9 research outputs found

    Part 2: A Pilot Ethnomethodological Study

    Get PDF
    This second paper reports on a small ethnographic study of Argentine psychiatrists. A carefully selected group of six psychiatrists currently practicing in Buenos Aires par- ticipated in an in-depth semi-structured interview. The transcripts of the interviews were coded and a thematic analysis method was applied to construct a local theory of the professional values constructed by Argentine psy- chiatrists, and the circumstances in which such values were constructed. Our analysis indicated that Argentine psychia- trists constructed a number of values, frequently perceived as obligations to their professional group and the needs of their patients. The two main strategies employed by Ar- gentine psychiatrists were the diagnostic act and advocacy. We also identify that these values emerge in the context of recent broad historical and cultural influences upon the profession of psychiatry in Argentina, and the Argentine population in general

    A Rare Form of Retinal Dystrophy Caused by Hypomorphic Nonsense Mutations in CEP290

    Get PDF
    Contains fulltext : 177341.pdf (publisher's version ) (Open Access)PURPOSE: To identify the gene defect and to study the clinical characteristics and natural course of disease in a family originally diagnosed with oligocone trichromacy (OT), a rare congenital cone dysfunction syndrome. METHODS: Extensive clinical and ophthalmologic assessment was performed on two siblings with OT and long-term follow up data were analyzed. Subsequently, whole exome sequencing (WES) and Sanger sequence analysis of CEP290 was performed in the two siblings. Additionally, the identified CEP290 mutations were analyzed in persons with achromatopsia (ACHM) (n = 23) and autosomal recessive or isolated cone dystrophy (CD; n = 145). RESULTS: In the first decade of life, the siblings were diagnosed with OT based on low visual acuity, photophobia, nystagmus, and absent cone response on electroretinography , but with normal color discrimination. Over time, the phenotype of OT evolved to a progressive degenerative disease without any CEP290-associated non-ocular features. In both siblings, two nonsense mutations (c.451C>T; p.(Arg151*) and c.4723A>T; p.(Lys1575*)) in CEP290 were found. Previously, p.(Arg151*) was demonstrated to induce nonsense-mediated alternative splicing events leading to intact open reading frames of the resulting mRNA products (p.(Leu148_Glu165del) and p.(Leu148_Lys172del)). mRNA analysis for p.(Lys1575*) confirmed a suspected hypomorphic character, as exon 36 skipping was observed in a small fraction of CEP290 mRNA, resulting in a 36 aa in-frame deletion (p.(Glu1569_Trp1604del)). No additional cases carrying these variants were identified in the ACHM and CD cohorts. CONCLUSIONS: Compound heterozygous hypomorphic mutations in CEP290 may lead to a rare form of cone-dominated retinal dystrophy, a novel phenotype belonging to the CEP290-associated spectrum of ciliopathies. These findings provide insight into the effect of CEP290 mutations on the clinical phenotype

    Central areolar choroidal dystrophy.

    No full text
    Contains fulltext : 80187.pdf (publisher's version ) (Closed access)OBJECTIVE: To describe the clinical characteristics, follow-up data and molecular genetic background in a large group of patients with central areolar choroidal dystrophy (CACD). DESIGN: Retrospective case series study. PARTICIPANTS: One hundred three patients with CACD from the Netherlands. METHODS: Ophthalmologic examination, including color vision testing, fundus photography, fluorescein angiography, fundus autofluorescence (FAF) imaging, optical coherence tomography, full-field electroretinography (ERG), multifocal ERG, and electrooculography. Blood samples were obtained for DNA extraction and subsequent analysis of the peripherin/RDS gene, as well as haplotype analysis. MAIN OUTCOME MEASURES: Clinical characteristics, phenotypic range, clinical follow-up data, and FAF findings. RESULTS: The mean age at onset of visual loss was 46 years, with subsequent gradual deterioration in visual acuity. Ninety-eight patients carried a p.Arg142Trp mutation in peripherin/RDS, whereas 5 affected members of a CACD family carried a p.Arg172Gln peripherin/RDS mutation. A remarkable variation in disease severity was observed, and nonpenetrance was seen up to the age of 64 years, in up to 21% of mutation carriers. However, most macular lesions in mutation carriers displayed a typical stage of CACD. Substantial changes were seen on FAF imaging after a mean follow-up period of 11 months. Electrophysiologic data were consistent with a central cone dystrophy. The age at onset and phenotypic characteristics of CACD show considerable overlap with atrophic age-related macular degeneration (AMD). The great majority of p.Arg142Trp-carrying CACD patients originated from the southeast region of the Netherlands, and haplotype analysis strongly suggested a common founder mutation. CONCLUSIONS: When caused by a p.Arg142Trp mutation in the peripherin/RDS gene, CACD causes a central cone dystrophy phenotype. This mutation, which most likely originates from a common founder in most patients, is associated with a significant degree of nonpenetrance. In the elderly patient, CACD may be confused with AMD, especially in cases with decreased penetrance

    Intratumoral administration of recombinant human interleukin 12 in head and neck squamous cell carcinoma patients elicits a T-helper 1 profile in the locoregional lymph nodes.

    No full text
    Contains fulltext : 57853.pdf (publisher's version ) (Closed access)The objective of this Phase II study was to evaluate the pharmacodynamic and immune effects of intratumorally administered recombinant human interleukin-12 (IL-12) on regional lymph nodes, primary tumor, and peripheral blood. Ten previously untreated patients with head and neck squamous cell carcinoma were injected in the primary tumor two to three times, once/week, at two dose levels of 100 or 300 ng/kg, before surgery. We compared these patients with 20 control (non-IL-12-treated) patients. Toxicity was high, with unexpected dose-limiting toxicities at the 300 ng/kg dose level. Dose-dependent plasma IFN-gamma and IL-10 increments were detected. These cytokine levels were higher after the first injection than after the subsequent injections. A rapid, transient reduction in lymphocytes, monocytes, and all lymphocyte subsets, especially natural killer cells, was observed, due to a redistribution to the lymph nodes. In the enlarged lymph nodes of the IL-12-treated patients, a higher percentage of natural killer cells and a lower percentage of T-helper cells were found compared with control patients. The same pattern was detected in the infiltrate in the primary tumor. Real-time semiquantitative PCR analysis of peripheral blood mononuclear cells in the peripheral blood showed a transient decrease of T-bet mRNA. Interestingly, the peripheral blood mononuclear cells in the lymph nodes showed a 128-fold (mean) increase of IFN-gamma mRNA. A switch from the Th2 to a Th1 profile in the lymph nodes compared with the peripheral blood occurred in the IL-12-treated patients. In conclusion, in previously untreated head and neck squamous cell carcinoma patients, recombinant human IL-12 intratumorally showed dose-limiting toxicities at the dose level of 300 ng/kg and resulted in measurable immunological responses locoregionally at both dose levels

    Characterization of the Crumbs homolog 2 (CRB2) gene and analysis of its role in retinitis pigmentosa and Leber congenital amaurosis.

    Get PDF
    Contains fulltext : 48627.pdf (publisher's version ) (Open Access)PURPOSE: Mutations in the Crumbs homolog 1 (CRB1) gene cause autosomal recessive retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). Database searches reveal two other Crumbs homologs on chromosomes 9q33.3 and 19p13.3. The purpose of this study was to characterize the Crumbs homolog 2 (CRB2) gene on 9q33.3, to analyze its expression pattern, and to determine whether mutations in CRB2 are associated with RP and LCA. METHODS: The CRB2 mRNA and its expression pattern in human tissues were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The cellular expression of Crb2 in the mouse eye was determined by mRNA in situ hybridizations. The open reading frame and splice junctions of CRB2 were analyzed for mutations by single-strand conformation analysis and direct nucleotide sequencing in 85 RP patients and 79 LCA patients. RESULTS: The CRB2 gene consists of 13 exons and encodes a 1285 amino acid transmembrane protein. CRB2 is mainly expressed in retina, brain, and kidney. In mouse retina Crb2 expression was detected in all cell layers. Mutation analysis of the CRB2 gene revealed 11 sequence variants leading to an amino acid substitution. Three of them were not identified in control individuals and affect conserved amino acid residues. However, the patients that carry these sequence variants do not have a second sequence variant on the other allele, excluding autosomal recessive inheritance of CRB2 sequence variants as a cause of their disease. CONCLUSIONS: This study shows that CRB2 sequence variants are not a common cause of autosomal recessive RP and LCA. It is possible that a more complex clinical phenotype is associated with the loss or altered function of CRB2 in humans due to its expression in tissues other than the retina

    Mutations in MFSD8, encoding a lysosomal membrane protein, are associated with nonsyndromic autosomal recessive macular dystrophy

    No full text
    Item does not contain fulltextPURPOSE: This study aimed to identify the genetic defects in 2 families with autosomal recessive macular dystrophy with central cone involvement. DESIGN: Case series. PARTICIPANTS: Two families and a cohort of 244 individuals with various inherited maculopathies and cone disorders. METHODS: Genome-wide linkage analysis and exome sequencing were performed in 1 large family with 5 affected individuals. In addition, exome sequencing was performed in the proband of a second family. Subsequent analysis of the identified mutations in 244 patients was performed by Sanger sequencing or restriction enzyme digestion. The medical history of individuals carrying the MFSD8 variants was reviewed and additional ophthalmic examinations were performed, including electroretinography (ERG), multifocal ERG (mfERG), perimetry, optical coherence tomography (OCT), fundus autofluorescence, and fundus photography. MAIN OUTCOME MEASURES: MFSD8 variants, age at diagnosis, visual acuity, fundus appearance, color vision defects, visual field, ERG, mfERG, fundus autofluorescence, and OCT findings. RESULTS: Compound heterozygous variants in MFSD8, a gene encoding a lysosomal transmembrane protein, were identified in 2 families with macular dystrophy with a normal or subnormal ERG, but reduced mfERG. In both families, a heterozygous missense variant p.Glu336Gln was identified, which was predicted to have a mild effect on the protein. In the first family, a protein-truncating variant (p.Glu381*) was identified on the other allele, and in the second family, a variant (c.1102G>C) was identified that results in a splicing defect leading to skipping of exon 11 (p.Lys333Lysfs*3). The p.Glu336Gln allele was found to be significantly enriched in patients with maculopathies and cone disorders (6/488) compared with ethnically matched controls (35/18 682; P < 0.0001), suggesting that it may act as a genetic modifier. CONCLUSIONS: In this study, we identified variants in MFSD8 as a novel cause of nonsyndromic autosomal recessive macular dystrophy with central cone involvement. Affected individuals showed no neurologic features typical for variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), a severe and devastating multisystem lysosomal storage disease previously associated with mutations in MFSD8. We propose a genotype-phenotype model in which a combination of a severe and a mild variant cause nonsyndromic macular dystrophy with central cone involvement, and 2 severe mutations cause vLINCL

    Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis.

    Get PDF
    Contains fulltext : 50548.pdf (publisher's version ) (Open Access)PURPOSE: To test the efficiency of a microarray chip as a diagnostic tool in a cohort of northwestern European patients with Leber congenital amaurosis (LCA) and to perform a genotype-phenotype analysis in patients in whom pathologic mutations were identified. METHODS: DNAs from 58 patients with LCA were analyzed using a microarray chip containing previously identified disease-associated sequence variants in six LCA genes. Mutations identified by chip analysis were confirmed by sequence analysis. On identification of one mutation, all protein coding exons of the relevant genes were sequenced. In addition, sequence analysis of the RDH12 gene was performed in 22 patients. Patients with mutations were phenotyped. RESULTS: Pathogenic mutations were identified in 19 of the 58 patients with LCA (32.8%). Four novel sequence variants were identified. Mutations were most frequently found in CRB1 (15.5%), followed by GUCY2D (10.3%). The p.R768W mutation was found in 8 of 10 GUCY2D alleles, suggesting that it is a founder mutation in the northwest of Europe. In early childhood, patients with AIPL1 or GUCY2D mutations show normal fundi. Those with AIPL1-associated LCA progress to an RP-like fundus before the age of 8, whereas patients with GUCY2D-associated LCA still have relatively normal fundi in their mid-20s. Patients with CRB1 mutations present with distinct fundus abnormalities at birth and consistently show characteristics of RP12. Pathogenic GUCY2D mutations result in the most severe form of LCA. CONCLUSIONS: Microarray-based mutation detection allowed the identification of 32% of LCA sequence variants and represents an efficient first-pass screening tool. Mutations in CRB1, and to a lesser extent, in GUCY2D, underlie most LCA cases in this cohort. The present study establishes a genotype-phenotype correlation for AIPL1, CRB1, and GUCY2D

    Heterozygous deep-intronic variants and deletions in ABCA4 in persons with retinal dystrophies and one exonic ABCA4 variant

    No full text
    Item does not contain fulltextVariants in ABCA4 are responsible for autosomal-recessive Stargardt disease and cone-rod dystrophy. Sequence analysis of ABCA4 exons previously revealed one causative variant in each of 45 probands. To identify the "missing" variants in these cases, we performed multiplex ligation-dependent probe amplification-based deletion scanning of ABCA4. In addition, we sequenced the promoter region, fragments containing five deep-intronic splice variants, and 15 deep-intronic regions containing weak splice sites. Heterozygous deletions spanning ABCA4 exon 5 or exons 20-22 were found in two probands, heterozygous deep-intronic variants were identified in six probands, and a deep-intronic variant was found together with an exon 20-22 deletion in one proband. Based on ophthalmologic findings and characteristics of the identified exonic variants present in trans, the deep-intronic variants V1 and V4 were predicted to be relatively mild and severe, respectively. These findings are important for proper genetic counseling and for the development of variant-specific therapies

    A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies.

    Get PDF
    Contains fulltext : 81600.pdf (publisher's version ) (Closed access)Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect
    corecore