646 research outputs found

    Critical decay index at the onset of solar eruptions

    Get PDF
    Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius RR undergoes an eruption when its axis reaches a location where the decay index d(lnBex)/d(lnR)-d(\ln B_{ex})/d(\ln R) of the ambient magnetic field BexB_{ex} is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time-evolution of the current channel. We use magneto-hydrodynamic (MHD) simulations to investigate if the critical value of the decay index at the onset of the eruption is affected by the magnetic flux rope's internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-eruptive photospheric evolution of the active region or by the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a `critical range' [1.31.5] [1.3-1.5], rather than a `critical value' for the onset of the torus instability. This range is in good agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the occurrence of tether-cutting magnetic reconnection.Comment: 15 pages, 9 figures. To appear in The Astrophysical Journa

    Satellite observations of reconnection between emerging and pre-existing small-scale magnetic fields

    Get PDF
    We report multi-wavelength ultraviolet observations taken with the IRIS satellite, concerning the emergence phase in the upper chromosphere and transition region of an emerging flux region (EFR) embedded in the unipolar plage of active region NOAA 12529. The photospheric configuration of the EFR is analyzed in detail benefitting from measurements taken with the spectropolarimeter aboard the Hinode satellite, when the EFR was fully developed. In addition, these data are complemented by full-disk, simultaneous observations of the SDO satellite, relevant to the photosphere and the corona. In the photosphere, magnetic flux emergence signatures are recognized in the fuzzy granulation, with dark alignments between the emerging polarities, cospatial with highly inclined fields. In the upper atmospheric layers, we identify recurrent brightenings that resemble UV bursts, with counterparts in all coronal passbands. These occur at the edges of the EFR and in the region of the arch filament system (AFS) cospatial to the EFR. Jet activity is also found at chromospheric and coronal levels, near the AFS and the observed brightness enhancement sites. The analysis of the IRIS line profiles reveals the heating of dense plasma in the low solar atmosphere and the driving of bi-directional high-velocity flows with speeds up to 100 km/s at the same locations. Furthermore, we detect a correlation between the Doppler velocity and line width of the Si IV 1394 and 1402 \AA{} line profiles in the UV burst pixels and their skewness. Comparing these findings with previous observations and numerical models, we suggest evidence of several long-lasting, small-scale magnetic reconnection episodes between the emerging bipole and the ambient field. This process leads to the cancellation of a pre-existing photospheric flux concentration of the plage with the opposite polarity flux patch of the EFR. [...]Comment: 4 pages, 2 figures, to be published in "Nuovo Cimento C" as proceeding of the Third Meeting of the Italian Solar and Heliospheric Communit

    Plasma flows and magnetic field interplay during the formation of a pore

    Get PDF
    We studied the formation of a pore in AR NOAA 11462. We analysed data obtained with the IBIS at the DST on April 17, 2012, consisting of full Stokes measurements of the Fe I 617.3 nm lines. Furthermore, we analysed SDO/HMI observations in the continuum and vector magnetograms derived from the Fe I 617.3 nm line data taken from April 15 to 19, 2012. We estimated the magnetic field strength and vector components and the LOS and horizontal motions in the photospheric region hosting the pore formation. We discuss our results in light of other observational studies and recent advances of numerical simulations. The pore formation occurs in less than 1 hour in the leading region of the AR. The evolution of the flux patch in the leading part of the AR is faster (< 12 hour) than the evolution (20-30 hour) of the more diffuse and smaller scale flux patches in the trailing region. During the pore formation, the ratio between magnetic and dark area decreases from 5 to 2. We observe strong downflows at the forming pore boundary and diverging proper motions of plasma in the vicinity of the evolving feature that are directed towards the forming pore. The average values and trends of the various quantities estimated in the AR are in agreement with results of former observational studies of steady pores and with their modelled counterparts, as seen in recent numerical simulations of a rising-tube process. The agreement with the outcomes of the numerical studies holds for both the signatures of the flux emergence process (e.g. appearance of small-scale mixed polarity patterns and elongated granules) and the evolution of the region. The processes driving the formation of the pore are identified with the emergence of a magnetic flux concentration and the subsequent reorganization of the emerged flux, by the combined effect of velocity and magnetic field, in and around the evolving structure.Comment: Accepted for publication in Astronomy and Astrophysic

    Height dependence of the penumbral fine-scale structure in the inner solar atmosphere

    Get PDF
    We studied the physical parameters of the penumbra in a large and fully-developed sunspot, one of the largest over the last two solar cycles, by using full-Stokes measurements taken at the photospheric Fe I 617.3 nm and chromospheric Ca II 854.2 nm lines with the Interferometric Bidimensional Spectrometer. Inverting measurements with the NICOLE code, we obtained the three-dimensional structure of the magnetic field in the penumbra from the bottom of the photosphere up to the middle chromosphere. We analyzed the azimuthal and vertical gradient of the magnetic field strength and inclination. Our results provide new insights on the properties of the penumbral magnetic fields in the chromosphere at atmospheric heights unexplored in previous studies. We found signatures of the small-scale spine and intra-spine structure of both the magnetic field strength and inclination at all investigated atmospheric heights. In particular, we report typical peak-to-peak variations of the field strength and inclination of 300\approx 300 G and 20\approx 20^{\circ}, respectively, in the photosphere, and of 200\approx 200 G and 10\approx 10^{\circ} in the chromosphere. Besides, we estimated the vertical gradient of the magnetic field strength in the studied penumbra: we find a value of 0.3\approx 0.3 G km1^{-1} between the photosphere and the middle chromosphere. Interestingly, the photospheric magnetic field gradient changes sign from negative in the inner to positive in the outer penumbra.Comment: 14 page, 9 figures, accepted for Ap

    Modeling environmental responses of plantassociations by fuzzy set theory

    Get PDF
    A method for studying the response of vegetation to environmental gradients, based on the community niche and fuzzy set theory, is presented. The approach is illustrated using an example from perennial halophilous vegetation along the Northern Adriatic coast of Italy. Compatibility curves are obtained by fuzzy set theoretical methods, and are used tomodel the response functions of plant associations to environmental gradients, including soil and ground water salinity, soil pH, soil and ground water temperature, percentage of sand, and variations in the ground water level. The compatibility curves summarize the similarity of a given plant community, with a particular value of an environmental variable, to the species combination of a given plant association. Compatibility curves offer an alternative approach to non-linear regression and best fit analyses normally used to model single species responses to environmental gradients. The approach is particularly useful given there is no singlemechanisticmodel that can capture the exact shape of the functional response along environmental gradients, and given that environmental data are commonly affected by high levels of noise

    A data sequence aquired at Mt. Etna during the 2002 - 2003 eruption highlights the potential of continuous gravity observations as a tool to monitor and study active volcanoes

    Get PDF
    A 2.5-month long gravity sequence, encompassing the starting period of the 2002–2003 Etna eruption and coming from a summit station only 1 km away from the new fractures, is presented and discussed. The sequence comprises some hours-long anomalies that have a great chance to reflect mass redistributions linked to the ensuing activity. In particular, the start of the eruptive activity on the northeastern flank was marked by a gravity decrease as strong as about 400 Gal, which reverted soon afterwards. This strong decrease/increase anomaly is interpreted as the opening, by tectonic forces, of a fracture system along the Northeastern Rift of Mt. Etna, followed by an intrusion of magma from the central conduit to the new fractures. They were used by the intruding magma as a path to the eruptive vents at lower elevations. Afterwards, on three occasions, in November and December 2002, 6–12 h-lasting gravity decreases, with amplitude ranging between 10 and 30 Gal, were observed simultaneously with increases in the amplitude of the volcanic tremor from four seismic stations. A correlation analysis, between the gravity signal and the overall spectral amplitude of each tremor sequence is performed over the 7 November–9 December period. A marked anti-correlation is found over each contemporaneous gravity decrease/tremor increase, while, over the rest of the investigated period, the correlation is negligible. Accordingly, a joint source is inferred to have acted during the occurrence of the three common anomalies. On the grounds of some volcanological observations spanning the period covered by our analysis, we propose the temporary accumulation of a gas cloud at some level within the plumbing system of the volcano to have acted as a joint source. The present work is a further evidence of the potential of continuous gravity observations as a tool to monitor and study active volcanoes and encourages their employment in spite of the difficulty of running spring gravimeters in a continuous fashion under the adverse conditions normally encountered on the summit zone of an active volcano

    Recent insights on the penumbra formation process

    Get PDF
    Using high-resolution spectropolarimetric data acquired by \textit{IBIS}, as well as \textit{SDO}/HMI observations, we studied the penumbra formation in AR NOAA 11490 and in a sample of twelve ARs appeared on the solar disk on 2011 and 2012, which were characterized by β\beta-type magnetic field configuration. The results show that the onset of the classical Evershed flow occurs in a very short time scale, 1-3 hours. Studying the formation of the first penumbral sector around the following proto-spot, we found that a stable penumbra forms in the area facing the opposite polarity, which appears to be co-spatial with an AFS, i.e. in a flux emergence region, in contrast with the results of \cite{Schlichenmaier2010} concerning the leading polarity of AR NOAA 11490. Conversely, analyzing the sample of twelve ARs, we noticed that there is not a preferred location for the formation of the first penumbral sector. We also observed before the penumbra formation an inverse Evershed flow, which changes its sign when the penumbra appears. This confirms the observational evidence that the appearance of the penumbral filaments is correlated with the transition from the inverse Evershed to the classical Evershed flow. Furthermore, the analysis suggests that the time needed to form the penumbra may be related to the location where the penumbra first appears. New high-resolution observations, like those that will be provided by the European Solar Telescope, are expected to increase our understanding of the penumbra formation process.Comment: 3 pages, 2 figures, to be published in "Nuovo Cimento C" as proceeding of the Third Meeting of the Italian Solar and Heliospheric Communit
    corecore