93 research outputs found

    Understanding the prebiotic potential of different dietary fibers using an <em>in vitro</em> continuous adult fermentation model (PolyFermS)

    Get PDF
    Abstract Consumption of fermentable dietary fibers (DFs), which can induce growth and/or activity of specific beneficial populations, is suggested a promising strategy to modulate the gut microbiota and restore health in microbiota-linked diseases. Until today, inulin and fructo-oligosaccharides (FOS) are the best studied DFs, while little is known about the gut microbiota-modulating effects of β-glucan, α-galactooligosaccharide (α-GOS) and xylo-oligosaccharide (XOS). Here, we used three continuous in vitro fermentation PolyFermS model to study the modulating effect of these DFs on two distinct human adult proximal colon microbiota, independently from the host. Supplementation of DFs, equivalent to a 9 g daily intake, induced a consistent metabolic response depending on the donor microbiota. Irrespective to the DF supplemented, the Bacteroidaceae-Ruminococcaceae dominated microbiota produced more butyrate (up to 96%), while the Prevotellaceae-Ruminococcaceae dominated microbiota produced more propionate (up to 40%). Changes in abundance of specific bacterial taxa upon DF supplementation explained the observed changes in short-chain fatty acid profiles. Our data suggest that the metabolic profile of SCFA profile may be the most suitable and robust read-out to characterize microbiota-modulating effects of a DF and highlights importance to understand the inter-individual response to a prebiotic treatment for mechanistic understanding and human application

    Identification of NF-κB Modulation Capabilities within Human Intestinal Commensal Bacteria

    Get PDF
    The intestinal microbiota plays an important role in modulation of mucosal immune responses. To seek interactions between intestinal epithelial cells (IEC) and commensal bacteria, we screened 49 commensal strains for their capacity to modulate NF-κB. We used HT-29/kb-seap-25 and Caco-2/kb-seap-7 intestinal epithelial cells and monocyte-like THP-1 blue reporter cells to measure effects of commensal bacteria on cellular expression of a reporter system for NF-κB. Bacteria conditioned media (CM) were tested alone or together with an activator of NF-κB to explore its inhibitory potentials. CM from 8 or 10 different commensal species activated NF-κB expression on HT-29 and Caco-2 cells, respectively. On THP-1, CM from all but 5 commensal strains stimulated NF-κB. Upon challenge with TNF-α or IL-1β, some CM prevented induced NF-κB activation, whereas others enhanced it. Interestingly, the enhancing effect of some CM was correlated with the presence of butyrate and propionate. Characterization of the effects of the identified bacteria and their implications in human health awaits further investigations

    Stepwise Development of an in vitro Continuous Fermentation Model for the Murine Caecal Microbiota

    Get PDF
    Murine models are valuable tools to study the role of gut microbiota in health or disease. However, murine and human microbiota differ in species composition, so further investigation of the murine gut microbiota is important to gain a better mechanistic understanding. Continuous in vitro fermentation models are powerful tools to investigate microbe-microbe interactions while circumventing animal testing and host confounding factors, but are lacking for murine gut microbiota. We therefore developed a novel continuous fermentation model based on the PolyFermS platform adapted to the murine caecum and inoculated with immobilized caecal microbiota. We followed a stepwise model development approach by adjusting parameters [pH, retention time (RT), growth medium] to reach fermentation metabolite profiles and marker bacterial levels similar to the inoculum. The final model had a stable and inoculum-alike fermentation profile during continuous operation. A lower pH during startup and continuous operation stimulated bacterial fermentation (115 mM short-chain fatty acids at pH 7 to 159 mM at pH 6.5). Adjustments to nutritive medium, a decreased pH and increased RT helped control the in vitro Enterobacteriaceae levels, which often bloom in fermentation models, to 6.6 log gene copies/mL in final model. In parallel, the Lactobacillus, Lachnospiraceae, and Ruminococcaceae levels were better maintained in vitro with concentrations of 8.5 log gene copies/mL, 8.8 log gene copies/mL and 7.5 log gene copies/mL, respectively, in the final model. An independent repetition with final model parameters showed reproducible results in maintaining the inoculum fermentation metabolite profile and its marker bacterial levels. Microbiota community analysis of the final model showed a decreased bacterial diversity and compositional differences compared to caecal inoculum microbiota. Most of the caecal bacterial families were represented in vitro, but taxa of the Muribaculaceae family were not maintained. Functional metagenomics prediction showed conserved metabolic and functional KEGG pathways between in vitro and caecal inoculum microbiota. To conclude, we showed that a rational and stepwise approach allowed us to model in vitro the murine caecal microbiota and functions. Our model is a first step to develop murine microbiota model systems and offers the potential to study microbiota functionality and structure ex vivo

    Co-cultivation is a powerful approach to produce a robust functionally designed synthetic consortium as a live biotherapeutic product (LBP).

    Get PDF
    The success of fecal microbiota transplants (FMT) has provided the necessary proof-of-concept for microbiome therapeutics. Yet, feces-based therapies have many associated risks and uncertainties, and hence defined microbial consortia that modify the microbiome in a targeted manner have emerged as a promising safer alternative to FMT. The development of such live biotherapeutic products has important challenges, including the selection of appropriate strains and the controlled production of the consortia at scale. Here, we report on an ecology- and biotechnology-based approach to microbial consortium construction that overcomes these issues. We selected nine strains that form a consortium to emulate the central metabolic pathways of carbohydrate fermentation in the healthy human gut microbiota. Continuous co-culturing of the bacteria produces a stable and reproducible consortium whose growth and metabolic activity are distinct from an equivalent mix of individually cultured strains. Further, we showed that our function-based consortium is as effective as FMT in counteracting dysbiosis in a dextran sodium sulfate mouse model of acute colitis, while an equivalent mix of strains failed to match FMT. Finally, we showed robustness and general applicability of our approach by designing and producing additional stable consortia of controlled composition. We propose that combining a bottom-up functional design with continuous co-cultivation is a powerful strategy to produce robust functionally designed synthetic consortia for therapeutic use

    The gut bacterium and pathobiont Bacteroides vulgatus activates NF-κB in a human gut epithelial cell line in a strain and growth phase dependent manner

    Get PDF
    The gut microbiota is increasingly implicated in the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC) although the identity of the bacteria that underpin these diseases has remained elusive. The pathobiont Bacteroides vulgatus has been associated with both diseases although relatively little is known about how its growth and functional activity might drive the host inflammatory response. We identified an ATP Binding Cassette (ABC) export system and lipoprotein in B. vulgatus ATCC 8482 and B. vulgatus PC510 that displayed significant sequence similarity to an NF-κB immunomodulatory regulon previously identified on a CD-derived metagenomic fosmid clone. Interestingly, the ABC export system was specifically enriched in CD subjects suggesting that it may be important for colonization and persistence in the CD gut environment. Both B. vulgatus ATCC 8482 and PC510 activated NF-κB in a strain and growth phase specific manner in a HT-29/kb-seap-25 enterocyte like cell line. B. vulgatus ATCC 8482 also activated NF-κB in a Caco-2-NF-κBluc enterocyte like and an LS174T-NF-κBluc goblet cell like cell lines, and induced NF-κB-p65 subunit nuclear translocation and IL-6, IL-8, CXCL-10 and MCP-1 gene expression. Despite this, NF-κB activation was not coincident with maximal expression of the ABC exporter or lipoprotein in B. vulgatus PC510 suggesting that the regulon may be necessary but not sufficient for the immunomodulatory effects

    Microbiome-based interventions to modulate gut ecology and the immune system

    Get PDF
    The gut microbiome lies at the intersection between the environment and the host, with the ability to modify host responses to disease-relevant exposures and stimuli. This is evident in how enteric microbes interact with the immune system, e.g., supporting immune maturation in early life, affecting drug efficacy via modulation of immune responses, or influencing development of immune cell populations and their mediators. Many factors modulate gut ecosystem dynamics during daily life and we are just beginning to realise the therapeutic and prophylactic potential of microbiome-based interventions. These approaches vary in application, goal, and mechanisms of action. Some modify the entire community, such as nutritional approaches or faecal microbiota transplantation, while others, such as phage therapy, probiotics, and prebiotics, target specific taxa or strains. In this review, we assessed the experimental evidence for microbiome-based interventions, with a particular focus on their clinical relevance, ecological effects, and modulation of the immune system

    Publisher Correction:Voices of biotech leaders (Nature Biotechnology, (2021), 39, 6, (654-660), 10.1038/s41587-021-00941-4)

    Get PDF
    In the version of this article initially published, an author name was given as Abasi Ene Abong. The correct name is Abasi Ene-Obong. Also, the affiliation for Sebastian Giwa was given as Elevian, Pagliuca Harvard Life Lab, Allston, MA, USA. The correct affiliations are Biostasis Research Institute, Berkeley, CA, USA; Sylvatica Biotech, North Charleston, SC, USA; and Humanity Bio, Kensington, CA, USA. An affiliation for Jeantine Lunshof was given as Department of Genetics, Harvard Medical School, Boston, MA, USA. The correct affiliation is Wyss Institute for Biological Engineering, Harvard University, Boston, MA, USA. The errors have been corrected in the PDF and HTML versions of the article

    Quantifying diet-induced metabolic changes of the human gut microbiome

    Get PDF
    The human gut microbiome is known to be associated with various human disorders, but a major challenge is to go beyond association studies and elucidate causalities. Mathematical modeling of the human gut microbiome at a genome-scale is a useful tool to decipher microbe-microbe, diet-microbe and microbe-host interactions. Here, we describe the CASINO (Community and Systems-level Interactive Optimization) toolbox, a comprehensive computational platform for analysis of microbial communities through metabolic modeling. We first validated the toolbox by simulating and testing the performance of single bacteria and whole communities in in vitro. Focusing on metabolic interactions between the diet, gut microbiota and host metabolism, we demonstrated the predictive power of the toolbox in a diet-intervention study of 45 obese and overweight individuals, and validated our predictions by fecal and blood metabolomics data. Thus, modeling could quantitatively describe altered fecal and serum amino acid levels in response to diet intervention
    corecore