6 research outputs found

    Sediment respiration contributes to phosphate release in lowland surface waters

    No full text
    High phosphate (PO4) concentration peaks in lowland rivers occur due to internal loading at low flow rates and low dissolved oxygen (DO) concentrations. However the mechanisms controlling this PO4 are not fully understood yet. This study was set up to identify additional factors affecting internal P loading, the hypothesis being that sediment respiration varies among sediments and might explain spatial variability in reducing conditions. The sediment of ten rivers was collected for a static sediment-water incubation experiment without aeration, to induce oxygen depletion by sediment respiration. In addition, four out of the ten sediments were selected and amended with mineral-N and OM in a full factorial design, to evaluate the impact of increased respiration rates and subsequent P release. The P release to the overlying water sharply increased if the average CO2 release rate exceeded 12 mmol CO2 m−2 day−1 over the first 15 days. However, the P concentration remained below environmental limits as long as the molar P/Fe ratio in the oxalate extract of the sediment was lower than 0.12. The P release increased with increasing sediment cation exchange capacity (CEC), which lowers solution Fe(II) and avoids trapping of PO4 in Fe-minerals. The PO4 release could be explained by a multiple regression model including CO2 release, oxalate extractable sediment P, Fe and Al and the CEC (R2 = 0.78), the R2 was only 0.41 for the molar P/Fe ratio in the sediment. This study shows that internal loading of P is enhanced under eutrophic conditions which boost sediment respiration and which may be attenuated when the CEC and Fe + Al oxide concentrations in the sediments are large.status: Published onlin

    A comparison of soil tests for available phosphorus in long-term field experiments in Europe

    No full text
    Most soil tests for available phosphorus (P) perform rather poorly in predicting crop response. This study was set up to compare different established soil tests in their capacity to predict crop response across contrasting types of soil. Soil samples from long-term field experiments, the oldest >100 years old, were collected in five European countries. The total number of soil samples (n =218), which differed in cropping and P treatment, and originated from 11 different soil types, were analysed with five tests: ammonium oxalate (Ox), ammonium lactate (AL), Olsen P, 0.01 m CaCl2 and the diffusive gradient in thin film (DGT). The first three tests denote available P quantity (Q), whereas the last two indicate P intensity (I) of the soil solution. All five tests were positively related to the crop yield data (n =317). The Q-tests generally outperformed I-tests when evaluated with goodness of fit in Mitscherlich models, but critical P values of the I-tests varied the least among different types of soil. No test was clearly superior to the others, except for the oxalate extraction, which was generally poor. The combination of Q- and I-tests performed slightly better for predicting crop yield than any single soil P test. This Q+I analysis explains why recent successes with I-tests (e.g. DGT) were found for soils with larger P sorption than for those in the present study. This systematic evaluation of soil tests using a unique compilation of established field trials provides critical soil P values that are valid across Europe.status: publishe
    corecore