81 research outputs found

    Decrease of sexual organ reciprocity between heterostylous primrose species, with possible functional and evolutionary implications

    Get PDF
    Background and Aims Heterostyly is a floral polymorphism that has fascinated evolutionary biologists since Darwin's seminal studies on primroses. The main morphological characteristic of heterostyly is the reciprocal placement of anthers and stigmas in two distinct (distyly) floral morphs. Variation in the degree of intermorph sexual reciprocity is relatively common and known to affect patterns of pollen transfer within species. However, the partitioning of sexual organ reciprocity within and between closely related species remains unknown. This study aimed at testing whether intermorph sexual reciprocity differs within vs. between primrose species that hybridize in nature and whether the positions of sexual organs are correlated with other floral traits. Methods Six floral traits were measured in both floral morphs of 15 allopatric populations of Primula elatior, P. veris and P. vulgaris, and anther-stigma reciprocity was estimated within and between species. A combination of univariate and multivariate approaches was used to test whether positions of reproductive organs were less reciprocal between than within species, to assess correlations between sexual organ positions and other corolla traits, and to quantify differences between morphs and species. Key Results The three species were morphologically well differentiated in most floral traits, except that P. veris and P. vulgaris did not differ significantly in sexual organ positions. Overall, lower interspecific than intraspecific sexual organ reciprocity was detected. This decrease was marked between P. elatior and P. vulgaris, intermediate and variable between P. elatior and P. veris, but negligible between P. veris and P. vulgaris. Conclusions Differences in anther and stigma heights between the analysed primrose species were of the same magnitude or larger than intraspecific differences that altered pollen flow within other heterostylous systems. Therefore, it is possible to suggest that considerable reductions of sexual organ reciprocity between species may lower interspecific pollen flow, with potential effects on reproductive isolatio

    Prevalence and relationship of endosymbiotic Wolbachia in the butterfly genus Erebia

    Get PDF
    Wolbachia is an endosymbiont common to most invertebrates, which can have significant evolutionary implications for its host species by acting as a barrier to gene flow. Despite the importance of Wolbachia, still little is known about its prevalence and diversification pattern among closely related host species. Wolbachia strains may phylogenetically coevolve with their hosts, unless horizontal host-switches are particularly common. We address these issues in the genus Erebia, one of the most diverse Palearctic butterfly genera.; We sequenced the Wolbachia genome from a strain infecting Erebia cassioides and showed that it belongs to the Wolbachia supergroup B, capable of infecting arthropods from different taxonomic orders. The prevalence of Wolbachia across 13 closely related Erebia host species based on extensive population-level genetic data revealed that multiple Wolbachia strains jointly infect all investigated taxa, but with varying prevalence. Finally, the phylogenetic relationships of Wolbachia strains are in some cases significantly associated to that of their hosts, especially among the most closely related Erebia species, demonstrating mixed evidence for phylogenetic coevolution.; Closely related host species can be infected by closely related Wolbachia strains, evidencing some phylogenetic coevolution, but the actual pattern of infection more often reflects historical or contemporary geographic proximity among host species. Multiple processes, including survival in distinct glacial refugia, recent host shifts in sympatry, and a loss of Wolbachia during postglacial range expansion seem to have jointly shaped the complex interactions between Wolbachia evolution and the diversification of its host among our studied Erebia species

    Different molecular changes underlie the same phenotypic transition: Origins and consequences of independent shifts to homostyly within species

    Full text link
    The repeated transition from outcrossing to selfing is a key topic in evolutionary biology. However, the molecular basis of such shifts has been rarely examined due to lack of knowledge of the genes controlling these transitions. A classic example of mating system transition is the repeated shift from heterostyly to homostyly. Occurring in 28 angiosperm families, heterostyly is characterized by the reciprocal position of male and female sexual organs in two (or three) distinct, usually self-incompatible floral morphs. Conversely, homostyly is characterized by a single, self-compatible floral morph with reduced separation of male and female organs, facilitating selfing. Here, we investigate the origins of homostyly in Primula vulgaris and its microevolutionary consequences by integrating surveys of the frequency of homostyles in natural populations, DNA sequence analyses of the gene controlling the position of female sexual organs (CYPᔀ), and microsatellite genotyping of both progeny arrays and natural populations characterized by varying frequencies of homostyles. As expected, we found that homostyles displace short-styled individuals, but long-style morphs are maintained at low frequencies within populations. We also demonstrated that homostyles repeatedly evolved from short-styled individuals in association with different types of loss-of- function mutations in CYPᔀ. Additionally, homostyly triggers a shift to selfing, promoting increased inbreeding within and genetic differentiation among populations. Our results elucidate the causes and consequences of repeated transitions to homostyly within species, and the putative mechanisms precluding its fixation in P. vulgaris. This study represents a benchmark for future analyses of losses of heterostyly in other angiosperms

    Phylogenomics of the pantropical Connaraceae: revised infrafamilial classification and the evolution of heterostyly

    Get PDF
    Connaraceae is a pantropical family of about 200 species containing lianas and small trees with remarkably diverse floral polymorphisms, including distyly, tristyly, homostyly, and dioecy. To date, relationships within the family have not been investigated using a targeted molecular phylogenetic treatment, severely limiting systematic understanding and reconstruction of trait evolution. Accordingly, their last infrafamilial classification was based only on morphological data. Here, we used phylogenomic data obtained using the Angiosperms353 nuclear target sequence capture probes, sampling all tribes and almost all genera, entirely from herbarium specimens, to revise infrafamilial classification and investigate the evolution of heterostyly. The backbone of the resulting molecular phylogenetic tree is almost entirely resolved. Connaraceae consists of two clades, one containing only the African genus Manotes (4 or 5 species), which we newly recognize at the subfamily level. Vegetative and reproductive synapomorphies are proposed for Manotoideae. Within Connaroideae, Connareae is expanded to include the former Jollydoreae. The backbone of Cnestideae, which contains more than half of the Connaraceae species, remains incompletely resolved. Reconstructions of reproductive system evolution are presented that tentatively support tristyly as the ancestral state for the family, with multiple parallel losses, in agreement with previous hypotheses, plus possible re-gains. However, the great diversity of stylar polymorphisms and their phylogenetic lability preclude a definitive answer. Overall, this study reinforces the usefulness of herbarium phylogenomics, and unlocks the reproductive diversity of Connaraceae as a model system for the evolution of complex biological phenomena

    Plant growth forms dictate adaptations to the local climate

    Get PDF
    Adaptive radiation is a significant driver of biodiversity. Primarily studied in animal systems, mechanisms that trigger adaptive radiations remain poorly understood in plants. A frequently claimed indicator of adaptive radiation in plants is growth form diversity when tied to the occupation of different habitats. However, it remains obscure whether morphological adaptations manifest as growth form diversity per se or as its constituent traits. We use the classic Aeonium radiation from the Canary Islands to ask whether adaptation across climatic space is structured by growth form evolution. Using morphological sampling with site-associated climate in a phylogenetic context, we find that growth forms dictate adaptations to the local environment. Furthermore, we demonstrate that the response of specific traits to analogous environments is antagonistic when growth forms are different. This finding suggests for the first time that growth forms represent particular ecological functions, allowing the co-occurrence of closely related species, being a product of divergent selection during evolution in sympatry.info:eu-repo/semantics/publishedVersio

    A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies.

    Get PDF
    The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification

    Inter- and intra-island speciation and their morphological and ecological correlates in Aeonium (Crassulaceae), a species-rich Macaronesian radiation

    Get PDF
    Background and Aims The most species-rich and ecologically diverse plant radiation on the Canary Islands is the Aeonium alliance (Crassulaceae). In island radiations like this, speciation can take place either within islands or following dispersal between islands. Aiming at quantifying intra- and inter-island speciation events in the evolution of Aeonium, and exploring their consequences, we hypothesized that (1) intra-island diversification resulted in stronger ecological divergence of sister lineages, and that (2) taxa on islands with a longer history of habitation by Aeonium show stronger ecological differentiation and produce fewer natural hybrids. Methods We studied the biogeographical and ecological setting of diversification processes in Aeonium with a fully sampled and dated phylogeny inferred using a ddRADseq approach. Ancestral areas and biogeographical events were reconstructed in BioGeoBEARS. Eleven morphological characters and three habitat characteristics were taken into account to quantify the morphological and ecological divergence between sister lineages. A co-occurrence matrix of all Aeonium taxa is presented to assess the spatial separation of taxa on each island. Key Results We found intra- and inter-island diversification events in almost equal numbers. In lineages that diversified within single islands, morphological and ecological divergence was more pronounced than in lineages derived from inter-island diversification, but only the difference in morphological divergence was significant. Those islands with the longest history of habitation by Aeonium had the lowest percentages of co-occurring and hybridizing taxon pairs compared with islands where Aeonium arrived later. Conclusions Our findings illustrate the importance of both inter- and intra-island speciation, the latter of which is potentially sympatric speciation. Speciation on the same island entailed significantly higher levels of morphological divergence compared with inter-island speciation, but ecological divergence was not significantly different. Longer periods of shared island habitation resulted in the evolution of a higher degree of spatial separation and stronger reproductive barriers.info:eu-repo/semantics/publishedVersio

    Oncologic outcomes of screen-detected and non-screen-detected T1 colorectal cancers

    Get PDF
    Background:The incidence of T1 colorectal cancer (CRC) has increased with the implementation of CRC screening programs. It is unknown whether the outcomes and risk models for T1 CRC based on non-screen-detected patients can be extrapolated to screen-detected T1 CRC. This study aimed to compare the stage distribution and oncologic outcomes of T1 CRC patients within and outside the screening program. Methods: Data from T1 CRC patients diagnosed between 2014 and 2017 were collected from 12 hospitals in the Netherlands. The presence of lymph node metastasis (LNM) at diagnosis was compared between screen-detected and non-screen-detected patients using multivariable logistic regression. Cox proportional hazard regression was used to analyze differences in the time to recurrence (TTR), metastasis-free survival (MFS), cancer-specific survival (CSS), and overall survival. Additionally, the performance of conventional risk factors for LNM was evaluated across the groups. Results: 1803 patients were included (1114 [62%] screendetected), with median follow-up of 51 months (interquartile range 30). The proportion of LNM did not significantly differ between screen- and non-screen-detected patients (12.6% vs. 8.9%; odds ratio 1.41; 95%CI 0.89-2.23); a prediction model for LNM performed equally in both groups. The 3- and 5-year TTR, MFS, and CSS were similar for patients within and outside the screening program. However, overall survival was significantly longer in screen-detected T1 CRC patients (adjusted hazard ratio 0.51; 95%CI 0.38- 0.68). Conclusions: Screen-detected and non-screen-detected T1 CRCs have similar stage distributions and oncologic outcomes and can therefore be treated equally. However, screen-detected T1 CRC patients exhibit a lower rate of non-CRC-related mortality, resulting in longer overall survival.</p

    Limited wedge resection for T1 colon cancer (LIMERIC-II trial) - rationale and study protocol of a prospective multicenter clinical trial

    Get PDF
    BACKGROUND: The sole presence of deep submucosal invasion is shown to be associated with a limited risk of lymph node metastasis. This justifies a local excision of suspected deep submucosal invasive colon carcinomas (T1 CCs) as a first step treatment strategy. Recently Colonoscopy-Assisted Laparoscopic Wedge Resection (CAL-WR) has been shown to be able to resect pT1 CRCs with a high R0 resection rate, but the long term outcomes are lacking. The aim of this study is to evaluate the safety, effectiveness and long-term oncological outcomes of CAL-WR as primary treatment for patients with suspected superficial and also deeply-invasive T1 CCs. METHODS: In this prospective multicenter clinical trial, patients with a macroscopic and/or histologically suspected T1 CCs will receive CAL-WR as primary treatment in order to prevent unnecessary major surgery for low-risk T1 CCs. To make a CAL-WR technically feasible, the tumor may not include > 50% of the circumference and has to be localized at least 25 cm proximal from the anus. Also, there should be sufficient distance to the ileocecal valve to place a linear stapler. Before inclusion, all eligible patients will be assessed by an expert panel to confirm suspicion of T1 CC, estimate invasion depth and subsequent advise which local resection techniques are possible for removal of the lesion. The primary outcome of this study is the proportion of patients with pT1 CC that is curatively treated with CAL-WR only and in whom thus organ-preservation could be achieved. Secondary outcomes are 1) CAL-WR's technical success and R0 resection rate for T1 CC, 2) procedure-related morbidity and mortality, 3) 5-year overall and disease free survival, 4) 3-year metastasis free survival, 5) procedure-related costs and 6) impact on quality of life. A sample size of 143 patients was calculated. DISCUSSION: CAL-WR is a full-thickness local resection technique that could also be effective in removing pT1 colon cancer. With the lack of current endoscopic local resection techniques for > 15 mm pT1 CCs with deep submucosal invasion, CAL-WR could fill the gap between endoscopy and major oncologic surgery. The present study is the first to provide insight in the long-term oncological outcomes of CAL-WR. TRIAL REGISTRATION: CCMO register (ToetsingOnline), NL81497.075.22, protocol version 2.3 (October 2022)
    • 

    corecore