536 research outputs found

    Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins.

    Get PDF
    Background - Bacillus thuringiensis Cry toxins are used worldwide in the control of different insect pests important in agriculture or in human health. The Cry proteins are pore-forming toxins that affect the midgut cell of target insects. It was shown that non-toxic Cry1Ab helix a-4 mutants had a dominant negative (DN) phenotype inhibiting the toxicity of wildtype Cry1Ab when used in equimolar or sub-stoichiometric ratios (1:1, 0.5:1, mutant:wt) indicating that oligomer formation is a key step in toxicity of Cry toxins. Methodology/Principal Findings - The DN Cry1Ab-D136N/T143D mutant that is able to block toxicity of Cry1Ab toxin, was used to analyze its capacity to block the activity against Manduca sexta larvae of other Cry1 toxins, such as Cry1Aa, Cry1Ac, Cry1Ca, Cry1Da, Cry1Ea and Cry1Fa. Cry1Ab-DN mutant inhibited toxicity of Cry1Aa, Cry1Ac and Cry1Fa. In addition, we isolated mutants in helix a-4 of Cry4Ba and Cry11Aa, and demonstrate that Cry4Ba-E159K and Cry11Aa-V142D are inactive and completely block the toxicity against Aedes aegypti of both wildtype toxins, when used at sub-stoichiometric ratios, confirming a DN phenotype. As controls we analyzed Cry1Ab-R99A or Cry11Aa-E97A mutants that are located in helix a-3 and are affected in toxin oligomerization. These mutants do not show a DN phenotype but were able to block toxicity when used in 10:1 or 100:1 ratios (mutant:wt) probably by competition of binding with toxin receptors. Conclusions/Significance - We show that DN phenotype can be observed among different Cry toxins suggesting that may interact in vivo forming hetero-oligomers. The DN phenotype cannot be observed in mutants affected in oligomerization, suggesting that this step is important to inhibit toxicity of other toxin

    Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes

    Get PDF
    BACKGROUND: Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs) from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of four APN cDNAs from Spodoptera exigua. RESULTS: Suppression Subtractive Hybridization (SSH) was used to construct cDNA libraries of genes that are up-and down-regulated in the midgut of last instar larvae of beet armyworm, S. exigua exposed to B. thuringiensis Cry1Ca toxin. Among the clones from the SSH libraries, cDNA fragments coding for two different APNs were obtained (APN2 and APN4). A similar procedure was employed to compare mRNA differences between susceptible and Cry1Ca resistant S. exigua. Among the clones from this last comparison, cDNA fragments belonging to a third APN (APN1) were detected. Using sequences obtained from the three APN cDNA fragments and degenerate primers for a fourth APN (APN3), the full length sequences of four S. exigua APN cDNAs were obtained. Northern blot analysis of expression of the four APNs showed complete absence of APN1 expression in the resistant insects, while the other three APNs showed similar expression levels in the resistant and susceptible insects. CONCLUSION: We have cloned and characterized four different midgut APN cDNAs from S. exigua. Expression analysis revealed the lack of expression of one of these APNs in the larvae of a Cry1Ca-resistant colony. Combined with previous evidence that shows the importance of APN in the mode of action of B. thuringiensis toxins, these results suggest that the lack of APN1 expression plays a role in the resistance to Cry1Ca in this S. exigua colony

    Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae

    Get PDF
    Several mutants of the Bacillus thuringiensis Cry1Ca toxin affected with regard to specific activity towards Spodoptera exigua were studied. Alanine was used to replace single residues in loops 2 and 3 of domain II (mutant pPB19) and to replace residues 541– 544 in domain III (mutant pPB20). Additionally, a Cry1Ca mutant combining all mutations was constructed (mutant pPB21). Toxicity assays showed a marked decrease in toxicity against S. exigua for all mutants, while they retained their activity against Manduca sexta, confirming the importance of these residues in determining insect specificity. Parameters for binding to the specific receptors in BBMV (brush border membrane vesicles) of S. exigua were determined for all toxins. Compared with Cry1Ca, the affinity of mutant pPB19 was slightly affected (2-fold lower), whereas the affinity of the mutants with an altered domain III (pPB20 and pPB21) was approx. 8-fold lower. Activation of Cry1Ca protoxin by incubation with S. exigua or M. sexta BBMV revealed the transient formation of an oligomeric form of Cry1Ca. The presence of this oligomeric form was tested in the activation of the different Cry1Ca mutants, and we found that those mutated in domain II (pPB19 and pPB21) could not generate the oligomeric form when activated by S. exigua BBMV. In contrast, when oligomerization was tested using BBMV prepared from M. sexta, all of the Cry1Ca mutants showed the formation of a similar oligomeric form as did the wild-type toxin. Our results show how modification of insect specificity can be achieved by manipulation of different parts of the toxin structure involved in different steps of the mode of action of B. thuringiensis [email protected]; [email protected]

    Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    Get PDF
    BACKGROUND: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. OBJECTIVE: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. METHOD: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. RESULTS: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. CONCLUSIONS: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations

    The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners

    Get PDF
    Tomato fruit ripening is regulated by transcription factors (TFs), their downstream effector genes, and the ethylene biosynthesis and signalling pathway. Spontaneous non-ripening mutants ripening inhibitor (rin), non-ripening (nor) and Colorless non-ripening (Cnr) correspond with mutations in or near the TF-encoding genes MADS-RIN, NAC-NOR and SPL-CNR, respectively. Here, we produced heterozygous single and double mutants of rin, nor and Cnr and evaluated their functions and genetic interactions in the same genetic background. We showed how these mutations interact at the level of phenotype, individual effector gene expression, and sensory and quality aspects, in a dose-dependent manner. Rin and nor have broadly similar quantitative effects on all aspects, demonstrating their additivity in fruit ripening regulation. We also found that the Cnr allele is epistatic to rin and nor and that its pleiotropic effects on fruit size and volatile production, in contrast to the well-known dominant effect on ripening, are incompletely dominant, or recessive.</p

    Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

    Get PDF
    Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentariâ„¢, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentariâ„¢, suggesting a permanent activation of the response to Xentariâ„¢ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentariâ„¢ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentariâ„¢, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae

    In vitro template-change PCR to create single crossover libraries: a case study with B. thuringiensis Cry2A toxins

    Get PDF
    During evolution the creation of single crossover chimeras between duplicated paralogous genes is a known process for increasing diversity. Comparing the properties of homologously recombined chimeras with one or two crossovers is also an efficient strategy for analyzing relationships between sequence variation and function. However, no well-developed in vitro method has been established to create single-crossover libraries. Here we present an in vitro template-change polymerase change reaction that has been developed to enable the production of such libraries. We applied the method to two closely related toxin genes from B. thuringiensis and created chimeras with differing properties that can help us understand how these toxins are able to differentiate between insect species
    • …
    corecore