120 research outputs found

    Chemotaxonomy of Mycotoxigenic Small-Spored Alternaria Fungi – Do Multitoxin Mixtures Act as an Indicator for Species Differentiation?

    Get PDF
    Necrotrophic as well as saprophytic small-spored Alternaria (A.) species are annually responsible for major losses of agricultural products, such as cereal crops, associated with the contamination of food and feedstuff with potential health-endangering Alternaria toxins. Knowledge of the metabolic capabilities of different species-groups to form mycotoxins is of importance for a reliable risk assessment. 93 Alternaria strains belonging to the four species groups Alternaria tenuissima, A. arborescens, A. alternata, and A. infectoria were isolated from winter wheat kernels harvested from fields in Germany and Russia and incubated under equal conditions. Chemical analysis by means of an HPLC-MS/MS multi-Alternaria-toxin-method showed that 95% of all strains were able to form at least one of the targeted 17 non-host specific Alternaria toxins. Simultaneous production of up to 15 (modified) Alternaria toxins by members of the A. tenuissima, A. arborescens, A. alternata species-groups and up to seven toxins by A. infectoria strains was demonstrated. Overall tenuazonic acid was the most extensively formed mycotoxin followed by alternariol and alternariol mono methylether, whereas altertoxin I was the most frequently detected toxin. Sulfoconjugated modifications of alternariol, alternariol mono methylether, altenuisol and altenuene were frequently determined. Unknown perylene quinone derivatives were additionally detected. Strains of the species-group A. infectoria could be segregated from strains of the other three species-groups due to significantly lower toxin levels and the specific production of infectopyrone. Apart from infectopyrone, alterperylenol was also frequently produced by 95% of the A. infectoria strains. Neither by the concentration nor by the composition of the targeted Alternaria toxins a differentiation between the species-groups A. alternata, A. tenuissima and A. arborescens was possible

    Conventional type-II superconductivity in locally non-centrosymmetric LaRh2_2As2_2 single crystals

    Full text link
    We report on the observation of superconductivity in LaRh2_2As2_2, which is the analogue without ff-electrons of the heavy-fermion system with two superconducting phases CeRh2_2As2_2. A zero-resistivity transition, a specific-heat jump and a drop in magnetic ac susceptibility consistently point to a superconducting transition at a transition temperature of Tc=0.28T_c = 0.28\,K. The magnetic field-temperature superconducting phase diagrams determined from field-dependent ac-susceptibility measurements reveal small upper critical fields μ0Hc212\mu_{\mathrm{0}}H_{c2} \approx 12\,mT for HabH\parallel ab and μ0Hc29\mu_{\mathrm{0}}H_{c2} \approx 9\,mT for HcH\parallel c. The observed Hc2H_{c2} is larger than the estimated thermodynamic critical field HcH_c derived from the heat-capacity data, suggesting that LaRh2_2As2s_2 is a type-II superconductor with Ginzburg-Landau parameters κGLab1.9\kappa^{ab}_{GL} \approx 1.9 and κGLc2.7\kappa^{c}_{GL}\approx 2.7. The microscopic Eliashberg theory indicates superconductivity to be in the weak-coupling regime with an electron-phonon coupling constant λeph0.4\lambda_{e-ph} \approx 0.4. Despite a similar TcT_c and the same crystal structure as the Ce compound, LaRh2_2As2_2 displays conventional superconductivity, corroborating the substantial role of the 4ff electrons for the extraordinary superconducting state in CeRh2_2As2_2.Comment: 11 pages, 8 figure

    Models of organometallic complexes for optoelectronic applications

    Full text link
    Organometallic complexes have potential applications as the optically active components of organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). Development of more effective complexes may be aided by understanding their excited state properties. Here we discuss two key theoretical approaches to investigate these complexes: first principles atomistic models and effective Hamiltonian models. We review applications of these methods, such as, determining the nature of the emitting state, predicting the fraction of injected charges that form triplet excitations, and explaining the sensitivity of device performance to small changes in the molecular structure of the organometallic complexes.Comment: To appear in themed issue of J. Mat. Chem. on the modelling of material

    Capacitively Coupled Silicon-Organic Hybrid Modulator for 200 Gbit/s PAM-4 Signaling

    Get PDF
    We demonstrate capacitively coupled silicon-organic hybrid (SOH) modulator with a π-voltage-length product of 1.3 V mm and 3 dB EO bandwidth exceeding 65 GHz. The modulator is used for 200 Gbit/s (100 GBd) PAM-4 signaling

    Nanophotonic modulators and photodetectors using silicon photonic and plasmonic device concepts

    Get PDF
    Nanophotonic modulators and photodetectors are key building blocks for high-speed optical interconnects in datacom and telecom networks. Besides power efficiency and high electro-optic bandwidth, ultra-compact footprint and scalable co-integration with electronic circuitry are indispensable for highly scalable communication systems. In this paper, we give an overview on our recent progress in exploring nanophotonic modulators and photodetectors that combine the specific strengths of silicon photonic and plasmonic device concepts with hybrid integration approaches. Our work comprises electro-optic modulators that exploit silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration to enable unprecedented energy efficiency and transmission speed, as well as waveguide-based plasmonic internal photo-emission detectors (PIPED) with record-high sensitivities and bandwidths

    100 Gbit/s serial transmission using a silicon-organic hybrid (SOH) modulator and a duobinary driver IC

    Get PDF
    100 Gbit/s three-level (50 Gbit/s 00K) signals are generated using a silicon-organic hybrid modulator and a BiCMOS duobinary driver IC at a BER of 8.5x10(-5)(<10(-12)). We demonstrate dispersion-compensated transmission over 5 km

    Annex 2 - Metrics and methodology

    Get PDF
    This annex on methods and metrics provides background information on material used in the Working Group III Contribution to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (WGIII AR5). The material presented in this annex documents metrics, methods, and common data sets that are typically used across multiple chapters of the report. The annex is composed of three parts: Part I introduces standards metrics and common definitions adopted in the report; Part II presents methods to derive or calculate certain quantities used in the report; and Part III provides more detailed background information about common data sources that go beyond what can be included in the chapters. While this structure may help readers to navigate through the annex, it is not possible in all cases to unambiguously assign a certain topic to one of these parts, naturally leading to some overlap between the parts

    100 Gbit/s serial transmission using a silicon-organic hybrid (SOH) modulator and a duobinary driver IC

    Get PDF
    100 Gbit/s three-level (50 Gbit/s 00K) signals are generated using a silicon-organic hybrid modulator and a BiCMOS duobinary driver IC at a BER of 8.5x10(-5)(<10(-12)). We demonstrate dispersion-compensated transmission over 5 km
    corecore