8,24). Of note, the recommended default value for
this parameter in a regression problem is m = p/3 with p = number of total features
(thus m = 8 in our case) [295, 296], though other options as m = p or m = log 2(p) are
currently implemented in the different packages and are still debated. Therefore, we
decided to include m as tuning parameter, selecting such possible levels to limit the
computational time. The minimum number of samples required to split each node can
be controlled by the min_samples_split parameter (range 2−16), while the minimum
number of samples for each leaf is known as min_samples_leaf (range 1−16). For the
RF model with the best set of hyperparameters, the Out-Of-Bag (OOB) score, Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) were calculated to
quantify the performance for the regression task.
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11.2.2 XAI and RF model explanations

XAI recently emerged as one of the hottest topics aimed at overcoming the inter-
pretability issue typical of ML (and Deep Learning (DL)) methods, proposing strategies
for understanding the outcomes of ML algorithms. Multiple categorizations of inter-
pretability methods can be found in literature. Referring to Holzinger and colleagues
[10], such methods can be divided into post-hoc methods, which explain what the
model predicts in term of what is readily interpretable, and ante-hoc, which instead
are methods that incorporate explainability directly into their structure, such as linear
regression. In our context, as RF is not intrinsically interpretable since its prediction re-
sults from averaging several hundreds of decision trees, post-hoc approaches have to be
applied to shed lights on this black-box model. Moreover, such approaches are the most
suitable in our case since they allow to explain models that are already trained without
the need to modify the intrinsic model structure. Among them, classical impurity-based
or permutation-based algorithms are generally used in combination with RF, such as
RFI [295] and PFI [295, 297]. The latter in particular allows to determine the most im-
portant features by running the model on permuted versions of the input. However,
more accurate techniques have been recently proposed having the same aim. Particu-
larly relevant are the advanced local surrogate methods that aims at replacing the de-
cision function with a directly interpretable local surrogate model (e.g., LIME [8] and
SHAP [252]). These methods perturb the input slightly and test the changes in predic-
tion. These four different approaches were applied to our RF model to interpret the
model predictions and quantify the feature importance. We relied in particular on a
Leave-One-out (LOO) training strategy, where at each run n −1 subjects were used to
train the model and the left out for testing and evaluating the feature importance of the
different variables.

11.3 Results

The stepwise regression led to the following results for the best predictive model: F-
stat=127 (p-value=2.27e − 32), RMSE = 6.9, MAPE = 17.2%, R2 = 0.807, Adjusted R2 =
0.8. The significant features for the final model are reported in Table 11.2 and were the
FMA-UE, the MI-UE and the TCT, with the FMA-UE showing the lowest p-value (p<
0.001). For MLR, the weights associated to each feature can be directly interpreted as
the relative feature importance to the model.

Concerning RF analysis, the grid search CV defined a model with n_estimators=260,
max_features=8, min_sample_split=4, and min_sample_leaf=1 as the best estima-
tor. In terms of performance in predicting the post-intervention FMA-UE, the OOB
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Table 11.2: STEPWISE MLR RESULTS. Abbreviations: Estimate = Coefficient estimates for each corresponding
term in the model; SE = Standard error of the coefficients; tSTat = t-statistic, p = p-value; FMA-UE = Fugl-Meyer
upper-extremity; MI-UE = Motricity Index upper-extremity; TCT = Trunk Control Test.

Variable Estimate SE tSTat p

Intercept 17.794 2.243 7.931 <0.001

FMA-UE 0.365 0.091 4.001 <0.001

MI-UE 0.139 0.064 2.155 0.034

TCT 0.135 0.043 3.153 0.002

score was 0.84, while the RMSE was 6.17 and MAPE = 15.4%. Results for the model ex-
planations with the four XAI methods are reported in Figure 11.2 as global variable im-
portance. In particular, the mean values across all the left-out data in the LOO-strategy
were derived for each variable and reported in a descending order, informing on the
global feature importance. Of note, the mean of the absolute values was calculated for
both SHAP and LIME.

Classical impurity-based and permutation-based importance results are reported in
the top panels, showing the mean Mean Decreased Impurity (MDI) and mean Mean
Decreased Accuracy (MDA) values associated to each feature across all the subjects,
respectively. Importantly, in these two methods the evaluation of the feature impor-
tance is based on changes in model performance, with more important features hav-
ing a sharper impact. Agreement was found concerning the most important variables
ranked in the top four positions, that are the post-intervention FMA-UE, followed by
MI-UE, TCT and MI-LE. Of note, the latter was not included in the best model from
stepwise MLR since it was not deemed as significant in the prediction task, differently
from the other three variables. A high similarity could also be noted for the remaining
features, suggesting a good overlap between the results provided by these two simplest
approaches in our scenario.

LIME results are here reported as global averages across all the subjects for each fea-
ture. In LIME, the impact of each feature on the prediction is defined by its weights,
i.e., the regression coefficients, in the simple local model. In this way an estimate of
the relative importance of the different features and their impact is directly provided,
with higher weights suggesting a stronger influence on the prediction. The top four fea-
tures (FMA-UE, MI-UL/LE and TCT) are in agreement with those identified by the two
conventional approaches.

Similar results are also shown by the SHAP method, as visible in Figure 11.2-bottom
right. As this approach is based on the magnitude of feature attributions, features with
large absolute Shapley values are the most important for the prediction. Considering
all the four XAI methods cases, agreement was globally found across the different rank-
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Fig. 11.2: Global feature importance, ranked in descending order, for each of the four XAI methods.

ings, as it can be qualitatively evaluated in Figure 11.2. This was further confirmed by
the Spearman’s rank correlation coefficient calculated for all the ranking pairs, revealing
high correlation between RFI and PFI (ρ = 0.97), followed by PFI vs SHAP (ρ = 0.96) and
RFI vs SHAP (ρ = 0.94). Conversely, the correlation of LIME ranking with all the others
was lower, confirming what can be visually appreciated from the qualitative evaluation
of the lists (LIME vs SHAP: ρ = 0.64; LIME vs PFI: ρ = 0.56; LIME vs RFI: ρ = 0.51). Across
all XAI methods, a perfect match was visible for the top four most important features.
Age, BI and FMA-UE-S also appeared as having a moderate impact in explaining the
model predictions in this ML framework, while the four variables related to the cog-
nitive domain are less stable across the XAI methods and result in diverse positions.
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Of note, LIME showed the most different ranking among the least important features
compared to the other XAI methods.

11.4 Discussion

Summary of main findings

In this observational study, statistical (stepwise MLR) and ML (RF) methods were ap-
plied to predict the UL rehabilitation outcomes, as represented by individual follow-up
scores of functional recovery (FMA-UE at T1), in a cohort of sub-acute stroke patients
admitted to a Neurorehabilitation Unit. Moreover, different XAI methods were used to-
wards understanding and interpreting model predictions, highlighting the impact of
the different features in shaping the final results. A comprehensive set of features inves-
tigating the motor, somatosensory and cognitive domains in addition to other demo-
graphic and clinical information suggestive of a complex health status (i.e., presence of
dysphagia, diabetes, thrombolysis) were used, aiming at defining the optimal predictive
model and assessing their relative importance in explaining the model outcome.

The main finding of this observational study is that, in the sub-acute phase of stroke
recovery, the post-intervention UL recovery can be predicted with good accuracy by a
ML-based model (RMSE=6.17, MAPE=15.2%), further improving the results from sim-
ple regression analyses. Moreover, XAI methods allow to open the black-box and to eas-
ily interpret the outcome results, revealing in our scenario a good concordance between
the feature importance rankings provided by the different approaches. From a clinical
perspective, our results demonstrated that the assessment at the admission unit us-
ing three clinical scales (FMA-UE, MI-UE, TCT), which are validated for stroke patients
and easy to administer, can be used to predict UL rehabilitation outcomes at discharge
with good results. This was confirmed using both MLR and four different XAI meth-
ods applied to the RF outcome results, underlying the main contribution given by these
clinical scales in the prediction task. In addition, all the XAI approaches applied to RF
suggested that also MI-LE is associated with the recovery of the UL, although this was
not pointed out by the stepwise MLR. Interestingly, cognitive function assessed with
the OCS and clinical comorbidities did not significantly influence the outcome at dis-
charge.

Machine Learning and XAI methods

In this study, stepwise MLR and RF models were used to predict the continuous mea-
sure of post-intervention FMA-UE after rehabilitation and identify the critical clini-
cal variables for recovery prediction. In the current literature, inconsistent conclusions
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have been often found when comparing the performance of classical models to differ-
ent ML algorithms for diagnostic or prognostic clinical prediction models [298], mainly
due to the different sample sizes, analysed variables and predictive models. However,
different researchers have proposed ML-based strategies for stroke prediction with ex-
cellent results. In our case, while the results of the two methods were broadly equiva-
lent, RF allowed to further improve the prediction achieving better performance as con-
firmed by the different metrics applied to evaluate the results. This is in agreement with
a previous study on chronic stroke patients [269], where the authors reported the best
performance when using EN, neural networks and RF combined with demographic
and clinical data for predicting post-intervention recovery and changes. Other stud-
ies have also evaluated the performance of RF models in predicting the rehabilitation
outcomes in this population [268, 278], though most of times not specifically focusing
on UL recovery [284, 299]. In all these cases, findings demonstrated that RF regression
algorithms were able to estimate the outcome values with high accuracy and reached
better accuracy than other ML methods. RF can be also applied to effectively estimate
long-term outcome prediction of mortality and morbidity in stroke patients, as recently
demonstrated in [300].

The two approaches we adopted also differed in estimating the importance at-
tributed to some variables and in particular to the MI-LE scales, which is ranked fourth
by all the XAI methods applied to RF but is not considered in the MLR as the p-value
for its inclusion was not significant (p-value=0.415). Considering the four XAI methods
here adopted, a perfect agreement for the top four features was present, despite the
different principles at the basis of each method (impurity/permutation/perturbation-
based) which preclude to take this agreement for granted. The overall concordance be-
tween the feature importance provided by the different approaches was further con-
firmed by the Spearman’s correlation, which also highlighted a lower concordance of
LIME ranking with all the others (ρ = 0.51-0.64). While XAI methods seem promis-
ing tools for making ML models more useable in practical clinical applications [10],
examples in the biomedical field and particularly in the rehabilitation framework are
still very scarce [301, 268], especially in terms of comparative studies. Indeed, to the
best of our knowledge, systematic studies assessing the performance of different XAI
methods applied on the same tabular (biomedical) data for interpreting the predic-
tion/classification outcomes of ML methods are still lacking in the current literature,
precluding a direct comparison of our findings. Weak correlations have been shown be-
tween LIME and SHAP scores when applied to interpreting brain age predictions from
imaging variables and Deep Learning models [302, 303]. LIME has also demonstrated to
be less stable and to identify a very different set of important biomarkers compared to
SHAP and permutation-based methods in tumour data and survival prediction [304].
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Many explainability methods are either built for a specific model or focus on specific
data; as such, there is no “best-in-class” method and comparative analyses should be
increasingly performed, also relying on objective measures [305]. Thus, multiple XAI
methods could be used to examine the "under the hood" workings of AI models and
examine their biological plausibility, allowing to foster confidence in model outputs to
end-users.

In our scenario, even if a consensus for the first four features was present, the fea-
ture ranking for the less important features showed less consistency. This was particu-
larly evident between LIME and the three other methods considered. Such differences
are mainly seen for one-hot-encoded variables as Affected Hemisphere Bilateral, Af-
fected Hemisphere Left, or the triplete TACS, POCS and PACS which are designed to be
mutually exclusive. LIME does not allow to correctly treat such variables since, consid-
ering that each data point is perturbed to create the approximate model, perturbing a
one-hot-encoded variable may result in unexpected meaningless features, hence the
respective LIME values might be unreliable and should be cautiously interpreted.

Results implication for practice and research

The idea of predicting a functional recovery in stroke patients has been the focus of a
relevant field of research in the past years. However, most of the existing studies have
been focused on the acute phase (within three days after stroke) using bedside clinical
tests (active finger extension [AFE] and Shoulder abduction) or on the chronic phase
of recovery with expensive neurophysiological and neuroradiological biomarkers [290,
287, 291, 269]. Moreover, almost all studies focused on classification tasks, for exam-
ple to classify stroke patients based on significant changes in upper-extremity motor
function [269], or to binary classify those likely to have favorable outcomes after a given
time (e.g., good and poor outcome) [306, 268, 282, 307, 308]. No evidence has been re-
ported on predicting UL rehabilitation outcomes (individual scores) by ML methods in
the sub-acute stages. These studies are essential to meet the emerging need for accu-
rate and reliable prediction of the functional recovery of the UL in the rehabilitation
phase improving the patient’s hospital stay management. Specifically, resources could
be allocated in advance according to the patients’ needs and expectations of recovery.
In keeping with previous findings on this topic, the present results suggested that a set
of three simple outcomes might predict UL rehabilitation outcomes in sub-acute stroke
patients through a relative simple ML approach, paving the way for an initial translation
of these methods in the clinical context. Indeed, the most challenging clinical question
in stroke rehabilitation is “What is this patient’s potential for recovery?” to make deci-
sions regarding the content and focus of therapy. We believe the most-important fea-
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tures we identified by the XAI methods are easy-to-use clinical biomarkers to predict
the final FMA-UE score that can unravel factors important to the recovery process.

Study strength and limitations

The study strengths are the set of comprehensive assessment procedures including
simple validated clinical scales feasible to be carried out in a real-world context of
hospitalization, and measurements of somatosensory, motor, cognitive domains along
with clinical features potentially relevant to the topic (i.e., thrombolysis) and comor-
bidities (i.e., diabetes, hypertension). Moreover, we included patients that well repre-
sent the real-life scenario in a neurorehabilitation context for what concerns the stroke
type (ischemic and hemorrhagic) and the site of stroke (anterior and posterior circula-
tion infarcts). Finally, all patients underwent the same amount of intensive rehabilita-
tion within a multidisciplinary framework (2 hours/day, six days/week).

We also acknowledge some study limitations, first among the others the moderate
sample size, which requires to confirm these preliminary findings in larger groups. As
the reliability of the XAI values is closely related to the accuracy of the predictive mod-
els, future developments should focus on defining increasingly accurate models on
larger cohorts. Moreover, the exclusion of patients with aphasia that hinders the assess-
ment procedure execution might limit the generalization of the present findings, as well
as the use of the FMA-UE-S as a measure of somatosensory impairment in stroke pa-
tients. More time-consuming assessments (i.e., Nottingham Sensory Assessment scale)
might be more appropriate. Future studies could also incorporate additional informa-
tion, for example from imaging or genetic data, to broaden the picture and further in-
crease the prediction accuracy.

11.5 Conclusions

In summary, this study presents a ML approach based on a RF model for an accurate
prediction of UL recovery scores at discharge after inpatient stroke rehabilitation. XAI
methods allowed to interpret the ML outcomes and to identify those variables having
a more prominent role in the prediction, reporting a consensus across the top features
identified by all the chosen methods. From a clinical perspective, our findings may im-
prove the management of sub-acute stroke patients in a rehabilitation unit. Moreover,
the present study highlights the importance of an accurate clinical assessment to quan-
tify sensorimotor impairments at admission objectively. Further research is needed to
strengthen the general agreement on ML and XAI applications in clinical settings.

The work presented in this Chapter was published in [309].
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Consistency assessment of eXplainable Artificial
Intelligence (XAI) methods on volumetric data:
application to Multiple Sclerosis (MS) patients
stratification

In this Chapter we propose a comparison between XAI visualization methods applied to
fully volumetric data data to assess their consistency on the same problem. The grow-
ing availability of novel interpretation techniques opened the way to the application of
deep learning models in the clinical field where their use is still largely unexploited. In
particular, this holds great potential for the analysis of neuroimaging data, that being
multi-modal, multi-dimensional and heterogeneous pose a great challenge to classical
statistical and machine learning approaches. In this framework, we focus on a case study
that is the stratification of MS patients in the Primary Progressive (PP) versus the Relaps-
ing Remitting (RR) state of the disease with the twofold goal of detecting the two dis-
ease phenotypes and identifying those factors that most influence the classification task.
To this end, different feature visualization techniques were applied, namely BackPropa-
gation (BP), Guided BackPropagation (GBP) and the Layerwise Relevance Propagation
(LRP). Under the assumption that the agreement across these methods is an indication
of the robustness of the results, the voxels of the input data mostly involved in the classi-
fication decision were identified and their association with clinical scores was assessed,
potentially bringing to light brain regions which might reveal disease signatures. Indeed
our results highlighted regions such as the Parahippocampal Gyrus, among the others,
showing both high consistency across the three visualization methods and a significant
correlation with the Expanded Disability Status Scale (EDSS) score, witnessing in favor
of the neurophisilogical plausibility of these findings.

12.1 Introduction

In this work we aimed at analysing the consistency across interpretability methods.
Three feature visualization methods were compared, namely BP [21], GBP [22] and LRP
[32]. A consensus analysis across the feature visualization methods was also carried
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out based on Normalized Mutual Information (NMI) [310], under the assumption that
consistency across methods would be an indication of the neuroanatomical plausibil-
ity of the outcomes. The clinical application was providing hints for the interpretation
of the mechanisms at the basis of the MS disease course, building on top of the work
presented in Chapter 5 and exploiting XAI for opening new perspectives for diagnosis,
prognosis and treatment.

To the best of our knowledge, only our preliminary work [148], attempted the ex-
ploitation of 3D-Convolutional Neural Networks (CNN)s to differentiate the Primary
Progressive Multiple Sclerosis (PPMS) and the Relapsing-Remitting Multiple Sclerosis
(RRMS) applying only the LRP method to detect the most impacting regions to the CNN
outcome. In that study we exploited only Grey Matter (GM) features derived from both
T1-weighted (T1-w) and diffusion Magnetic Resonance Imaging (dMRI) brain acquisi-
tions for a total of 91 subjects equally split in PPMS and RRMS categories. Our results
demonstrated that LRP heatmaps highlighted areas of high relevance which relate well
with what is known from literature for the MS disease.

12.2 Materials and Methods

An overview of the whole process is provided in Figure 12.1.
The population is the same as the one employed in Chapter 5 and consisted of 91

subjects, including 46 RRMS (35 females, 52.5±10.4 years old) and 45 PPMS (25 females,
47.2±9.5 years old) patients. For major details about population description and Mag-
netic Resonance Imaging (MRI) acquisition parameters as well as preprocessing and
processing please refer to Section 5.3.1 of Chapter 5. In this comparative study only T1-
w MRI was considered.

A Visual Geometry Group (VGG) like 3D-CNN [21] was employed, reflecting the one
T1-CNN described in Section 5.3.1 of Chapter 5.

Data augmentation was performed during the training/validation phase in order to
improve the generalization capabilities of our model due to the scarcity of the data,
following the same approaches of our previous work (sec 5.3.1, Chap 5).

The CNN was trained using a 5-fold CV strategy over a training/validation set of 91
subjects. On each fold, the 91 subjects were randomly split in five groups of 18 sub-
jects each (except one of 19 subjects). The experiment was repeated five times and, for
each repetition, four groups were considered as training and the remaining one for val-
idation. The cross-entropy loss was optimized by means of the Adam optimizer [121]
during the training phase.

The CNN performance was reported as the average over the validation set of the
five models, in terms of accuracy, sensitivity and specificity, while precision for each
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Fig. 12.1: Overview of the interpretability and validation pipeline adopted for MS patients stratification. The MS
masked T1-w volumes were given as input to a 3D CNN architecture trained and validated through a 5-folds Cross
Validation (CV) procedure. The BP, GBP and the LRP maps were derived for 20 subjects, 10 for each class, namely
PPMS and RRMS. For each visualization technique a quantitative analysis was carried out by computing region based
violin plots across 14 Region Of Interest (ROI)s. In order to assess the robustness of the results, the ROI based Nor-
malized Mutual Information between all the possible combinations of BP, GBP and LRP was computed. Finally, the
neuroanatomical plausibility was investigated through the assessment of the Spearman correlation between the rel-
evance value in each ROI and the EDSS, separately for BP, GBP and LRP heatmaps.

class was defined as detailed in what follows. True Positives (TrueP) and True Nega-
tives (TrueN) represent the number of correctly classified PPMS and RRMS subjects, re-
spectively, while False Positives (FalseP) and False Negatives (FalseN) count the wrongly
classified RRMS and PPMS, respectively. The class-specific precision was defined as
precisionPP MS = TrueP/(TrueP+FalseP) and precisionRRMS = TrueN/(TrueN+FalseN).
The whole Deep Learning (DL) analysis was carried out using the software toolkit Py-
torch [122]. The computation was performed on a laptop (Ubuntu 18.6, Nvidia Geforce
GTX 1050, Intel Core i7, 16 GB RAM). Torchsample wrapper was used as high-level in-
terface.
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Confounding variables influence assessment

To assess the influence of confounding variables on the classification outcome we
adopted a post-hoc analysis following the method proposed by Dinga and colleagues
[140] already presented in Chapter 5 Section 5.4.1. In particular, [140] proposed to con-
trol for confounds at the level of Machine Learning (ML) predictions relying on logistic
classification models. This allows to understand what information about the outcome
can be explained using model predictions that is not already explained by confounding
variables. Following [140], this information can be obtained by calculating the Likeli-
hood Ratio (LR), or difference in log-likelihood, of two models: i) the model predicting
the outcome using only confounding variables and ii) the model predicting the out-
come using both confounding variables and the CNN predictions as calculated during
the training phase, under the assumption that the statistical significance of the LR, as-
sessed through a χ-squared test, would reveal that the role of the confounds in shaping
the classification outcomes is not prevalent.

In our study this method was used to assess the role of age, sex and EDSS in the
differentiation between PPMS and RRMS phenotypes.

12.2.1 Convolutional Neural Networks Visualization methods

To identify the regions on which the CNN model based the classification decision we
employed three interpretability methods, that are BP, GBP and LRP (Appendix A). As
the classification aims at differentiating two groups of patients, relevance maps were
derived for both TrueP (PPMS) and TNs (RRMS) samples and were referred to as win-
ning class heatmaps. More in detail, in a multi-class classification task, the CNN pre-
diction function f (x) consists of multiple values indicating the probability for the input
x to belong to each of the classes ci , e.g. f (x) = { fC1(x), fC2(x), . . . , fCN (x)} where N rep-
resents the total number of classes. Indeed, to obtain relevance maps, a target class
has to be defined and the resulting maps are strongly dependent on the class. Let n
be the class index and the BP the algorithms used to compute the saliency map. Then,
Cn −BP (x) is obtained by backpropagating RL = fCn (x) through the network. Following
this notation, in this work the prediction f (x) is defined as f (x) = { fCPP MS (x), fCRRMS (x)}.
In particular, since the two classes share the same importance, there is not a fixed target
class. For the correctly classified PPMS subjects, the relative PPMS-BP, PPMS-GBP and
PPMS-LRP were calculated starting from the respective fCPP MS (x). On the contrary, for
the correctly classified RRMS subjects the RRMS-BP, RRMS-GBP and RRMS-LRP were
calculated starting from the relative fCRRMS (x).

In this way, the resulting winning class relevance maps will answer to two questions:
(i) "What speaks for PPMS in this subject?", for the subjects correctly classified as PPMS,
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and (ii) "What speaks for RRMS in this subject?" for those correctly predicted as RRMS.
To cope with the low numerosity of the dataset, the heatmaps were derived for 20 ran-
domly sampled subjects, 10 per class, using the best model out of the 5-folds CV model
set, resulting in three maps per subject that were subsequently analysed as detailed
hereafter.

12.2.2 Relevance heatmaps analysis

The Captum library [311] was used to compute BP and GBP maps, while the iNNves-
tigate library [124] was employed for LRP. The relevance maps were registered to the
standard MNI space (voxel size = 1 mm isotropic) and averaged over the two groups of
patients separately, for visualization purposes.

Fourteen brain ROIs were selected based on MS literature [125, 126, 127, 128]: tha-
lamus (Thal), caudate (Cau), putamen (Put), hippocampus (Hipp), insular cortex (Ins),
temporal gyrus (TpG), superior frontal gyrus (SFG), cingulate gyrus (CnG), lateral oc-
cipital cortex (LOC), pericalcarine (PCN), lingual gyrus (LgG), cerebellum (Cer), tempo-
ral pole (TP) and parahippocampal gyrus (PHG). The reference atlas was the Desikan-
Killiany available in FreeSurfer.

The mean relevance values for each of the 14 ROIs was computed, for each of the
three heatmaps in the subjects’ space per condition. Each heatmap was previously nor-
malized by the respective L2-norm for direct comparison, following [312].

In order to assess the robustness of the heatmaps as descriptors of the relevance of
the different ROIs for the considered task, a consensus analysis was performed across
the outcomes of the visualization methods. The underlying assumption is that the
agreement across methods witnesses in favour of the robustness, or consistency, of the
outcome. However, this does not guarantee the neuroanatomical plausibility of the so
detected regions, which needs to be probed relying on additional criteria as will be dis-
cussed hereafter. Jointly, such two steps can be regarded as a cross-method validation
of the relevance maps.

Assessing the consistency of the heatmaps

To this end, the NMI was used as metric, calculated as presented in [310]. More in detail,
given two images I and K , the NMI is calculated as

N M I (I ;K ) = H(I )+H(K )

H(I ,K )
(12.1)

where H(I ) and H(K ) represent the marginal entropy for the images I and K , respec-
tively, while H(I ,K ) is the joint entropy of I and K . In this study the entropy was es-
timated on the probability density function relying on the joint histogram of I and K .
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Following this definition, the NMI ranges from 1 to 2, where N M I = 1 means indepen-
dent variables while N M I = 2 corresponds to I = K . The NMI was calculated at the
region level between all the possible combinations of the normalized BP, GBP and LRP.

Assessing the neuroanatomical plausibility of the heatmaps

As explorative analysis, we investigated the plausibility of the outcomes of the three
considered feature visualization methods. Inspired by [33] and [26], the Spearman cor-
relation between the average BP, GBP and LRP relevance values for each ROI and the
EDSS score were calculated, together with the corresponding p-value, both uncorrected
and adjusted with Bonferroni correction for multiple comparisons. A total of 42 com-
parisons were performed (equal to the number of the considered regions multiplied by
the number of feature visualization methods).

12.3 Results

A preliminary analysis revealed that the EDSS score and the age were significantly dif-
ferent between RRMS and PPMS subjects (p < 0.05), and thus constituted confounding
variables. The same held with gender numerosity (p < 0.05), this last observation re-
flecting the epidemiology of the disease.

The proposed CNN achieved an average accuracy on the validation sets equal to
0.81±0.08 over the five models derived from the 5-fold CV, one for each fold. The sen-
sitivity and specificity were 0.74± 0.22 and 0.80± 0.11, respectively, showing that the
CNN minimized the FalsePs, that is the wrongly classified RRMS subjects. This trend
was confirmed by the precisionRRMS which was 0.80±0.15 while the precisionPP MS was
0.76±0.15.

Concerning the influence of the three confounds on the CNNs classification out-
comes, the LR test revealed that the logistic classification model to which the CNN out-
comes were added as predictor was significantly different (χ2 test, p < 0.05) from the
logistic classification model employing only the confounds as predictors, confirming
that the classification was not driven by the confounding variables.

12.3.1 Qualitative Assessment of the Relevance Heatmaps

Figure 12.2 shows the BP, GBP, and LRP heatmaps averaged over the correctly classified
subjects for each class, respectively. For ease of visualization, the maps were clipped
between the 50th and the 99.5th percentile calculated over the respective target group
heatmap. As expected, considering that winning class heatmaps were calculated for
each method, high relevance was found in both PPMS and RRMS classes.
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Fig. 12.2: BP, GBP and LRP heatmaps obtained from the T1-w based CNN model. The heatmaps are shown
for both RRMS and PPMS patients, and are overlaid to the MNI152 template in coronal, sagittal and axial views
(columns). Each interpretability map is averaged across the correctly classified RRMS and correctly classified PPMS
subjects, respectively. The reported values are clipped to the range 60th−99.5th percentile, calculated over the RRMS
and the PPMS class group mean heatmaps.
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In general, a shared relevance pattern could be detected across ROIs, with the TrueP
in the RRMS maps showing the highest similarity. Considering that the colormap is
based on the percentile calculated for each class separately for each method, it is ev-
ident that BP shows widespread high voxel sensitivity values that do not correspond to
regions of major interest, with the exception of the TrueP for the RRMS. The BP heatmap
was more spread and noisier compared to ones resulting from the other feature visual-
ization techniques. A similar pattern was found between GBP and LRP maps for both
PPMS and RRMS maps, with the GBP showing overall a more widespread and scattered
relevance compared to the LRP.

More in detail of the different techniques, starting from the BP maps, the noisy
pattern was particularly evident for the PPMS-BP. Both RRMS-BP and PPMS-BP high-
lighted higher relevance in the temporal lobe, particularly evident in the coronal and
temporal views. Moving to the GBP maps, even if widespread relevance values were
present in both classes, the pattern was slightly different. In fact, the RRMS-GBP map
showed high activation in the temporal lobe and Cer, as highlighted in both the coronal
and the sagittal views. On the contrary, the PPMS-GBP maps showed low relevance in
the temporal lobe, while high relevance was assigned to the frontal lobe as can be ob-
served in the sagittal view. The LRP maps replicated the same trend described for GBP.
However, a sharper and less scattered pattern was found for LRP maps better highlight-
ing only the most relevant regions.

12.3.2 Quantitative Assessment of the Heatmaps

ROI-based analysis was performed to quantitatively assess the relevant areas for the
classification task, as a first step towards the clinical validation of the outcomes. Fig-
ure 12.3 illustrates the average L2-norm normalized relevance per ROI for the correctly
classified patients, separately for the two classes and for the three visualization meth-
ods adopted in this study.

Starting from a general overview, a similar trend can be detected between the BP,
GBP and LRP, all showing high relevance for both subject classes in regions such as
TP, Ins, Cer and Hipp, with the LRP maps showing a generally higher relevance score.
The RRMS mean relevance values were consistently higher compared to the PPMS ones
for all the feature visualization methods, with the exception of the SFG, LOC and LgG
where the PPMS relevance mean values were higher than the RRMS one. The BP maps
median relevance values for the two classes were highly overlapped in almost all the
considered regions. On the contrary, the GBP and LRP maps showed a distinct relevance
distribution for the two classes, as it is particularly evident in the Hipp where the two
distributions resulted completely disjoint, with higher difference for GBP maps.
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Fig. 12.3: Size-normalized importance metric extracted from the GBP, BP and LRP maps (columns). The mean
relevance value for each region is reported for all the correctly classified RRMS and RRMS subjects. The median
relevance for PPMS (orange circle) and RRMS (blue circle) groups are also shown. The relevance values are also
normalized by the L2 norm for direct comparison.
Abbreviations: thalamus (Thal), caudate (Cau), putamen (Put), hippocampus (Hipp), insular cortex (Ins), temporal
gyrus (TpG), superior frontal gyrus (SFG), cingulate gyrus (CnG), lateral occipital cortex (LOC), pericalcarine (PCN),
lingual gyrus (LgG), cerebellum (Cer), temporal pole (TP) and parahippocampal gyrus (PHG).

Stability analysis

The consensus analysis was performed to assess differences and similarities across the
three feature visualization methods. Figure 12.4 shows the NMI obtained for 14 brain
regions. The NMI was calculated on the L2-norm normalized relevance heatmaps, for
the three combinations, namely BP versus GBP, BP versus LRP and GBP versus LRP.
In general, a similar NMI trend can be observed across the methods, with the cortical
regions showing a higher NMI compared to the subcortical ones. The highest NMI was
found, as expected, between BP and GBP maps, which showed an NMI value greater
than 1.2 for all the ROIs. More in detail, the PHG resulted as the region featuring the
highest similarity between the heatmaps derived from the two methods, followed by
PCN, Ins, CnG and TpG. Of note, the Cer showed the lowest variability in the NMI across
subjects. Moving to the similarity between LRP and the two gradient-based methods,
the NMI resulted generally lower for the comparison between BP and LRP compared to
the GBP vs LRP, though sharing the same trend. Noteworthy, the RRMS showed higher
similarity across methods compared to the PPMS class. The TrueP appeared as the most
similar for both the comparisons, followed by the PHG and the Ins. The subcortical
regions showed the lowest NMI, with the exception of the Hipp which instead showed
high NMI values when comparing BP and LRP, and GBP and LRP, respectively.
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Chapter12/Figures/F5.png

Fig. 12.4: Region based NMI metric extracted from the comparison between BP and GBP, BP and LRP, GBP and
LRP (columns). The NMI value for each ROI is reported for all the correctly classified PPMS (orange dots) and RRMS
subjects (blue dots).
Abbreviations: thalamus (Thal), caudate (Cau), putamen (Put), hippocampus (Hipp), insular cortex (Ins), temporal
gyrus (TpG), superior frontal gyrus (SFG), cingulate gyrus (CnG), lateral occipital cortex (LOC), pericalcarine (PCN),
lingual gyrus (LgG), cerebellum (Cer), temporal pole (TP) and parahippocampal gyrus (PHG).

Neuroanatomical plausibility

The Spearman correlation analysis between the ROI-wise mean relevance values for
BP, GBP and LRP and the EDSS scores are reported in Table 12.1. Significant positive
correlations (p-value < 0.05, uncorrected) were detected for the SFG, for the three in-
terpretability methods. Among the other regions, PHG, TP, Ins, TpG, and Hipp showed
a significant negative correlation with EDSS for both GBP and LRP heatmaps. In partic-
ular, the largest negative correlation with the EDSS, was found for LRP and GBP mean
relevance in the PHG (ρ = −0.81 and −0.74, respectively), followed by the TpG which
showed a negative ρ value of −0.65 and −0.64 for GBP and LRP, respectively. Finally,
when applying Bonferroni correction for multiple comparisons, the PHG still showed a
significant correlation with EDSS for both GBP and LRP (adjusted p-value of 0.011 and
0.001, respectively).

12.4 Discussion

In this work we addressed the stratification problem between RRMS and PPMS patients
based on T1-w data. A 3D-CNN was used to this aim, and three different interpretabil-
ity methods for feature visualization were applied and compares, namely BP, GBP and
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Table 12.1: Spearman correlation results between the mean BP, GBP and LRP heatmap values for each ROI and
the EDSS score (uncorrected p-values).
Abbreviations: thalamus (Thal), caudate (Cau), putamen (Put), hippocampus (Hipp), insular cortex (Ins), temporal
gyrus (TpG), superior frontal gyrus (SFG), cingulate gyrus (CnG), lateral occipital cortex (LOC), pericalcarine (PCN),
lingual gyrus (LgG), cerebellum (Cer), temporal pole (TP) and parahippocampal gyrus (PHG).

BP GBP LRP

ρ p-value ρ p-value ρ p-value

Ins -0.06 0.782 -0.56 0.015 -0.56 0.012

PCN -0.61 0.005 -0.19 0.43 0.13 0.596

SFG 0.52 0.022 0.58 0.008 0.52 0.021

CnG 0.11 0.664 -0.34 0.148 -0.26 0.285

PHG -0.29 0.221 -0.74 0.001 -0.81 3e-05

TP -0.32 0.185 -0.57 0.011 -0.56 0.013

LOC 0.12 0.630 0.40 0.088 0.30 0.214

LgC -0.16 0.505 -0.08 0.726 -0.54 0.016

TpG -0.18 0.459 -0.65 0.003 -0.64 0.003

Thal 0.35 0.133 -0.08 0.746 0.13 0.599

Cau 0.09 0.686 -0.31 0.196 -0.36 0.132

Put -0.08 0.729 -0.55 0.016 -0.54 0.017

Hipp -0.31 0.188 -0.59 0.008 -0.59 0.007

Cer 0.04 0.890 -0.52 0.022 -0.43 0.068

The ρ score and relative p-values (rows) are reported for each Region Of Interest (columns). The significant correlations (p-value
< 0.05) are highlighted in bold. The correlations surviving the Bonferroni correction are shown underlined.

LRP, in order to assess their consistency across methods, strengths and weaknesses as
well as highlighting the key brain regions involved in the classification of the two pa-
tients populations. Then, Spearman correlation was used to assess the concordance
between the ROI-wise mean relevance and the individual EDSS scores for each of the
14 considered ROIs.

We already stated in our previous works the performance of the classification task
between MS subtypes held by the combination of T1-w and CNNs, as well as its com-
parison with state-of-the-art performance (Chap 5)

A 3D-CNN based approach was proposed in [33], showing an accuracy of 87.04%
on a set of 147 fully volumetric structural MRI acquisitions. Despite the lower accu-
racy compared to the 2D-CNN based approaches, the use of a 3D-CNN architecture
facilitated the interpretation of the CNN performance through the use of feature visu-
alization techniques. However, the essential difference in the research question makes
these works not directly comparable to ours. Concerning the feature visualization, [111]
compared different techniques applied to a 2D-CNN trained on 66 healthy controls and
66 MS patients Susceptibility-Weighted Imaging (SWI) data. Their results highlighted
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the superiority of LRP and Deep Learning Important FeaTures (DeepLIFT) [112] over
simpler methods, relying on the perturbation based analysis on the derived heatmaps,
strengthening the exploitability of such methods to address clinically relevant ques-
tions.

The application of the BP, GBP, and LRP provides a means for CNNs interpretabil-
ity and, when used in combination with other clinical and imaging data, could support
diagnosis and treatment decisions. By relying on these techniques, it was possible to
identify the regions playing a prominent role in the classification between the two MS
phenotypes as the regions of highest difference in relevance across groups. In our re-
sults, the relevance maps of both RRMS and PPMS showed that BP was highly sensitive
for both classes, highlighting a scarce class related relevance which was instead found
for the other methods. Moreover, high relevance was found also in brain regions that
were masked in the input, revealing the noisy pattern of BP maps and rising a warning
on the interpretation of such results. We recall that only the GM-masked T1-w values
were given as input to the CNN model. A more focused pattern was instead found for
GBP and LRP which consistently showed relevance values only in the GM regions of the
input volume. More in depth of the ROI-based analysis of the three feature visualiza-
tion methods, the ROIs leading the CNN classification were coherent across methods
and were in agreement with the clinical literature findings. Indeed, TP, which showed
the highest relevance for BP, GBP, and LRP, as well as the highest NMI for all the com-
parisons, has been reported to be present in MS cortical atrophy patterns [144]. The
Ins, which was the second region for mean relevance value for all methods and NMI for
all the comparisons, have been shown to reveal high probability of focal GM demyeli-
nation in MS pathology [126]. The Cer has been demonstrated to be a major site for
demyelination, especially in PPMS patients [143]. Finally, an important feature for MS
is a lower diffusion restriction and massive neuronal loss and demyelination in Hipp
[145, 51], which was a region holding high relevance for all the three feature visualiza-
tion methods, as well as high NMI for all the considered comparisons.

It is important to note that the focus in interpreting feature visualization maps was
not on the absolute values of the relevance, but on the differences and overlaps between
the violin plots of the considered ROIs in the two classes of patients. This means that the
relevance values allowed to understand how the voxels of certain ROIs contributed to
the classification, but still did not allow identifying the subserving mechanism (lesion
load, atrophy, etc.) [26].

In general the NMI between all the possible couplings of the three methods resulted,
as expected, the highest between BP and GBP, being the two methods both based on
gradients and having a similar computation with the exception for the ReLU layers. This
was confirmed by the larger difference found instead between both BP and GBP, with
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respect to LRP. In fact, the LRP is not directly based on gradients but on the backprop-
agation of the prediction values constrained by the relevance conservation rule. Of in-
terest, higher NMI was found for the RRMS, particularly in the comparison between the
gradient based methods and LRP, reflecting the clinically assessed higher variability in
PPMS subjects compared to RRMS. However, the ROIs showing the highest NMI were
the same for all the combinations, confirming their importance for the CNN outcome
and providing evidence of the plausibility of the results.

In order to investigate whether high importance scores could correspond to clini-
cally assessed differences across classes, the association between the mean relevance
value in each ROI and the EDSS was also computed. All the regions featuring high rel-
evance and NMI across methods showed also a significant Spearman correlation with
EDSS. Of note, the PHG was the only region surviving the Bonferroni correction show-
ing a significant and negative correlation with the EDSS, although it was not among
the ROIs showing the highest relevance. For clinical assessment, this region has been
associated with fatigue, particularly in RRMS [79].

Although deeper investigation would be needed to drive strong conclusions, these
results, together with [26] and [33], provide evidence of the potential of the joint ex-
ploitation of CNNs and visualization methods for identifying relevant disease biomark-
ers for the considered disease phenotypes, as well as of the core role of visualization
methods in pursuing the objective assessment of the plausibility and clinical relevance
of the results.

12.4.1 Limitations and future works

One of the obvious possible improvements to our work would be the increase of the
number of subjects, even though the classification performance and the consensus
across the heatmaps obtained by different visualization methods witness in favor of the
robustness and reliability of the results. Moreover, for the consistency analysis, different
metrics are being proposed in literature focusing not only on assessing the similarity
between heatmaps, but also on their consistency and bias, such as the mutual verifica-
tion proposed in [312]. In a clinical context it is mandatory to obtain highly reliable and
still understandable explanations in order to spread the use of ML and DL methods.

Another possible improvement would be single-subject analysis. Since the inter-
pretability methods adopted provide a heatmap for each subject indicating the contri-
bution of each voxel to the final classification decision, a subject specific analysis could
be carried out, moving step forward the personalized precision medicine.

Then, additional feature visualization methods could be exploited, such as DeepLIFT
analyzed also in [111], in order to further investigate the consensus across more ad-
vanced interpretability methods.
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Overall, we consider these outcomes as a valuable evidence of the potential of the
proposed method in splitting apart the two MS phenotypes and providing hints on
the signatures of possible subserving mechanisms of disease progression. We leave the
open issues mentioned above for future investigation.

12.5 Conclusions

This work corroborated the capability of T1-w combined with a 3D-CNN classifier in
distinguishing the different typologies of MS disease. In addition, we could highlight,
through the application and the consistency analysis across the three considered fea-
ture visualization techniques, that the CNN classification was based on ROIs holding
clinical relevance whose heatmap NMI was high and which mean values significantly
correlated with EDSS score. From a clinical perspective, our results strengthen the hy-
pothesis of the suitability of GM features as biomarkers for MS pathological brain tis-
sues. Moreover, this work has the potential to address clinically important problems in
MS, like the early identification of the clinical course for diagnosis, personalized treat-
ment and treatment decision.

The work presented in this Chapter will soon be published as book Chapter in [313].
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Conclusions and future work

The works illustrated in this Thesis show how it is possible to enable Artificial Intel-
ligence (AI) in medicine through the utilization of eXplainable Artificial Intelligence
(XAI) resulting in a positive impact in solving multiple practical clinical applications,
characterized by highly complex underlying mechanisms.

In the following Sections, we summarize the contributions of this Thesis proposing
research perspectives in the field of the XAI application for joint modeling of heteroge-
neous data, as well as XAI validation strategies.

13.1 Summary of the main contributions

Proposition of XAI taxonomy

It is clear that there is still a lack of consensus in the literature on the taxonomy of
XAI methods. In Part I, we clarified the main concepts related to XAI, especially dif-
ferentiating interpretability from explainability, each relating to clear and different XAI
approaches and not being used as synonyms. It is indeed fundamental to differenti-
ate between methods that are explainable by design (explainable) and methods that
can be interpreted post-hoc (interpretable). This is crucial for the choice of the right
method for a given problem helping to better understand when to use one or the other
approach. We also moved a step further defining four validation attributes that encom-
pass the different proxies present in literature namely stability, consistency, plausibility,
and understandability which could allow the evaluation of the quality of the explana-
tions provided by existing XAI methods. Importantly, our contribution is also the addi-
tion of plausibility to the list which is particularly relevant in the medical field. Stated
that explainability methods are vital to gain a deep understanding of Machine Learn-
ing (ML) and Deep Learning (DL) model predictions, their application must be faced
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with caution, assessing the four characteristics presented above in order to be practi-
cally used and earn reliable and meaningful insights on the approached problem. The
work presented in this part was published in [51]

XAI for subject stratification in Multiple Sclerosis

In Part II of this thesis we presented multiple approaches to study Multiple Sclerosis
(MS) for uncovering different MS stages based either on cognitive impairment or MS
type, namely Relapsing-Remitting Multiple Sclerosis (RRMS) and Primary Progressive
Multiple Sclerosis (PPMS).

In Chapter 4, we proposed a multivariate model to estimate the joint variation of
diffusion Magnetic Resonance Imaging (dMRI) derived indices and neuropsychologi-
cal tests scores, demonstrating that different forms of cognitive impairment were qual-
itatively distinguishable in the latent space created by the Partial Least Squares (PLS)
regression. Thus, multivariate approaches to statistical analysis combining neuroimag-
ing and clinical studies may have a potential in depicting subtle differences in different
forms of the MS pathology.

Moving a step forward, in Chapter 5, exploiting all the volumetric information of
both T1-weighted (T1-w) and dMRI derived indices thanks to the use of a 3D Convo-
lutional Neural Networks (CNN) and Layerwise Relevance Propagation (LRP) visualiza-
tion, we have observed that the CNNs based disease state detection relied on clinically
relevant Region Of Interest (ROI)s and that different indices were sensitive to Grey Mat-
ter (GM) modulation in different brain regions. We hence provided evidence in favor of
the capability of dMRI indices of distinguishing different stages of the disease in MS.
In particular, we were able to prove that 3D Simple Harmonics Oscillator based Recon-
struction and Estimation (3D-SHORE) based indices and RIF1 outperformed Fractional
Anisotropy (FA) and Mean Diffusivity (MD), pushing to shift the attention on dMRI fea-
tures other than Diffusion Tensor Imaging (DTI) ones. Our results, thanks to the use of
XAI, support the hypothesis of dMRI based indices suitability as numerical biomarkers
for the characterization of pathological brain tissues.

Importantly, in this works we devised validation strategies based not only on model
significance or generalizability (eg. permutation test for PLS or 5-folds Cross Validation
(CV) for 3D-CNN models) but also on confound influence assessment, far from triv-
ial when dealing with volumetric data, as well as on neuroanatomical plausibility by
assessing the explanations correlation with well established features relevant for MS.

The works presented in this part were published in [96, 148, 147] and have the poten-
tial to address clinically important problems in MS, like the early identification of the
clinical course for diagnosis and provides evidence in favor of the feasibility of precision
medicine, through the adoption of XAI techniques.
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XAI for Imaging Genetics in Alzheimer’s Disease (AD) continuum

In Part III of this thesis we presented multiple approaches for applying XAI to study
Imaging Genetics (IG) in AD continuum. We firstly presented our studies based on PLS,
an explainable multivariate model which allowed to uncover the association between
imaging derived Imaging Derived Phenotype (IDP)s and genetics and for which expla-
nations were directly retrieved through the observation of PLS weights. All the PLS mod-
els were validated through a permutation test which resulted significant for both struc-
tural Magnetic Resonance Imaging (sMRI) and functional Magnetic Resonance Imag-
ing (fMRI) based studies, as well as CV strategies to assess the number of Latent Variable
(LV) needed to explain at least the 60% of data variability.

More in detail, in Chapter 6 we exploited 14 different Polygenic Risk Score (PRS)
for AD, calculated by including Single Nucleotide Polymorphism (SNP)s passing dif-
ferent significance thresholds, to check their association with brain ROI volumes and
thicknesses. The PLS model was applied to a large study cohort obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database including both healthy
individuals and AD patients, and validated on an independent ADNI Mild Cognitive
Impairment (MCI) cohort, including Early and Late Mild Cognitive Impairment (LMCI)
subjects. The experimental results confirmed the existence of a joint dynamics between
brain atrophy and genotype data in AD, while providing important generalization re-
sults when tested on a clinically heterogeneous cohort. In particular, less AD specific
PRS scores were negatively correlated with cortical thicknesses, while highly AD spe-
cific PRSs showed a peculiar correlation pattern among specific subcortical volumes
and cortical thicknesses. While the first outcome is in line with the well known neu-
rodegeneration process in AD, the second could be revealing of different AD subtypes.

In Chapter 7 we relied on only two PRSs to check their association separately with
dMRI and fMRI derived IDPs. dMRI IDPs were composed by tract based features cal-
culated over four DTI based indices, namely FA, MD, Radial Diffusivity (RD) and Ax-
ial Diffusivity (AxD), while fMRI IDPs were represented by within/between network
connectivities. The study cohort was as well based on the ADNI database, focusing
on the ADNI-3 phase, and comprehended healthy subjects and MCI individuals, in-
cluding subsets featuring patients showing early and late condition. Different subjects
were used for the dMRI and fMRI studies due to data availability. The experimen-
tal results showed an anti-correlation between diffusivity and anisotropy in the WM
tracts typical of neurodegeneration, to which both the PRS were correlated. Moreover,
thanks to the fMRI based analysis, we retrieved the correlation between the PRS2 and
connectivities involving the dorsal attention (DAN) and frontoparietal control (CON).
Visual (VIS) and somatomotory (SMN) showed a correlated trend, while being anti-
correlated with limbic (LIM), CON and default mode network as well as with PRS1.
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Such findings suggest that the two PRSs correlated with a possible pattern of aberrant
within/between-network Functional Connectivity (FC) changes occurring in Resting
State Network (RSN)s devoted to higher cognitive functions and more vulnerable in this
pathology.

It is evident that the presented PLS models confirmed the existence of a joint vari-
ation between grey matter atrophy, White Matter (WM) diffusivity, FC and PRS in AD,
each resulting in a different view of the disease, confirming the necessity to look to-
wards interpretable heterogeneous data integration models.

In order to better deal with a small study cohort while aiming at summarizing the
genetic information in a more informative way, in Chapter 8 we introduced the gene
based variant scores and we verified its associations with sMRI derived IDPs. The gene
variant scores were calculated for all the significant genes resulting from Sequence Ker-
nel Association Test (SKAT) filtering which allowed to obtain 408 scores for genes se-
lected based on their potentiality in distinguishing control subjects from AD patients in
various stages. The proposed gene variant score allowed to obtain informative genetic
features which did not result from the classical genome-wide analysis. Relying on such
scores and the sMRI IDPs we were able to obtain a significant PLS model, validated on
an unseen cohort of subjects where the obtained IDPs-gene variant scores associations
succeeded in differentiating the two groups of patients in their latent space projection.
Moreover, a transcriptomic analysis was carried on to assess the brain expression of the
resulting important genes. Results highlighted meaningful genotype-phenotype inter-
action in each significant latent component. Among the others, the correlation between
the EPHX1 associated variant score, highly investigated for its role in neurodegener-
ation, and a decrease in subcortical volumes, as well as the association between the
BCAS1 variant score, gene involved in the process of myelination and found particu-
larly expressed in dentate gyrus, and a significant decrease in temporal lobe thickness
(Patients (PAT) < Controls (CN)) were retrieved. With this Chapter we proposed new
ways to investigate the genotype-phenotype interactions in a restricted study cohort
highlighting associations that are descriptive of the underlying mechanisms of neu-
rodegeneration in AD continuum. In addition, we proposed different validation strate-
gies for the assessment of the neurobiological plausibility of the obtained explanations,
such as the transcriptomic analysis on the most significant genes.

Finally, in Chapter 9 we aimed at fusing the multiple IDPs and genetics together in
the Multi-channel Variational Autoencoder (MCVAE), while proposing an interpretable
framework for generative models. We hence exploited a three channels MCVAE equipped
with ROI based volumes and thicknesses as the sMRI channel, tract based FA and MD
values for dMRI and the gene variant scores for genetics. We firstly proposed a metric
based on the cosine distance to compare the different LVs among different MCVAEs. We
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also analyzed the obtained latent space and retrieved the best decoded features sepa-
rately for each channel starting from the other two. Finally, we proposed a modification
of the MCVAE which allowed to apply the SHapley Additive exPlanations (SHAP) model
to retrieve which features of the input channel mostly contributed to the reconstruction
of the features in the output. Despite the reconstruction performance of the MCVAE
were not satisfying, the obtained latent space was interesting: a clustering between dif-
ferent classes was present and the latent spaces generated from each channel were well
aligned. Thanks to the application of the SHAP model we were able to verify that the
most relevant genetic features for the decoding of the imaging channels well mapped
with the results presented in Chapters 8 and 7.

The work presented in this part allowed to obtain a wide overview on AD contin-
uum, including different imaging techniques and genetic features. We showed how the
adoption of simple yet explainable methods such as PLS, even in presence of a small
study cohort, has the potential to uncover meaningful genotype-phenotype associa-
tions, strengthened by the multiple model validations as well as explanation validation
through the plausibility assessment. Moreover, we presented an interoperability frame-
work based on the MCVAE equipped with SHAP which has the potential to open the way
to interpretable data fusion.

Moreover, the Chapter presented in this Part were published in [182, 164, 157] while
two journal papers [255, 245] and one conference proceeding [314] are in preparation
and will be soon submitted.

Open challenges in XAI: validation strategies

Part IV was devoted to XAI methods validation. In detail, with the work presented in
Chapter 10 we presented a simple yet useful approach to evaluate any XAI method and
quantify the stability of the list of informative predictors. The proposed measure, the
Normalized Movement Rate (NMR), can be easily employed to determine how much it
is possible to trust the ordered list of informative predictors given by a specific set of
features, classifier and explainability method. The method was applied to the task of
classifying AD from control subjects based on different classifiers such as Likelihood
Ratio (LR), Support Vector Classifier (SVC), and Decision Tree (DT). Our findings on
SHAP demonstrated that if the original set of features presents high correlation, a cer-
tain degree of instability would be present in the rankings from all the models though
SVC is the classifier leading to the lowest NMR and thus having the most stable lists.
Conversely, when applying Principal Component Analysis (PCA) on the feature set, the
new set of uncorrelated variables leads to stable rankings for most of the classifiers. The
strength of the presented pipeline is that it can be implemented in any domain with
different models and XAI methods to evaluate the reliability of the feature rankings.
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Concerning XAI methods consistency, in Chapter 11 we proposed to compare four
different XAI post-hoc methods on Random Forest (RF) model aiming at predicting
post-stroke UL functional recovery following rehabilitation. Predictive models lead-
ing to accurate estimates while revealing which features contribute most to the pre-
dictions are the key to unveiling the mechanisms subserving the post-intervention re-
covery, prompting a new focus on individualized treatments and precision medicine in
stroke. The proposed RF was equipped with four XAI methods, namely Random forest
Feature Importance (RFI), Permutation Feature Importance (PFI), Local Interpretable
Model-Agnostic Explanations (LIME) and SHAP were applied to interpret the results
and assess the features’ relevance and consistency. Our results revealed increased per-
formance when using ML compared to conventional statistical approaches. Moreover,
the features deemed as the most relevant were concordant across the XAI methods,
suggesting good stability of the results. Our findings highlight the core role of ML not
only for accurately predicting the individual follow-up outcome scores after rehabili-
tation but also for making ML results interpretable when associated to XAI methods.
This provides clinicians with robust predictions and reliable explanations that are key
factors in the therapeutic planning/monitoring of stroke patients. From a clinical per-
spective, our findings may improve the management of sub-acute stroke patients in a
rehabilitation unit.

Finally, in Chapter 12 we proposed the XAI consistency analysis for visualization
methods applied to fully volumetric data with the clinical outcome being the stratifi-
cation of MS patients. Different feature visualization techniques were applied, namely
BackPropagation (BP), Guided BackPropagation (GBP) and LRP to a 3D-CNN fed with
T1-w Magnetic Resonance Imaging (MRI), masked in order to retain only GM. After
model validation through 5-folds CV and post-hoc confound assessment, under the as-
sumption that the agreement across explanations derived from different XAI methods
is an indication of the robustness of the results, we calculated a consensus metric, the
Normalized Mutual Information (NMI), across each couple of XAI methods. The voxels
of the input data mostly involved in the classification decision were identified and their
association with clinical scores was assessed, potentially bringing to light brain regions
that might reveal disease signatures. Indeed our results highlighted regions such as the
Parahippocampal Gyrus, among the others, showing both high stability across the three
visualization methods and a significant correlation with the Expanded Disability Status
Scale (EDSS) score, witnessing in favor of the neurophysiological plausibility of these
findings.

The contribution of this part was supported by multiple publications [264, 309, 313]
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13.3 Future developments

This work opened the way to other important aspects and perspectives that may be
worth exploring. We already presented possible future directions in each Chapter and
we will summarize them hereafter.

• From Part I still some work is needed to achieve a generalized knowledge about XAI,
as well as a critical application of validation methods as presented also in Part IV.
It would be of high interest to generate an XAI framework for post-hoc analysis ap-
plicable to any model or input. The framework should include both the phases of
explanation extraction, XAI validation and eventually the feedback loop for model
improvement. There exist frameworks for the first two steps separately. For exam-
ple, the python library captum [311] allows to obtain different explanations relying
on the state-of-the-art interpretability methods, focusing on brain imaging. For the
validation phase the library quantus [12] was recently proposed allowing the calcula-
tion of different state-of-the-art validation metrics. However, a complete framework
accounting for both tasks and adding the possibility to exploit explanations to im-
prove the model, as well as including explanations plausibility which is fundamental
in healthcare, is still missing.

• Concerning the application of XAI to the specific task of MS patients stratification,
following the works presented in Part II, future works will be focused on the develop-
ment of an interpretable model accounting for the information derived from all the
available input data which comprehends both dMRI and sMRI. Moreover, the lack of
healthy controls is a reason of concern as it impedes benchmarking the performance
of the proposed architecture in the patients versus controls classification task. This
would allow also to assess the relevance of the voxels and ROIs in distinguishing
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each of the phenotypes (PPMS, RRMS) from healthy matched controls which could
reveal shared features of the two manifestations of the pathology that could not be
captured by the proposed analysis yet potentially being insightful for understanding
the mechanisms of the disease. Finally, including WM in the analysis would widen
the spectrum of the microstructural features potentially distinguishing the two dis-
ease phenotypes as well as unravel the link with GM tissue modulations. Neverthe-
less, we consider these outcomes as the valuable first evidence of the potential of the
proposed method in splitting apart the two MRI phenotypes and providing hints on
the possible subserving mechanisms of disease progression, and we leave the open
issues mentioned above for future investigation.

• Moving to XAI application in IG we already performed different analysis including
different feature sets with the PLS model. However, given the data availability of
ADNI dataset, in particular ADNI-3 phase including the most complete set of imag-
ing acquisition in ADNI database, the fusion of different IDPs together would pro-
vide different views on the AD related brain modulations. This approach was at-
tempted through the adoption of the MCVAE model which however could be im-
proved through the utilization of an prior latent space distribution matching each
input distribution, relaxing the gaussianity assumption for each channel that was
imposed in our work. This would allow to better reflect the input feature distribu-
tions and hence allowing to reach also better reconstruction performance. In this re-
spect, it is worth mentioning the recently proposed heterogeneous longitudinal Vari-
ational AutoEncoder (VAE) (HL-VAE) that extends the existing temporal and longitu-
dinal VAEs to heterogeneous data providing efficient inference for high-dimensional
datasets and including likelihood models for continuous, count, categorical, and or-
dinal data while accounting for missing observations [254], which could be an inter-
esting path to explore.

• From a feature point of view, in particular for genetics, the gene variant score was
computed on all SNPs located in the same gene with each SNP being equally weighted.
It could be interesting to modify the gene variant score in order to weigh the SNPs
differently based, for example, on the associations of individual SNPs with the dis-
ease or imaging phenotype (i.e. the p-value obtained from Genome-Wide Associa-
tion Study (GWAS)).

• Other than the points expressed above, when dealing with diseases, the future direc-
tion is not only the inclusion of different modalities in an interpretable model but
also the generation of a biomarker, accounting for all the different input features,
expressing the disease status. Disease Progression Modelling (DPM) has existed for
around ten years. In response to the then-emerging hypothetical models of AD pro-
gression [315, 151] that resemble the hypothetical cascade of dynamic biomarkers,
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computer science researchers took on the challenge of producing quantitative and
actionable disease signatures. Of high interest, recently Abi Nader and colleagues
[249, 253] presented SimulAD, a computational DPM originally developed on the
ADNI database to simulate the evolution of clinical and imaging markers charac-
teristic of AD, and to quantify the disease severity of a subject. Their framework is
based on the modeling of the spatio-temporal dynamics governing the joint evolu-
tion of imaging and clinical biomarkers along the history of the disease, and allows
the simulation of the effect of intervention time and drug dosage on the biomarkers’
progression. When applied to multi-modal imaging and clinical data from the ADNI
cohort the method enables to generate hypothetical scenarios of amyloid lowering
interventions. The biomarkers used in their studies included sMRI, fMRI, Positron
Emission Tomography (PET) and clinical scores. The inclusion of microstructure
measures derived from dMRI, being highly informative for the disease as shown in
this thesis, could add precious information to the obtained DPM. We already started
following this path during my three months visit to EPIONE research group based at
INRIA Sophia Antipolis, however the low number of subjects having dMRI in mul-
tiple timepoints still not allowed to properly include them in the model. This is still
a promising direction applicable not only to AD but also to other neurodegenera-
tive diseases such as the MS object of this thesis and it would be of high interest to
add also the XAI step to this framework to deeply uncover feature contributions and
associations to the DPM generation.

13.4 Final remarks

For AI pervading medicine still some work has to be done, however, thanks to the con-
tinuous and tireless research into XAI an increasing awareness and critical use of AI
methods is making its way into real-life applications. With this Thesis, we clarified XAI
concepts and showed real-life XAI applications in medical framework, as well as pro-
posed validation strategies in order to build trust on the obtained results. The advance-
ment of mathematical and statistical techniques, as well as the adoption of XAI meth-
ods and validation strategies will enable the development of personalized medicine and
treatment by taking a data-driven and objective approach to healthcare.
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A.1 Data and feature extraction

A.1.1 Brain imaging

The choice of the feature type is strongly linked to the approach and more than every-
thing to the data availability. On the imaging side, the focus will mainly be on two tech-
niques of Magnetic Resonance Imaging (MRI) acquisitions: structural Magnetic Reso-
nance Imaging (sMRI) and diffusion Magnetic Resonance Imaging (dMRI) which will
be detailed in the following subsections.

Structural MRI (sMRI)

With the term sMRI we refer to the classical MRI acquisitions which could be T1- or
T2-weighted according to the acquisition parameters.

As the name suggests, MRI utilizes the magnetic properties of molecules, specifi-
cally hydrogen, and other naturally occurring elements to record the brain. Structural
MRI (sMRI) is the main modality obtained during an MRI scan session and displays the
contrast between different tissues in the brain. An MRI scanner essentially consists of a
large magnet that aligns protons in your molecules with its magnetic field. Perturbing
these protons and measuring how they react to those perturbations allows us to dis-
tinguish between different tissues. For example, tissues that contain fat will show up
as light voxels in a T1-weighted (T1-w) MRI scan. T1-w is a method of measuring what
happens after the perturbations. Tissues or areas that contain water, and thus more hy-
drogen atoms, will be dark on a T1-w sMRI scan.

Most studies dealing with sMRI on different data exploited Region Of Interest (ROI)
based features, like volume and thickness [42, 158, 247].
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Diffusion MRI (dMRI)

dMRI is a non-invasive imaging method that is able to provide information in-vivo
on the cerebral tissue microstructure and cytoarchitecture. This method has been es-
tablished over the last two decades as one of the most promising methods for the
study of tissue microstructure due to its unique sensitivity to the displacement of wa-
ter molecules at the scale of microns. It allows to define numerical indices that describe
the brain tissue microstructure based on the measurements of signal decay along a pre-
defined set of directions, providing an in-vivo indirect measure of the geometry of the
diffusion pores [316, 85] while enabling the construction of the structural connectome
through tractography [317].

The diffusion process and the Ensemble Average Propagator

The intrinsic thermal energy of the tissues induces a random motion on the water
molecules. This process was first defined by Einstein as a self diffusion process [318].
If we consider an ensemble of water particles, the probability density function of a par-
ticle undergoing a displacement r ∈R3 during diffusion time τ ∈R+ is

P (r;τ) = 1p
4π|D|τe

−||rD−1||2
4τ (A.1)

where D is the diffusion tensor, namely the 3× 3 symmetric matrix describing the
magnitude of the diffusion in each direction. The quantity P (r, t ) is called Ensemble
Average Propagator (EAP) [319].

Cellular structures can hinder or restrict the motion of water molecules at micro-
scopic scale. This link between tissue microstructure and diffusion process is the rea-
son why the dMRI signal has the potential to reveal information about the cellular-scale
organization of the tissue.

Diffusion Weighted Imaging

To obtain the EAP it is necessary to acquire the dMRI signal, which can be obtained
with the Pulsed Gradient Spin Echo (PSGE) sequence applied to a MRI protocol. Fig-
ure A.1 shows how the PSGE builds on top of the standard spin-echo MRI acquisition
sequence by applying two additional gradients. These gradients are characterized by
their strength G and their duration δms and are applied with a delay of ∆ms.

The first diffusion gradient is applied after a 90 degree Radio Frequency Spin Echo
(RFSE) pulse, which projects the spin on the plane perpendicular to main magnetiza-
tion direction; the second diffusion gradient is applied after a 180 degree RFSE pulse
which refocuses the spins.
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Appendix/Figures/impulso.pdf

Fig. A.1: Typical PSGE sequence, where the two pulses having width δ ms, are ∆ ms
apart from each other. G represents the strength of the diffusion gradient.

The application of the two pulses will re-establish the original orientation of the
spins that were processing along the applied gradient direction, which had caused a
variation of the field intensity. The spins that have moved between the application of
the two gradients will be subject to a different field strength during the second pulse,
hence they will not return to their exact initial state. The resulting phase shift will be
reflected in a decreased intensity of the measured MR signal. This means that the ob-
tained diffusion weighted images will show low intensity where the diffusivity along the
applied gradient is high.

To quantify this signal loss it is necessary to acquire the signal without any diffusion
gradient (G=0) to obtain the reference signal which depends solely on the amount of
spins in the voxel. The diffusion signal is weighted along the applied gradient direction
with b-value

b = γ2G2δ2(∆−δ/3) (A.2)

which is measured in s/mm3, and where γ (MHz/T) is the nuclear gyromagnetic ra-
tio of the water proton. The diffusion signal can be derived using the Stejskal-Tanner
equation [320]

S(b) = S0e−bD (A.3)

where S0 is the signal acquired at G=0 and D is the Apparent Diffusion Coefficient (Ap-
parent Diffusion Coefficient (ADC)) which can be computed as D(u) = uT Du, where D
the diffusion tensor.
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The estimation of the diffusion of water molecules in the brain requires the sens-
ing of the dMRI signal along multiple spatial directions. Using PSGE sequence at a cer-
tain b-value it is possible to obtain a snapshot of the diffusion process in a given direc-
tion. The most common diffusion-weighted acquisition scheme is composed of multi-
ple gradients acquired at the same b-value but in multiple directions which are spread
uniformly on the surface of a sphere called shell. The estimation of the diffusion of wa-
ter molecules in the brain requires the sensing of the dMRI signal along multiple spatial
directions.

Finally, the diffusion signal can be related to the EAP via a Fourier relationship under
the q-space formalism [321]

E(q,τ) =
∫
R3

P (r,τ)e j 2πqrdr (A.4)

where τ = ∆− δ/3 is the diffusion time, q is expressed as q = γδG
2π and r is the spin

displacement. In order to recover the full probability density function of the water
molecules displacement it is necessary to calculate the inverse Fourier transform of
the diffusion signal. However, this is not generally applicable since the number of sam-
ples acquired in the q-space is limited. To overcome this problem a number of recon-
struction models have been proposed in the literature [84, 102]. The main goal of the
reconstruction models considered in this thesis is to derive the EAP from the raw signal.

Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) [84] models the diffusion signal as a single multivariate
Gaussian function and its equation can be directly derived from the Fourier transform
of Eq. A.1

E(q) = exp(−4π2τqT Dq) (A.5)

where D is the diffusion tensor, a 3×3 symmetric positive definite matrix.
The coefficients of the diffusion tensor can be estimated from the diffusion signal

samples using linear least squares and taking lnE(q).
One of the most important advantages of the diffusion tensor is that its eigenvalues

and eigenvectors decomposition can be directly linked to the biological properties of
the tissues

D =λ1v1vT
1 +λ2v2vT

2 +λ3v3vT
3 (A.6)

with λi the ith biggest eigenvalue associated with the eigenvector vi .
The biggest eigenvector corresponds to the main diffusion direction in the tissue.

In White Matter (WM) voxel this direction corresponds to the average axons main axis.
The associated eigenvalue λ1 represents the ADC in the principal diffusion direction.
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Several indices have been proposed in the literature, calculated from the tensor
eigenvalues, such as Fractional Anisotropy (FA), Mean Diffusivity (MD), Radial Diffu-
sivity (RD), Axial Diffusivity (AxD)

F A =
√

1

2

(λ1 −λ2)2 + (λ1 −λ3)2 + (λ2 −λ3)2

λ2
1 +λ2

2 +λ2
3

(A.7)

MD = λ1 +λ2 +λ3

3
(A.8)

RD = λ2 +λ3

2
(A.9)

AxD =λ1 (A.10)

Although this model has been proven to be suitable for describing weakly con-
strained diffusion and simple WM topologies, it can not cope with complex architec-
tures like fiber crossing, fanning and kissing, and the non-Gaussianity of the diffusion
process inside a restricted medium such as the WM [322].

Simple Harmonic Oscillator based reconstruction and estimation

To overcome the limitation induced by the simple signal reconstruction obtained by fit-
ting the DTI model to the dMRI data, novel reconstruction models have been proposed
in the literature. One of them is the 3D Simple Harmonics Oscillator based Reconstruc-
tion and Estimation (3D-SHORE) [102, 316]. This model is based on the solution of the
3D quantum harmonic oscillator using the orthonormalized basis

E(q) =
Nmax∑

l=0,even

(Nmax+l )
2∑

n=l

l∑
m=−l

cnlmΦnlm(q) (A.11)

In this equation, Nmax is the minimal order of functions, Φnlm(q) are the functions
forming the 3D-SHORE orthonormal basis and are given by

Φnlm(q) = [
2(n − l )!

ζ
3
2Γ(n + 3

2 )
]

1
2 (

q2

ζ
)

1
2 exp(

−q2

2ζ
)L

l+ 1
2

n−l (
q2

ζ
)Y m

l (u) (A.12)

where Γ is the Gamma function and ζ is a scaling parameter determined by the diffu-
sion time and the mean diffusivity [323], [141]. For the 3D-SHORE mode, the EAP is
obtained by plugging Equation A.12 into Equation A.1 [102], [141]. Due to the linearity
of the Fourier transform, the EAP basis is thus expressed in terms of the same set of
coefficients cnlm as the diffusion signal.
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From the fitting of the signal with 3D-SHORE model multiple indices can be derived
that better characterize the diffusion properties of the underlying microstructure. Re-
turn to the Origin Probability (RTOP), Return to the Axis Probability (RTAP) and Return
to the Plane Probability (RTPP) [102] represent respectively the value of the EAP in zero,
the integral of the EAP along the main diffusion direction and over the plane passing
through the origin and perpendicular to the main diffusion direction

RT OP = P (0) (A.13)

RT AP =
∫

R
P (r∥)dr∥ (A.14)

RT PP =
∫ 2

R
P (r⊥)d 2r⊥ (A.15)

where r∥ is the main diffusion direction, and r⊥ indicates the plane orthogonal to the
main diffusion direction and passing through the origin. It has been shown [102], [324]
under the assumption of narrow pulses and long diffusion time, RTAP and RTPP are
proportional to the inverse of the mean apparent cross-sectional area and length of the
compartment where diffusion takes place, respectively. From the EAP it is possible to
derive also a propagator anisotropy index, depending on the angular distance between
the isotropic part of the EAP, that is encoded in the coefficient cn00, and the full EAP as
in [102]

PA =
√√√√1−

∑Nmax
n=0 c2

n00∑Nmax
n,l ,m c2

nlm

(A.16)

Rotation Invariants Features

Novel Rotation Invariant Features (RIF) were proposed in [325]. Usually the most used
dMRI RIF are MD and FA [84] which can be calculated from a rank-2 tensor representa-
tion of the ADC profile [102].

The full RIF set, instead, comprises indices calculated on the Laplace-series expan-
sion of a spherical function and are the natural expansion of spherical mean, power-
spectrum and bispectrum invariants. Moreover, they can be linked to statistical and
geometrical measures of spherical functions, such as the mean, the variance and the
volume of the spherical signal. They can be applied not only in dMRI [326] but also in
computer vision [327] and pattern recognition [328].

The general form of the new RIF can be written as:

Il [f] =
l1∑

m1=−l1

...
ld∑

md=−ld

cl1m1 ...cld md G(l1,m1|...|ld ,md ) (A.17)
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Where l = [l1, l2..., ld ] are the considered Spherical Harmonics (SH) order, f is the
function from which the RIF will be calculated, cli mi are the SH coefficients of order i
and G represents the generalized Gaunt coefficient, namely the integral of l SH [329].

Essentially the equation (A.17) is the sum over all the m of the product of the SH co-
efficients times the integral of multiple SH. Given N the truncation degree of the SH, it
is possible to calculate the number of SH coefficients as nc = (N+1)(N+2)

2 . In [325] they
show that the number of algebraically independent invariants corresponds to nc -3. Al-
gebraic independence is a fundamental property ensuring that none of the elements of
the considered set of RIF can be expressed as an algebraic function of one or more of
the other elements of the set. Therefore, it allows obtaining a non-redundant represen-
tation of the rotation invariant properties of the considered spherical function.

Practically, for a given b-value, it is possible to express the signal as a spherical func-
tion by considering its truncated SH-series expansion

E(b,u) =
N∑

l=0,even

l∑
m=−l

clm(b)Y m
l (u) (A.18)

The equation (A.18) was then replaced in the invariants equation (A.17) to obtain the
invariants on the signal at a given b-value. In this work, a SH degree N = 4 was consid-
ered, therefore 12 algebraic independent invariants for each b-value were generated for
each of the subjects.

A.2 EXplainable Artificial Intelligence (XAI) methods

In this Section we will present in detail the eXplainable Artificial Intelligence (XAI)
methods used throughout the works presented in this thesis

A.2.1 Perturbation based methods

Local Interpretable Model-Agnostic Explanations (LIME)

This is a model-agnostic approach that can be applied to explain any black-box model,
aiming at understanding how the predictions change when the data samples are per-
turbed, enforcing local fidelity and interpretability. Given a global complex model,
LIME focuses on training local surrogate models to explain individual predictions [8]. It
belongs to the family of additive feature attribution methods, which have an explana-
tion model that is a linear function of binary variables:
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g (z ′) =φ0 +
M∑

i=1
φi zi

′ (A.19)

where g is the explanation model, z ′ is a binary variable representing whether the fea-
ture is present or not, M is the number of simplified input features and φi is the feature
attribution. To find φ, the vector that assigns a feature importance φi to each input fea-
ture, LIME minimises the following objective function:

ξ= argmin
g∈G

L( f , g ,π′
x)+Ω(g ) (A.20)

with f representing the original prediction model, G is the family of possible explana-
tions, L is the loss (e.g, Mean Square Error (MSE)) calculated over a set of samples in
the simplified input space weighted by the local kernel π′

x which defines how large the
neighborhood around the instance is, and Ω(g ) penalizes the complexity of g . Going
more into the details, the method starts from an individual instance to be explained
and the associated prediction given by the target black-box model. It then perturbs the
related input features within a neighborhood proximity to measure the changes in pre-
dictions. Based on such perturbations, a new artificial dataset is created and the corre-
sponding predictions using the black-box model are derived. The new data points are
also weighted based on their proximity to the original observation, with closer data hav-
ing higher weights, in order to ensure local fidelity. An exponential kernel with an Eu-
clidean distance is generally chosen for this purpose. An interpretable surrogate simple
model (e.g., linear regression) is then trained on the generated perturbed dataset. This
approximates the original model behavior in the neighborhood of the original samples
and can be exploited to understand which variables are the most important for the ML
prediction by comparing the respective coefficients. Therefore, the impact of each fea-
ture on the prediction is defined by its weights in the local model, which is assumed
to be a good approximation of the more complex original model. This approach has
several advantages, including the fact that the same local, interpretable model can be
used for explanation even if the underlying ML model is changed, it works for differ-
ent data types including tabular data, text and images, and it is easy to use. One main
drawback of such methods is related to the correct definition of the neighborhood cho-
sen to randomly perturbating feature values, and of the kernel function for assigning
the distance-based weights. Moreover, instability of the explanations has been demon-
strated in some scenarios. While LIME inherently provides local model interpretability,
averaging the scores assigned to each feature across all the local explanations allows to
produce a global explanation.
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SHapley Additive exPlanations (SHAP)

This is a model-agnostic explanation method belonging to the class of additive feature
attribution methods which uses a similar concept to LIME and builds on the game the-
ory concept of Shapley values [330]. These values are used to determine contribution of
each player in a coalition or a cooperative game. Indeed, originally, Shapley proposed
a game theory method for assigning fair payouts to players depending on their contri-
bution to the total gain. In a prediction task, this corresponds to assign a quantitative
value to each feature depending on its contribution to a specific prediction. The SHAP
method [252] computes the Shapley values and represents them as a linear model of
feature coalitions. It requires retraining the model on all feature subsets S ⊆ F , where F
is the set of all input features. It assigns an importance value to each feature that repre-
sents the effect on the model prediction given by the inclusion of this feature. To do so,
a model fS∪{i } is trained with that feature present, and another model fS is trained with
the feature withheld. Predictions from the two models are compared on the current in-
put, and this is repeated for all possible subsets. Shapley values are then computed as
the weighted average of all possible differences and used as feature attributions:

φi =
∑

S⊆F \{i }

|S|!(|F |− |S|−1)!

|F |! [ fS∪{i }(xS∪{i })− fS(xS)] (A.21)

According to [252], SHAP values attribute to each feature the change in the expected
model prediction when conditioning on that feature. In this framework, the difference
between the prediction and the average prediction, considered as baseline reference, is
perfectly distributed among all the features. Therefore, SHAP values of all the features
sum up to explain the difference between the actual prediction and the baseline.

SHAP has a solid theoretical foundation, making this approach quite robust, and it
allows to derive contrastive explanations comparing the individual prediction vs the
average one. It also has a fast implementation for tree-based models (TreeSHAP [270],
which was chosen in our study. Moreover, SHAP values present properties of local accu-
racy, missingness, and consistency, which are not simultaneously found in other meth-
ods. An important drawback of SHAP is that it provides additive contributions of the
different variables. However, if the model is not additive, the Shapley values might be
misleading. The variable importance at a global level is given by the mean absolute
SHAP value across all observations.
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A.2.2 Random Forest specific model explanations

Random forest Feature Importance (RFI)

This approach relies on one of the most widely used methods for assessing feature im-
portance measures in the specific case of tree-based models that is the Mean Decreased
Impurity (MDI). MDI is defined as the total decrease in impurity when a given variable
is used to split a node, averaged over all trees of the ensemble [295].
Indeed, in the context of ensembles of randomized trees represented by a tree structure
T , Breiman [295] proposed to evaluate the importance of a variable x for predicting Y
by adding up the weighted impurity decreases for all nodes t where x is used, averaged
over all NT trees in the forest:

MD I (x) = 1

NT

∑
T

∑
t∈T :v(st )=x

p(t )∆i (st , t ) (A.22)

where p(t ) is the proportion Nt /N of samples reaching the node t , v(st ) is the vari-
able used in split st , and ∆i = i (t )−pLi (tL)−pR i (tR ) with impurity measure i (t ) (vari-
ance for regression), tL and tR representing the partitions of the Nt node samples,
pL = NtL/Nt and pR = NtR /Nt . While this approach is widely used for RF, having the
advantage of being easy and fast to compute as it does not require permuting the data,
it has several drawbacks. In particular, this approach is known to be biased in favor of
variables with many possible split points and with high category frequencies [331], and
to be biased in presence of correlated features.

Permutation Feature Importance (PFI)

This approach, known as Mean Decreased Accuracy (MDA), can be used as an alter-
native to overcome the drawbacks of default feature importance computed with MDI.
It measures the changes in the model’s prediction error when a single feature value is
randomly shuffled (MSE in our case). This modification of the model score is indicative
of how much the model depends on that feature. Indeed, permuting an important fea-
ture would result in a large decrease in accuracy while permuting a less relevant feature
would have a negligible effect [295, 297].
This measure is computed for each predictor variable x as follows: 1) the prediction ac-
curacy At is calculated using the Out-Of-Bag (OOB) observations; 2) the observations
are shuffled, and the prediction accuracy A∗

t is recomputed; 3) the difference At – A∗
t is

averaged over all the trees in the forest, returning the permutation importance of x:

PF I (x) = 1

NT

NT∑
t=1

At − A∗
t (A.23)
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Of note, as stated above, the MSE metric is generally used for defining the At and A∗
t

terms in regression problems. This technique benefits from being model-agnostic and
can be calculated many times with different permutations, allowing a straightforward
interpretation of the results. However, it is computationally expensive and might have
problems with highly correlated features.

A.2.3 Saliency maps

Backpropagation

BP [21] relies on the visualization of the gradient of the network output probability
with respect to the input image. For a given voxel, this gradient describes how much
the output probability changes when the voxel value changes. In Convolutional Neural
Networks (CNN)s, the gradient is straightforwardly available since it can be easily com-
puted via the backpropagation algorithm used for training, and it is equivalent to the
visualization of the partial derivatives of the network output with respect to each input
feature scaled by its value. Given an input x and a function Sc that describes the model
output for the class c, the BP can be expressed as

BP (x) = ∂Sc

∂x
. (A.24)

Differently from the backpropagation algorithm used for training, to obtain the saliency
map what is backpropagated is not the classification error, or loss, but directly the clas-
sification probability for a given class. The absolute value of the resulting coefficients is
taken as the relevance score representing the feature importance.

For an intuition of this method, following the example in [22] and Figure A.2, we can
exemplify what happens in the backward pass to obtain the saliency maps for the con-
volutional and, in particular, for the Rectified Linear Unit (Rectified Linear Unit (ReLU))
layer which holds the difference between Guided BackPropagation (GBP) and GBP. The
ReLU layer is responsible for adding the non linearity to the neural network. For short,
it is a piece-wise linear function that is defined to be zero for all negative values of the
node input and one otherwise, thus keeping unchanged the positive input values while
annihilating the negative ones.

Given the input image or volume x, during the forward pass, each CNN layer l re-
turns a feature activation map f l till the last layer L. Then, starting from f L it is possible
to generate the backpropagation map RL by zeroing all the neuron activations except
the one to be backpropagated, that is the one related to the target class, and to start the
backward pass to reconstruct the input image x showing the part of the input image
that is most strongly activating this neuron. Each R l represents an intermediate step
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in the calculation of the BP, for the intermediate layer l . When reaching the CNN input
layer, the reconstruction R1 will have the same size of the input x.

Starting from the convolutional layers, the respective activation in the forward pass
can be expressed as fl+1 = fl ⊛Kl , where Kl is a convolutional kernel. The gradient with
respect to the output feature map RL , for layer l is then

R l = ∂RL

∂ fl
= ∂RL

∂ fl+1
⊛ K̂l (A.25)

where K̂l is the flipped version of the kernel Kl and f is the visualized neuron activity.
The convolution with the flipped kernel exactly corresponds to computing the l th layer
reconstruction Rl .

Moving to the ReLU layers, the activation during the forward pass can be defined as
fl+1(x) = ReLU ( fl ) = max( fl ,0). The respective backpropagation computes the gradi-
ent of RL with respect to the ReLu layer l as

R l = ∂RL

∂ fl
= ∂RL

∂ fl+1
· ( fl > 0) = R l+1 · ( fl > 0) (A.26)

where the (·) operator represents the element-wise multiplication. The element that
defines which gradients are backpropagated, in this case ( fl > 0), is also known as sign
operator.

By iterating these steps backward through the network layers results in R1, repre-
senting the image-specific class saliency map, highlighting the areas of the given input
that is discriminative with respect to that class.

Guided Backpropagation

This method was presented by [22] and is a modified version of BP with respect to the
backward pass through the ReLU layer. More in detail, GBP combines the approach
used for the Deconvolution Network (DeconvNet) [110] with the one described for the
BP, leading to more focused heatmaps.

Here, we briefly present the DeconvNet in order to introduce the GBP . The focus
will be on the backpropagation through the ReLU layer which holds the main difference
between BP and DeconvNet. Following the same mathematical framework as for the BP,
the DeconvNet backward pass through the ReLu layer l can be described as

R l = ∂RL

∂ fl
= ∂RL

∂ fl+1
· (R l+1 > 0) = R l+1 · (R l+1 > 0) (A.27)

This differs from the BP since the sign indicator is based on the output reconstruction
R l+1 of the precedent layer and not on the input activation fl+1 to the precedent layer
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as for BP. This allows only positive error signals to be backpropagated through the net
to obtain the final saliency map.

Moving to the GBP , this method defines the backpropagation through the ReLU
layer l as

R l = ∂RL

∂ fl
= ∂RL

∂ fl+1
· (R l+1 > 0) · ( fl > 0) = R l+1 · (R l+1 > 0) · ( fl > 0) (A.28)

Like DeconvNets, in GBP only positive error signals are backpropagated setting the
negative gradients to zero, which amounts to the application of the ReLU to the er-
ror signal itself during the backward pass. Moreover, like in BP, only positive inputs are
considered. The advantage of retaining only positive gradients is to prevent a backward
flow of negative contributions corresponding to neurons which inhibit the activation of
the higher level neuron. As opposed to BP, this can act as an additional guidance signal
when traversing the network. As above, the absolute value of the gradient is taken as the
relevance score.

Appendix/Figures/F1.png

Fig. A.2: Differences between BackPropagation (BP), GBP and DeconvNet in the back-
propagation through the ReLU layers, following the example proposed in [22]
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Chapter5/Figures_EDL_AI/F2.png

Fig. A.3: Overview of LRP visualization procedure.

Layerwise Relevance Propagation (LRP)

LRP is slightly different from both BP and GBP since it is based on a backward procedure
which is a conservative relevance redistribution of the output prediction probability
through the CNN layers till the input volume, as shown in Figure A.3.

Briefly, let i and j be the indices for neurons at two successive layers r and r +1. Let
Rr+1

j be the relevance of neuron j for the prediction f (x) where x is the neural network

input. The relevance Rr+1
j is redistributed to the connected neurons in layer r such that

the relevance conservation holds: ∑
i

Rr
i← j = Rr+1

j . (A.29)

By iterating Eq. A.29 through all the layers, it is possible to decompose the relevance
score of the prediction f (x), R f in terms of the input variables of the first layer. This
allows to easily visualize the relevance values as heatmaps.
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Different rules have been applied in literature for redistributing the relevance [46].
In this work we used the β-rule as in [32, 123]:

Rr,r+1
i← j =

(
(1+β)

w+
i j

w+
j

−β
w−

i j

w−
j

)
Rr+1

j (A.30)

In this equation, w+/−
i , j is the amount of positive/negative contribution that node j

transfers to node i , divided by the sum over all positive/negative contributions of the
nodes in layer r . In fact w+/−

j = ∑
i w+/−

i , j , such that the relevance is conserved from
layer r +1 to layer r . This approach was adopted following [26], where multiple β val-
ues were tested to assess their impact on the resulting heatmaps. The authors proved
the LRP robustness relatively to the correspondingβ-value. Theβ-rule decomposes the
relevance score in positive and negative contributions, and weights the relative impor-
tance according to the β parameter. Setting β = 0 adds only positive contributions to
the relevance score. Negative contributions hold an inhibitory effect highlighting the
voxels that are antagonist to those having strong positive impact on the classification
function. Since in this work we aimed at detecting those voxels playing in favour of the
correct classification of PPMS patients, we constrained β to be zero.
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[265] Serap Aydın, Çağdaş Güdücü, Fırat Kutluk, Adile Öniz, and Murat Özgören. “The
impact of musical experience on neural sound encoding performance”. In: Neu-
roscience letters 694 (2019), pp. 124–128.

[266] Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais,
Andreas Mueller, Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and Gaël
Varoquaux. “Machine learning for neuroimaging with scikit-learn”. In: Frontiers
in neuroinformatics (2014), p. 14.

[267] Richard W Bohannon. “Motricity index scores are valid indicators of paretic up-
per extremity strength following stroke”. In: Journal of Physical Therapy Science
11.2 (1999), pp. 59–61.

[268] Silvia Campagnini, Piergiuseppe Liuzzi, Andrea Mannini, Benedetta Basagni,
Claudio Macchi, Maria Chiara Carrozza, and Francesca Cecchi. “Cross-validation
of predictive models for functional recovery after post-stroke rehabilitation”. In:
Journal of NeuroEngineering and Rehabilitation 19.1 (2022), pp. 1–11.

[269] Ceren Tozlu, Dylan Edwards, Aaron Boes, Douglas Labar, K Zoe Tsagaris, Joshua
Silverstein, Heather Pepper Lane, Mert R Sabuncu, Charles Liu, and Amy Kuceyeski.
“Machine learning methods predict individual upper-limb motor impairment



BIBLIOGRAPHY 247

following therapy in chronic stroke”. In: Neurorehabilitation and neural repair
34.5 (2020), pp. 428–439.

[270] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. “From
local explanations to global understanding with explainable AI for trees”. In: Na-
ture machine intelligence 2.1 (2020), pp. 56–67.

[271] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. “Explain-
able ai: A review of machine learning interpretability methods”. In: Entropy 23.1
(2020), p. 18.

[272] Bo Norrving and Brett Kissela. “The global burden of stroke and need for a con-
tinuum of care”. In: Neurology 80.3 Supplement 2 (2013), S5–S12.
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Sommario

L’adozione di modelli di Intelligenza Artificiale (IA) in medicina e nelle neuroscienze ha
il potenziale per svolgere un ruolo significativo non solo nel portare progressi scienti-
fici, ma anche nel contribuire al processo decisionale clinico. Tuttavia, esistono molti
dubbi e preoccupazioni a riguardo, dovute agli eventuali bias che l’IA potrebbe avere
e che potrebbero avere conseguenze di vasta portata, soprattutto in un campo critico
come quello della biomedicina.
É difficile ottenere modelli IA utilizzabili perché non solo é fondamentale imparare dai
dati, estrarre la conoscenza e garantire la capacitá di generalizzazione, ma é anche ne-
cessario districare i fattori esplicativi sottostanti per comprendere a fondo le variabili
che portano alle decisioni finali. Da qui la richiesta di approcci che aprano la “scatola
nera" dell’IA per aumentare la fiducia e l’affidabilitá delle capacitá decisionali degli al-
goritmi di IA. Tali approcci sono comunemente definiti Explainable IA (XAI) e stanno
iniziando ad essere applicati in campo medico, anche se non ancora pienamente sfrut-
tati.
Con questa tesi intendiamo contribuire a rendere possibile l’uso dell’IA in medicina
e nelle neuroscienze compiendo due passi fondamentali: (i) pervadere praticamente i
modelli di IA con XAI (ii) proporre metodi di validatione per i modelli XAI.
Il primo passo é stato raggiunto da un lato concentrandosi sulla tassonomia XAI e pro-
ponendo alcune linee guida specifiche per le applicazioni di IA e XAI nel settore delle
neuroscienze. Dall’altro lato, abbiamo affrontato questioni concrete proponendo solu-
zioni XAI per decodificare le modulazioni cerebrali nella neurodegenerazione basando-
ci sui cambiamenti morfologici, microstrutturali e funzionali che si verificano in diversi
stadi della malattia e sulle loro connessioni con il substrato genotipico.
Il secondo passo é stato raggiunto definendo innanzitutto quattro attributi relativi al-
la validazione delle XAI, ovvero stabilitá, coerenza, comprensibilitá e plausibilitá. Cia-
scun attributo si riferisce a un aspetto diverso della XAI, che va dalla valutazione del-
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la stabilitá delle spiegazioni tra diversi metodi XAI, o tra input altamente collineari,
all’allineamento delle spiegazioni ottenute con lo stato dell’arte della letteratura. Ab-
biamo quindi proposto diverse tecniche di validazione che mirano a soddisfare prati-
camente tali requisiti.
Con questa tesi, abbiamo contribuito all’avanzamento della ricerca sulla XAI, con lo
scopo di aumentare la consapevolezza e l’uso critico dei metodi di IA, aprendo la stra-
da ad applicazioni reali che consentano lo sviluppo di una medicina e di un trattamento
personalizzati, adottando un approccio oggettivo e guidato dai dati all’assistenza sani-
taria.
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