52 research outputs found

    Immunoreactivity of the AAA plus chaperone ClpB from Leptospira interrogans with sera from Leptospira-infected animals

    Get PDF
    Citation: Krajewska, J., Arent, Z., Wieckowski, D., Zolkiewski, M., & Kedzierska-Mieszkowska, S. (2016). Immunoreactivity of the AAA plus chaperone ClpB from Leptospira interrogans with sera from Leptospira-infected animals. Bmc Microbiology, 16, 8. doi:10.1186/s12866-016-0774-8Leptospira interrogans is a spirochaete responsible for leptospirosis in mammals. The molecular mechanisms of the Leptospira virulence remain mostly unknown. Recently, it has been demonstrated that L. interrogans ClpB (ClpB(Li)) is essential for bacterial survival under stressful conditions and also during infection. The aim of this study was to provide further insight into the role of ClpB in L. interrogans and answer the question whether ClpB(Li) as a potential virulence factor may be a target of the humoral immune response during leptospiral infections in mammals. Results: ClpB(Li) consists of 860 amino acid residues with a predicted molecular mass of 96.3 kDa and shows multi-domain organization similar to that of the well-characterized ClpB from Escherichia coli. The amino acid sequence identity between ClpB(Li) and E. coli ClpB is 52 %. The coding sequence of the clpB(Li) gene was cloned and expressed in E. coli BL21(DE3) strain. Immunoreactivity of the recombinant ClpB(Li) protein was assessed with the sera collected from Leptospira-infected animals and uninfected healthy controls. Western blotting and ELISA analysis demonstrated that ClpB(Li) activates the host immune system, as evidenced by an increased level of antibodies against ClpB(Li) in the sera from infected animals, as compared to the control group. Additionally, ClpB(Li) was found in kidney tissues of Leptospira-infected hamsters. Conclusions: ClpB(Li) is both synthesized and immunogenic during the infectious process, further supporting its involvement in the pathogenicity of Leptospira. In addition, the immunological properties of ClpB(Li) point to its potential value as a diagnostic antigen for the detection of leptospirosis

    Biochemical Characterization of Anopheles gambiae SRPN6, a Malaria Parasite Invasion Marker in Mosquitoes

    Get PDF
    Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African malaria mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs) are implicated in the innate immune response against malaria parasites. Based on reverse genetic and cell biological analyses, AgSRPN6 limits parasite numbers and transmission and has been postulated to control melanization and complement function in mosquitoes. This study aimed to characterize AgSRPN6 biophysically and determine its biochemical mode of action. The structure model of AgSRPN6, as predicted by I-Tasser showed the protein in the native serpin fold, with three central β-sheets, nine surrounding α-helices, and a protruding reactive center loop. This structure is in agreement with biophysical and functional data obtained from recombinant (r) AgSRPN6, produced in Escherichia coli. The physical properties of purified rAgSRPN6 were investigated by means of analytical ultracentrifugation, circular dichroism, and differential scanning calorimetry tools. The recombinant protein exists predominantly as a monomer in solution, is composed of a mixture of α-helices and β-sheets, and has a mid-point unfolding temperature of 56°C. Recombinant AgSRPN6 strongly inhibited porcine pancreatic kallikrein and to a lesser extent bovine pancreatic trypsin in vitro. Furthermore, rAgSRPN6 formed inhibitory, SDS-stable, higher molecular weight complexes with prophenoloxidase-activating proteinase (PAP)1, PAP3, and Hemolymph protein (HP)6, which are required for melanization in the lepidopteran model organism, Manduca sexta. Taken together, our results strongly suggest that AgSRPN6 takes on a native serpin fold and is an inhibitor of trypsin-like serine proteinases.This work was supported by the National Institutes of Health through 3P20RR017708-07S1 and P20RR017686 sub-awards and 1R01AI095842 to K.M. This is contribution 12-098-J from the Kansas Agricultural Experiment Station

    Intracellular complexes of the early-onset torsion dystonia-associated AAA+ ATPase TorsinA

    Get PDF
    A single GAG codon deletion in the gene encoding torsinA is linked to most cases of early-onset torsion dystonia. TorsinA is an ER-localized membrane-associated ATPase from the AAA+ superfamily with an unknown biological function. We investigated the formation of oligomeric complexes of torsinA in cultured mammalian cells and found that wild type torsinA associates into a complex with a molecular weight consistent with that of a homohexamer. Interestingly, the dystonia-linked variant torsinAΔE displayed a reduced propensity to form the oligomers compared to the wild type protein. We also discovered that the deletion of the N-terminal membrane-associating region of torsinA abolished oligomer formation. Our results demonstrate that the dystonia-linked mutation in the torsinA gene produces a protein variant that is deficient in maintaining its oligomeric state and suggest that ER membrane association is required to stabilize the torsinA complex

    Repurposing p97 inhibitors for chemical modulation of the bacterial ClpB–DnaK bichaperone system

    Get PDF
    The ClpB–DnaK bichaperone system reactivates aggregated cellular proteins and is essential for survival of bacteria, fungi, protozoa, and plants under stress. AAA+ ATPase ClpB is a promising target for the development of antimicrobials because a loss of its activity is detrimental for survival of many pathogens and no apparent ClpB orthologs are found in metazoans. We investigated ClpB activity in the presence of several compounds that were previously described as inhibitor leads for the human AAA+ ATPase p97, an antitumor target. We discovered that N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), the least potent among the tested p97 inhibitors, binds to ClpB with a Kd∼60 μM and inhibits the casein-activated, but not the basal, ATPase activity of ClpB with an IC50∼5 μM. The remaining p97 ligands, which displayed a higher affinity toward p97, did not affect the ClpB ATPase. DBeQ also interacted with DnaK with a Kd∼100 μM and did not affect the DnaK ATPase but inhibited the DnaK chaperone activity in vitro. DBeQ inhibited the reactivation of aggregated proteins by the ClpB–DnaK bichaperone system in vitro with an IC50∼5 μM and suppressed the growth of cultured Escherichia coli. The DBeQ-induced loss of E. coli proliferation was exacerbated by heat shock but was nearly eliminated in a ClpB-deficient E. coli strain, which demonstrates a significant selectivity of DBeQ toward ClpB in cells. Our results provide chemical validation of ClpB as a target for developing novel antimicrobials. We identified DBeQ as a promising lead compound for structural optimization aimed at selective targeting of ClpB and/or DnaK

    Determinants of Affinity and Activity of the Anti-Sigma Factor AsiA

    Get PDF
    The AsiA protein is a T4 bacteriophage early gene product that regulates transcription of host and viral genes. Monomeric AsiA binds tightly to the σ70 subunit of Escherichia coli RNA polymerase, thereby inhibiting transcription from bacterial promoters and phage early promoters and co-activating transcription from phage middle promoters. Results of structural studies have identified amino acids at the protomer-protomer interface in dimeric AsiA and at the monomeric AsiA-σ70 interface and demonstrated substantial overlap in the sets of residues that comprise each. Here we evaluate the contributions of individual interfacial amino acid side chains to protomer-protomer affinity in AsiA homodimers, to monomeric AsiA affinity for σ70, and to AsiA function in transcription. Sedimentation equilibrium, dynamic light scattering, electrophoretic mobility shift and transcription activity measurements were used to assess affinity and function of site-specific AsiA mutants. Alanine substitutions for solvent-inaccessible residues positioned centrally in the protomer-protomer interface of the AsiA homodimer – V14, I17, and I40 – resulted in the largest changes in free energy of dimer association, whereas alanine substitutions at other interfacial positions had little effect. These residues also contribute significantly to AsiA-dependent regulation of RNA polymerase activity, as do additional residues positioned at the periphery of the interface (K20 and F21). Notably, the relative contributions of a given amino acid side chain to RNA polymerase inhibition and activation (MotA-independent) by AsiA are very similar in most cases. The mainstay for intermolecular affinity and AsiA function appears to be I17. Our results define the core interfacial residues of AsiA, establish roles for many of the interfacial amino acids, are in agreement with the tenets underlying protein-protein interactions and interfaces, and will be beneficial for a general, comprehensive understanding of the mechanistic underpinnings of bacterial RNA polymerase regulation

    Costameric integrin and sarcoglycan protein levels are altered in a Drosophila model for Limb-girdle muscular dystrophy type 2H

    Get PDF
    Mutations in two different domains of the ubiquitously expressed TRIM32 protein give rise to two clinically separate diseases, one of which is Limb-girdle muscular dystrophy type 2H (LGMD2H). Uncovering the muscle-specific role of TRIM32 in LGMD2H pathogenesis has proven difficult, as neurogenic phenotypes, independent of LGMD2H pathology, are present in TRIM32 KO mice. We previously established a platform to study LGMD2H pathogenesis using Drosophila melanogaster as a model. Here we show that LGMD2H disease-causing mutations in the NHL domain are molecularly and structurally conserved between fly and human TRIM32. Furthermore, transgenic expression of a subset of myopathic alleles (R394H, D487N, and 520fs) induce myofibril abnormalities, altered nuclear morphology, and reduced TRIM32 protein levels, mimicking phenotypes in patients afflicted with LGMD2H. Intriguingly, we also report for the first time that the protein levels of βPS integrin and sarcoglycan δ, both core components of costameres, are elevated in TRIM32 disease-causing alleles. Similarly, murine myoblasts overexpressing a catalytically inactive TRIM32 mutant aberrantly accumulate α- and β-dystroglycan and α-sarcoglycan. We speculate that the stoichiometric loss of costamere components disrupts costamere complexes to promote muscle degeneration

    Aggregate-reactivation activity of the molecular chaperone ClpB from Ehrlichia chaffeensis

    Get PDF
    Citation: Zhang T, Kedzierska-Mieszkowska S, Liu H, Cheng C, Ganta RR, Zolkiewski M (2013) Aggregate-Reactivation Activity of the Molecular Chaperone ClpB from Ehrlichia chaffeensis. PLoS ONE 8(5): e62454. https://doi.org/10.1371/journal.pone.0062454Rickettsiale diseases, including human monocytic ehrlichiosis caused by Ehrlichia chaffeensis, are the second leading cause of the tick-borne infections in the USA and a growing health concern. Little is known about how E. chaffeensis survives the host-induced stress in vertebrate and tick hosts. A molecular chaperone ClpB from several microorganisms has been reported to reactivate aggregated proteins in cooperation with the co-chaperones DnaK/DnaJ/GrpE (KJE). In this study, we performed the first biochemical characterization of ClpB from E. chaffeensis. The transcript of E. chaffeensis ClpB (EhClpB) is strongly upregulated after infection of cultured macrophages and its level remains high during the Ehrlichia replicative stage. EhClpB forms ATP-dependent oligomers and catalyzes the ATP hydrolysis, similar to E. coli ClpB (EcClpB), but its ATPase activity is insensitive to the EcClpB activators, casein and poly-lysine. EhClpB in the presence of E. coli KJE efficiently reactivates the aggregated glucose-6-phosphate dehydrogenase (G6PDH) and firefly luciferase. Unlike EcClpB, which requires the co-chaperones for aggregate reactivation, EhClpB reactivates G6PDH even in the absence of KJE. Moreover, EhClpB is functionally distinct from EcClpB as evidenced by its failure to rescue a temperature-sensitive phenotype of the clpB-null E. coli. The clpB expression pattern during the E. chaffeensis infection progression correlates with the pathogen’s replicating stage inside host cells and suggests an essential role of the disaggregase activity of ClpB in the pathogen’s response to the host-induced stress. This study sets the stage for assessing the importance of the chaperone activity of ClpB for E. chaffeensis growth within the mammalian and tick hosts
    • …
    corecore