24 research outputs found

    Preliminary design of the full-Stokes UV and visible spectropolarimeter for UVMag/Arago

    Full text link
    The UVMag consortium proposed the space mission project Arago to ESA at its M4 call. It is dedicated to the study of the dynamic 3D environment of stars and planets. This space mission will be equipped with a high-resolution spectropolarimeter working from 119 to 888 nm. A preliminary optical design of the whole instrument has been prepared and is presented here. The design consists of the telescope, the instrument itself, and the focusing optics. Considering not only the scientific requirements, but also the cost and size constraints to fit a M-size mission, the telescope has a 1.3 m diameter primary mirror and is a classical Cassegrain-type telescope that allows a polarization-free focus. The polarimeter is placed at this Cassegrain focus. This is the key element of the mission and the most challenging to be designed. The main challenge lies in the huge spectral range offered by the instrument; the polarimeter has to deliver the full Stokes vector with a high precision from the FUV (119 nm) to the NIR (888 nm). The polarimeter module is then followed by a high-resolution echelle-spectrometer achieving a resolution of 35000 in the visible range and 25000 in the UV. The two channels are separated after the echelle grating, allowing a specific cross-dispersion and focusing optics for the UV and visible ranges. Considering the large field of view and the high numerical aperture, the focusing optic for both the UV and visible channels is a Three-Mirror-Anastigmat (TMA) telescope, in order to focus the various wavelengths and many orders onto the detectors.Comment: 6 pages, 6 figures, IAUS 30

    UVMag: Space UV and visible spectropolarimetry

    Full text link
    UVMag is a project of a space mission equipped with a high-resolution spectropolarimeter working in the UV and visible range. This M-size mission will be proposed to ESA at its M4 call. The main goal of UVMag is to measure the magnetic fields, winds and environment of all types of stars to reach a better understanding of stellar formation and evolution and of the impact of stellar environment on the surrounding planets. The groundbreaking combination of UV and visible spectropolarimetric observations will allow the scientists to study the stellar surface and its environment simultaneously. The instrumental challenge for this mission is to design a high-resolution space spectropolarimeter measuring the full-Stokes vector of the observed star in a huge spectral domain from 117 nm to 870 nm. This spectral range is the main difficulty because of the dispersion of the optical elements and of birefringence issues in the FUV. As the instrument will be launched into space, the polarimetric module has to be robust and therefore use if possible only static elements. This article presents the different design possibilities for the polarimeter at this point of the project.Comment: 9 pages, 4 figures, SPIE Conference Astronomical Telescopes + Instrumentation Montreal June 201

    Polarization Modeling and Predictions for DKIST Part 2: Application of the Berreman Calculus to Spectral Polarization Fringes of Beamsplitters and Crystal Retarders

    Get PDF
    We outline polarization fringe predictions derived from a new application of the Berreman calculus for the Daniel K. Inouye Solar Telescope (DKIST) retarder optics. The DKIST retarder baseline design used 6 crystals, single-layer anti-reflection coatings, thick cover windows and oil between all optical interfaces. This new tool estimates polarization fringes and optic Mueller matrices as functions of all optical design choices. The amplitude and period of polarized fringes under design changes, manufacturing errors, tolerances and several physical factors can now be estimated. This tool compares well with observations of fringes for data collected with the SPINOR spectropolarimeter at the Dunn Solar Telescope using bi-crystalline achromatic retarders as well as laboratory tests. With this new tool, we show impacts of design decisions on polarization fringes as impacted by anti-reflection coatings, oil refractive indices, cover window presence and part thicknesses. This tool helped DKIST decide to remove retarder cover windows and also recommends reconsideration of coating strategies for DKIST. We anticipate this tool to be essential in designing future retarders for mitigation of polarization and intensity fringe errors in other high spectral resolution astronomical systems.Comment: Accepted for publication in JATI

    Design of a Full-Stokes Polarimeter for VLT/X-shooter

    Get PDF
    X-shooter is one of the most popular instruments at the VLT, offering instantaneous spectroscopy from 300 to 2500 nm. We present the design of a single polarimetric unit at the polarization-free Cassegrain focus that serves all three spectrograph arms of X-shooter. It consists of a calcite Savart plate as a polarizing beam-splitter and a rotatable crystal retarder stack as a "polychromatic modulator". Since even "superachromatic" wave plates have a wavelength range that is too limited for X-shooter, this novel modulator is designed to offer close-to-optimal polarimetric efficiencies for all Stokes parameters at all wavelengths. We analyze the modulator design in terms of its polarimetric performance, its temperature sensitivity, and its polarized fringes. Furthermore, we present the optical design of the polarimetric unit. The X-shooter polarimeter will furnish a myriad of science cases: from measuring stellar magnetic fields (e.g., Ap stars, white dwarfs, massive stars) to determining asymmetric structures around young stars and in supernova explosions.Comment: Proc. SPIE 8446-7

    Intercomparison of Airborne Multi-Angle Polarimeter Observations from the Polarimeter Definition Experiment (PODEX)

    Get PDF
    In early 2013, three airborne polarimeters were flown on the high altitude NASA ER-2 aircraft in California for the Polarimeter Definition Experiment (PODEX). PODEX supported the pre-formulation NASA Aerosol-Cloud-Ecosystem (ACE) mission, which calls for an imaging polarimeter in polar orbit (among other instruments) for the remote sensing of aerosols, oceans and clouds. Several polarimeter concepts exist as airborne prototypes, some of which were deployed during PODEX as a capabilities test. Two of those instruments to date have successfully produced Level 1 (georegistered, calibrated radiance and polarization) data from that campaign: the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) and the Research Scanning Polarimeter (RSP). We compared georegistered observations of a variety of scene types by these instruments to test if Level 1 products agree within stated uncertainties. Initial comparisons found radiometric agreement, but polarimetric biases beyond measurement uncertainties. After subsequent updates to calibration, georegistration, and the measurement uncertainty models, observations from the instruments now largely agree within stated uncertainties. However, the 470nm reflectance channels have a roughly +6% bias of AirMSPI relative to RSP, beyond expected measurement uncertainties. We also find that observations of dark (ocean) scenes, where polarimetric uncertainty is expected to be largest, do not agree within stated polarimetric uncertainties. Otherwise, AirMSPI and RSP observations are consistent within measurement uncertainty expectations, providing credibility for subsequent creation of Level 2 (geophysical product) data from these instruments, and comparison thereof. The techniques used in this work can also form a methodological basis for other intercomparisons, such as of the data gathered during the recent Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign, carried out in October and November of 2017 with four polarimeters (including AirMSPI and RSP)

    Exact bound–bound Gaunt factor values for quantum levels up to n = 2000

    No full text
    Comparison of observations of radio recombination lines in the interstellar medium with theoretical models can be used to constrain electron temperature and density of the gas. An important component of the models is spontaneous transition rates between bound levels. Calculating these rates relies on accurate bound-bound oscillator strengths, which can be cast in terms of the Gaunt factor. The Gaunt factor contains terminating hypergeometric functions that cannot be calculated with sufficient accuracy for high quantum levels (n50n \gtrsim 50) by standard machine-precision methods. Methods to overcome the accuracy problem have been developed, which include asymptotic expansions and recursion relations. These methods, used in astrophysical models to calculate oscillator strengths, can introduce errors, sometimes up to as much as 8\sim 8 per cent. Detections of radio recombination lines with the new Low Frequency Array (LOFAR) has prompted an examination of theoretical models of the interstellar medium. We revisit the calculation of the Gaunt factor, employing modern arbitrary-precision computational methods to tabulate the Gaunt factor for transitions up to quantum level n=2000n=2000, sufficient to model low frequency Carbon radio recombination lines. The calculations provide a relative error of 3×104\sim3\times 10^{-4} when compared to more detailed calculations including relativistic corrections. Our values for the Gaunt factor are provided for download in a tabular format to be used for a wide range of applications.Comment: published in MNRAS, 6 pages, 3 figures, online data can be found at: http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/MNRAS/441/285
    corecore