120 research outputs found
Chemotaxonomy of Mycotoxigenic Small-Spored Alternaria Fungi – Do Multitoxin Mixtures Act as an Indicator for Species Differentiation?
Necrotrophic as well as saprophytic small-spored Alternaria (A.) species are annually responsible for major losses of agricultural products, such as cereal crops, associated with the contamination of food and feedstuff with potential health-endangering Alternaria toxins. Knowledge of the metabolic capabilities of different species-groups to form mycotoxins is of importance for a reliable risk assessment. 93 Alternaria strains belonging to the four species groups Alternaria tenuissima, A. arborescens, A. alternata, and A. infectoria were isolated from winter wheat kernels harvested from fields in Germany and Russia and incubated under equal conditions. Chemical analysis by means of an HPLC-MS/MS multi-Alternaria-toxin-method showed that 95% of all strains were able to form at least one of the targeted 17 non-host specific Alternaria toxins. Simultaneous production of up to 15 (modified) Alternaria toxins by members of the A. tenuissima, A. arborescens, A. alternata species-groups and up to seven toxins by A. infectoria strains was demonstrated. Overall tenuazonic acid was the most extensively formed mycotoxin followed by alternariol and alternariol mono methylether, whereas altertoxin I was the most frequently detected toxin. Sulfoconjugated modifications of alternariol, alternariol mono methylether, altenuisol and altenuene were frequently determined. Unknown perylene quinone derivatives were additionally detected. Strains of the species-group A. infectoria could be segregated from strains of the other three species-groups due to significantly lower toxin levels and the specific production of infectopyrone. Apart from infectopyrone, alterperylenol was also frequently produced by 95% of the A. infectoria strains. Neither by the concentration nor by the composition of the targeted Alternaria toxins a differentiation between the species-groups A. alternata, A. tenuissima and A. arborescens was possible
Conventional type-II superconductivity in locally non-centrosymmetric LaRhAs single crystals
We report on the observation of superconductivity in LaRhAs, which is
the analogue without -electrons of the heavy-fermion system with two
superconducting phases CeRhAs. A zero-resistivity transition, a
specific-heat jump and a drop in magnetic ac susceptibility consistently point
to a superconducting transition at a transition temperature of \,K.
The magnetic field-temperature superconducting phase diagrams determined from
field-dependent ac-susceptibility measurements reveal small upper critical
fields \,mT for and
\,mT for . The observed
is larger than the estimated thermodynamic critical field
derived from the heat-capacity data, suggesting that LaRhA is a
type-II superconductor with Ginzburg-Landau parameters and . The microscopic Eliashberg
theory indicates superconductivity to be in the weak-coupling regime with an
electron-phonon coupling constant . Despite a
similar and the same crystal structure as the Ce compound, LaRhAs
displays conventional superconductivity, corroborating the substantial role of
the 4 electrons for the extraordinary superconducting state in
CeRhAs.Comment: 11 pages, 8 figure
Models of organometallic complexes for optoelectronic applications
Organometallic complexes have potential applications as the optically active
components of organic light emitting diodes (OLEDs) and organic photovoltaics
(OPV). Development of more effective complexes may be aided by understanding
their excited state properties. Here we discuss two key theoretical approaches
to investigate these complexes: first principles atomistic models and effective
Hamiltonian models. We review applications of these methods, such as,
determining the nature of the emitting state, predicting the fraction of
injected charges that form triplet excitations, and explaining the sensitivity
of device performance to small changes in the molecular structure of the
organometallic complexes.Comment: To appear in themed issue of J. Mat. Chem. on the modelling of
material
Capacitively Coupled Silicon-Organic Hybrid Modulator for 200 Gbit/s PAM-4 Signaling
We demonstrate capacitively coupled silicon-organic hybrid (SOH) modulator with a π-voltage-length product of 1.3 V mm and 3 dB EO bandwidth exceeding 65 GHz. The modulator is used for 200 Gbit/s (100 GBd) PAM-4 signaling
Nanophotonic modulators and photodetectors using silicon photonic and plasmonic device concepts
Nanophotonic modulators and photodetectors are key building blocks for high-speed optical interconnects in datacom and telecom networks. Besides power efficiency and high electro-optic bandwidth, ultra-compact footprint and scalable co-integration with electronic circuitry are indispensable for highly scalable communication systems. In this paper, we give an overview on our recent progress in exploring nanophotonic modulators and photodetectors that combine the specific strengths of silicon photonic and plasmonic device concepts with hybrid integration approaches. Our work comprises electro-optic modulators that exploit silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration to enable unprecedented energy efficiency and transmission speed, as well as waveguide-based plasmonic internal photo-emission detectors (PIPED) with record-high sensitivities and bandwidths
100 Gbit/s serial transmission using a silicon-organic hybrid (SOH) modulator and a duobinary driver IC
100 Gbit/s three-level (50 Gbit/s 00K) signals are generated using a silicon-organic hybrid modulator and a BiCMOS duobinary driver IC at a BER of 8.5x10(-5)(<10(-12)). We demonstrate dispersion-compensated transmission over 5 km
Annex 2 - Metrics and methodology
This annex on methods and metrics provides background information on material used in the Working Group III Contribution to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (WGIII AR5). The material presented in this annex documents metrics, methods, and common data sets that are typically used across multiple chapters of the report. The annex is composed of three parts: Part I introduces standards metrics and common definitions adopted in the report; Part II presents methods to derive or calculate certain quantities used in the report; and Part III provides more detailed background information about common data sources that go beyond what can be included in the chapters. While this structure may help readers to navigate through the annex, it is not possible in all cases to unambiguously assign a certain topic to one of these parts, naturally leading to some overlap between the parts
100 Gbit/s serial transmission using a silicon-organic hybrid (SOH) modulator and a duobinary driver IC
100 Gbit/s three-level (50 Gbit/s 00K) signals are generated using a silicon-organic hybrid modulator and a BiCMOS duobinary driver IC at a BER of 8.5x10(-5)(<10(-12)). We demonstrate dispersion-compensated transmission over 5 km
- …