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Abstract

Rickettsiale diseases, including human monocytic ehrlichiosis caused by Ehrlichia chaffeensis, are the second leading cause
of the tick-borne infections in the USA and a growing health concern. Little is known about how E. chaffeensis survives the
host-induced stress in vertebrate and tick hosts. A molecular chaperone ClpB from several microorganisms has been
reported to reactivate aggregated proteins in cooperation with the co-chaperones DnaK/DnaJ/GrpE (KJE). In this study, we
performed the first biochemical characterization of ClpB from E. chaffeensis. The transcript of E. chaffeensis ClpB (EhClpB) is
strongly upregulated after infection of cultured macrophages and its level remains high during the Ehrlichia replicative
stage. EhClpB forms ATP-dependent oligomers and catalyzes the ATP hydrolysis, similar to E. coli ClpB (EcClpB), but its
ATPase activity is insensitive to the EcClpB activators, casein and poly-lysine. EhClpB in the presence of E. coli KJE efficiently
reactivates the aggregated glucose-6-phosphate dehydrogenase (G6PDH) and firefly luciferase. Unlike EcClpB, which
requires the co-chaperones for aggregate reactivation, EhClpB reactivates G6PDH even in the absence of KJE. Moreover,
EhClpB is functionally distinct from EcClpB as evidenced by its failure to rescue a temperature-sensitive phenotype of the
clpB-null E. coli. The clpB expression pattern during the E. chaffeensis infection progression correlates with the pathogen’s
replicating stage inside host cells and suggests an essential role of the disaggregase activity of ClpB in the pathogen’s
response to the host-induced stress. This study sets the stage for assessing the importance of the chaperone activity of ClpB
for E. chaffeensis growth within the mammalian and tick hosts.
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Introduction

Rikettsiales pathogens of the genera Ehrlichia and Anaplasma

have been identified in recent years as a growing health concern

and are the second leading cause of the tick-borne illnesses in the

USA after Borrelia burgdorferi, which causes Lyme disease. Ehrlichia

chaffeensis is an intracellular pathogen transmitted through an

infected tick, Amblyomma americanum, to humans and several other

vertebrate hosts [1–8]. The pathogen is responsible for causing

human monocytic ehrlichiosis (HME) [6,7,9]. The disease is

characterized by an acute onset of febrile illness that can progress

to a fatal outcome, particularly in immune compromised

individuals [2].

E. chaffeensis has an unusual developmental cycle that requires

growth and replication within phagosomes of eukaryotic cells of

vertebrate and tick hosts [10]. During its developmental cycle,

there is a conversion between two distinct morphological forms,

the elementary bodies (EBs) and the reticulate bodies (RBs)

[11,12]. EBs are the infectious form of E. chaffeensis; they convert

into metabolically active RBs upon entry into a host cell. RBs are

larger than EBs and divide by binary fission [11,13,14]. Later in

the developmental cycle, RBs convert back to EBs, which are

released from infected cells [11,13,14]. The transformation of the

E. chaffeensis RBs to EBs has been observed in both vertebrate and

tick hosts [14,15]. It is not clear how the pathogen overcomes the

host-induced stress in support of its invasion and replication in host

phagosomes and the subsequent release and reinfection of naı̈ve

host cells.

The role of stress and stress-response in host-pathogen

interactions is emerging as a novel direction in studies on the

mechanisms of infection [16,17]. Importantly, proteins that

mediate responses to stress can become targets for novel

antimicrobial therapies [18]. However, a successful antibiotic

targeting of the pathogenic stress-response machinery has not been

accomplished yet, mostly due to strong sequence conservation

among stress-induced proteins from different organisms and their

essential role in protein homeostasis in all forms of life.

ClpB is an ATP-dependent molecular chaperone from the

Hsp100 family that disaggregates and reactivates aggregated

proteins accumulating under conditions of stress [19]. For all

Hsp100 chaperones investigated so far, the unique disaggregase

activity requires cooperation with the members of Hsp70 and

Hsp40 families (bacterial DnaK/DnaJ) [20–23]. Hsp100 chaper-

ones belong to the AAA+ super-family of ATPases associated with
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different cellular activities, a group of energy-dependent confor-

mation-remodeling factors [24,25]. ClpB is produced in prokary-

otes, fungi (where it is known as Hsp104), and plants, but, unlike

other chaperones, it is not found in animals and humans. ClpB is

dispensable under normal growth conditions, but becomes

essential for survival under severe stress [26,27]. Importantly,

ClpB is required for invasiveness and/or in-host survival of a

number of bacterial and protozoan pathogens including Porphyr-

omonas gingivalis [28], Mycoplasma pneumoniae [29], Francisella tularensis

[30], Enterococcus faecalis [31], Mycobacterium tuberculosis [32],

Leptospira interrogans [33], and Leischmania donovani [34]. The

apparent lack of metazoan ClpB orthologs makes this chaperone

an attractive target for developing novel antimicrobial therapies.

The mechanism of ClpB from non-pathogenic organisms has been

extensively studied during the last decade (for reviews see

[19,35,36]), but no information about the activity and function

of ClpB in pathogens is available.

We report the first biochemical characterization of ClpB from a

pathogenic microorganism, E. chaffeensis (EhClpB, NCBI accession

number YP_507187). We discovered that the clpB expression is

high during the pathogen’s replication stage of the infection cycle.

A recombinant EhClpB shows the aggregate-reactivation activity

in vitro. Importantly, EhClpB displays a distinct linkage between

the nucleotide and substrate binding that has not been observed in

other Hsp100 proteins and translates into a unique capability of

EhClpB to mediate protein disaggregation independently from the

Hsp70/40 co-chaperones. This work provides a critical first step

for assessing the importance of the disaggregase activity of ClpB

for E. chaffeensis growth within the mammalian and tick hosts.

Materials and Methods

Proteins
The pET28a vector (Novagen) encoding E. chaffeensis clpB was

used to produce the recombinant EhClpB. The entire protein

coding sequence of E. chaffeensis clpB was amplified using Pfu DNA

polymerase (Promega) with the gene-specific PCR primers

(ClpB_forward primer: 59CACCATATGgatctcaatcaatttactgatatg,

with the NdeI site underlined, and ClpB_reverse: 59CGACTC-

GAGctataacttattaataattaaatcgtcattc, with the XhoI site under-

lined) using the pathogen genomic DNA as the template. The

PCR product was digested with NdeI and XhoI, purified to

remove the digested overhangs, and ligated with the similarly

digested pET28a plasmid to produce pET28a-EhClpB. Recom-

binant EhClpB from this plasmid construct was produced in the E.

coli strain RosettaTM 2(DE3) (EMD Millipore). The E. coli cells

were grown at 37uC until the optical density at 600 nm reached

,0.5 and then induced with 0.4 mM IPTG for 2 h. The cells were

then collected, disrupted by sonication and centrifuged to collect

the soluble extract. The soluble fraction was treated with 4 mg/(g

cells) polyethyleneimine (PEI). After centrifugation (20,000 g, 1 h),

the supernatant was applied to a Ni-NTA column (Invitrogen) and

the bound protein was eluted with 250 mM imidazole. Fractions

containing EhClpB were identified with SDS-PAGE/Coomassie

stain, combined, and further purified by gel filtration on Super-

dexH200 (GE LifeSciences). The N-terminal His-tag was removed

with Thrombin Cleavage Capture Kit (Novagen). The identity of

the purified EhClpB was confirmed with an MS analysis of tryptic

peptides, performed at the Biotechnology/Proteomics Core

Facility at KSU. The post-cleavage N-terminal sequence of the

recombinant EhClpB contains three additional amino acids

GlySerHis.

E. coli chaperones (EcClpB, DnaK, DnaJ, GrpE) were produced

or obtained as previously described [37]. Glucose-6-phosphate

dehydrogenase (G6PDH) from Leuconostoc mesenteroides was pro-

duced as described before [38]. Firefly luciferase was obtained

from Promega and k-casein from Sigma. Protein concentration

was determined spectrophotometrically and reported in monomer

units.

In Vitro Cultivation of E. chaffeensis
The canine macrophage cell line, DH82, has been continuously

cultivated under in vitro conditions. DH82 is a macrophage-

monocyte cell line from a dog with malignant histiocytosis [39]

and is commonly used for in vitro cultivation of E. chaffeensis [40].

The cell line is commercially available at ATCC (Catalog # CRL-

10389). The culture medium consisted of 500 ml minimum

essential medium with Earle’s salt, 6 ml 200 mM L-glutamine,

and 35 ml heat-inactivated fetal bovine serum. Cells were

incubated at 37uC with 5% CO2. Nine confluent T25 flasks

containing healthy DH82 cells were each inoculated with 100 ml

of macrophage culture-derived Arkansas isolate of E. chaffeensis

dense core infectious form. Cultures from one flask each were

recovered at each of the following time points; 0, 6, 12, 24, 36, 48,

60, 72, and 84 hrs post-infection by centrifugation at 15,000 g for

15 min. The resulting pellets were dissolved in 0.5 ml of TRI-

Reagent and stored at 280uC or used immediately for RNA

isolation.

RNA Isolation
Total RNA was isolated using the TRI-Reagent method (Sigma

Aldrich) according to the manufacturer’s instructions. RNeasy

Mini Kit (Qiagen) was used to remove a residual contaminating

genomic DNA. The final purified RNA from each flask was

resuspended in 50 ml of nuclease-free water.

Complementary DNA (cDNA) Synthesis
cDNA was synthesized from the RNA samples by using random

hexamers and reverse transcriptase as described in the SuperScript

III First-Strand Synthesis System for RT-PCR kit (Invitrogen).

The concentrations of cDNA from each time point of the

recovered sample were estimated by the nano-drop method, their

abundance was estimated by performing TaqMan-based real time

PCR assay targeted to the 16 S rDNA. Subsequently, the

concentrations of cDNAs were adjusted to represent equal

numbers of 16 S rDNA molecules per ml of solution.

Determination of the E. chaffeensis ClpB, ClpA and DnaK
Gene Expression by Semi-Quantitative RT-PCR

Gene-specific primers targeting ClpB cDNA (RRG839, 59 tta

cct gtt gta agt gga agt gg, and RRG840, 59 ctt aca cga ctt gct tca

tc), ClpA cDNA (RRG841, 59 gctagtttacacaaggcactgtc, and

RRG842, 59 cacgatagcgtgttccagc), or DnaK cDNA (RRG795, 59

tacagctgctgctttggcgtatg and RRG796, 59 cacccttatgaggttctctacc)

were used in the PCR analysis using cDNAs as the templates. The

PCRs were performed using 2 ml each of the concentration

adjusted cDNA solutions added to 23 ml of master mix containing

1x platinum qPCR super mix, 5 pmol of each of the forward and

reverse primers as per the manufacturer’s instruction (Invitrogen).

Amplifications were performed at varying PCR cycles ranging

from 20–40 cycles to estimate the variations in the expression

levels. The amplicons were resolved on a 1.0% agarose gel and

captured with Kodak Gel Logic 200 imaging system.

Analytical Ultracentrifugation
Beckman XL-I analytical ultracentrifuge was used in sedimen-

tation velocity experiments with two-channel analytical cells.

Chaperone Activity of ClpB from E. chaffeensis
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Ultracentrifugation was performed at 48,000 rpm and 20uC for

the 0.3-mg/ml protein samples in 50 mM Hepes/KOH pH 7.5,

0.2 M KCl, 20 mM MgCl2, 1 mM EDTA, 2 mM b-mercapto-

ethanol without and with 2 mM ATPcS (adenosine-5’-(c-thio)-

triphosphate). The data were analyzed using the time-derivative

method [41,42] and the software distributed with the instrument.

ClpB ATPase Activity
EhClpB and EcClpB were incubated in assay buffer (100 mM

Tris/HCl pH 8.0, 1 mM DTT, 1 mM EDTA, 10 mM MgCl2,

and 5 mM ATP) at 37uC for 15 min without or with 0.1 mg/ml k
-casein or 0.04 mg/ml poly-lysine, or 2 mM aggregated G6PDH.

The concentration of ClpB was 0.05 mg/ml for the basal activity

and in the presence of k -casein and G6PDH or 0.005 mg/ml in

the presence of poly-lysine. The concentration of phosphate

generated by ClpB was measured as described before [21].

Aggregate Reactivation Assays
To produce aggregates of G6PDH, the protein stock (320 mM)

was diluted 2-fold with the unfolding buffer (10 M urea, 16%

glycerol and 40 mM DTT) and incubated at 47uC for 5 min.

Then, the unfolded G6PDH was diluted 10-fold with the refolding

buffer 1 (50 mM Tris/HCl pH 7.5, 20 mM Mg(OAc)2, 30 mM

KCl, 1 mM EDTA, and 1 mM b-mercaptoethanol) and incubat-

ed at 47uC for 15 min and then on ice for 2 min to arrest the

aggregation. Aggregated G6PDH (16 mM) was diluted 10-fold

with refolding buffer 1 containing 1.5 mM ClpB, 1 mM DnaK,

1 mM DnaJ, 0.5 mM GrpE and 6 mM ATP. The sample was

incubated at 30uC and aliquots were withdrawn to test the

recovery of the G6PDH enzymatic activity. Aggregates diluted

with refolding buffer without the chaperones were used as control.

To measure the G6PDH activity, aliquots from the refolding

reaction were incubated in 50 mM Tris/HCl pH 7.8, 5 mM

MgCl2, 1.5 mM G6P and 1 mM NADP+ for 10 min followed by

the measurement of absorption at 340 nm. To produce aggregates

of firefly luciferase, 220 mM luciferase stock was diluted 300-fold

with PBS containing 1 mg/ml BSA and then incubated at 45uC
for 12 min. Aggregated luciferase (1 mM) was diluted 20-fold with

refolding buffer 2 (30 mM Hepes, pH 7.65, 120 mM KCl,

10 mM MgCl2, 6 mM ATP, 1 mM EDTA, 10 mM DTT,

0.1 mg/ml BSA) containing 1.5 mM ClpB, 1 mM DnaK, 1 mM

DnaJ, and 0.5 mM GrpE. The mixture was incubated at room

temperature and aliquots were withdrawn to test the recovery of

the luciferase activity using the luminescence assay system

(Promega).

ClpB-Aggregate Interaction Assay
Aggregated G6PDH (16 mM) was diluted 10-fold with the

refolding buffer 1 containing 1.5 mM ClpB and 6 mM nucleotide

(ADP, ATP, AMPPNP [adenylyl-imidodiphosphate], or ATPcS).

The sample was incubated at 30uC with 600 rpm shaking for

20 min and then was applied to the filter device (Millipore

Ultrafree-MC Centrifugal Filter Unit with the membrane pore size

0.1 mm). After 5 min incubation at room temperature, the filter

device was centrifuged at 13,000 rpm for 4 min. The filter device

was then washed with the refolding buffer 1 containing the

appropriate nucleotide at 30uC for 5 min and then re-centrifuged.

Next, 1x SDS-loading buffer was added to the filter device and the

filter device was incubated at 50uC for 5 min with shaking. Then,

the filter device was centrifuged to obtain the eluate fractions,

which were applied to SDS-PAGE. Aggregated luciferase (7 mM)

was diluted 20-fold with refolding buffer 2 (30 mM Hepes,

pH 7.65, 120 mM KCl, 10 mM MgCl2, 1 mM EDTA, 10 mM

DTT) containing 1.5 mM ClpB with 5 mM nucleotide and

processed as described above.

Heat-Shock Survival Assay
The E. chaffeensis clpB DNA sequence was subcloned into a low-

copy pGB2 plasmid downstream from the native E. coli ClpB heat-

shock promoter to produce pGB2-EhClpB. The protein coding

sequence of E. chaffeensis clpB was amplified from pET28a-EhClpB

using AccuTaq LA polymerase MIX (Sigma) with the following

PCR primers: CGGCGACGACATATGGATCTCAAT-

CAATTTAC with the NdeI site underlined, and CGGCGACTG-

CAGTATAACTTATTAATAATTAAA with the PstI site under-

lined. The E. coli s32 promoter sequence was amplified from

pGB2-EcClpB [43] using the following primers: CGAC-

CACCCGGGTTCTCGCCTGGTTAGGGC with the XmaI site

underlined and CGACGACATATGAACTCCTCCCATAACG-

GATC with the NdeI site underlined. The PCR products were

digested with NdeI, PstI, and XmaI and ligated with the pGB2

plasmid digested with PstI and XmaI to produce pGB2-EhClpB.

The E. coli strain MC4100DclpB [26] was transformed with the

empty pGB2, pGB2-EcClpB [43], or pGB2-EhClpB. To test the

heat-inducible expression of ClpB, the strains

MC4100DclpB[pGB2], MC4100DclpB[pGB2-EcClpB], and

MC4100DclpB[pGB2-EhClpB] were grown at 30uC in M9

supplemented with 50 mg/ml spectinomycin to A578 = 0.3, then

transferred to 45uC for 30 min (heat shock) or maintained at 30uC
for 30 min (control) and labeled with 35S-methionine (20 mCi/ml,

EasyTag, Perkin Elmer) for 10 min. Culture aliquots (0.5 ml) were

withdrawn, bacterial cells pelleted and suspended in 50 ml of SDS

loading buffer, boiled and analyzed with SDS-PAGE. Autoradi-

ography was performed after the electrotransfer of proteins to

nitrocellulose. E. coli growth and survival during heat-shock was

determined as described before [43].

Results

Analysis of the Amino-acid Sequence of EhClpB
AAA+ ATPases contain either one or two ATP-binding AAA+

modules with several conserved sequence motifs, including

Walker-A/B and sensor-1/2, and less-conserved additional

domains that mediate interactions with substrates or adaptors

[24,25]. The Hsp100 sub-family members contain two AAA+
modules (called D1 and D2) and two less conserved regions: the N-

terminal domain (ND) and the middle domain (MD), which is

inserted into D1. The sequence alignment of ClpB from E.

chaffeensis with four other Hsp100 sequences (Fig. S1) revealed that

the EhClpB domain organization is similar to those of other

Hsp100 proteins and that all characteristic AAA+ motifs are

present in the sequence of EhClpB. The sequences of the N-

terminal and middle domains are the most divergent among

Hsp100 proteins (see Fig. S1). The sequence identity between E.

coli and E. chaffeensis ClpB is 28% within ND, 45% within MD,

75% within D1, and 57% within D2.

Expression of E. chaffeensis clpB During the Infection of
Mammalian Cells

To assess the expression pattern of EhClpB, the E. chaffeensis

organisms were recovered from the confluent infected macrophage

culture and used to infect naı̈ve macrophages. RNA isolated from

the culture at different times post infection was examined by semi-

quantitative RT-PCR (Fig. 1). The EhClpB transcript level

strongly increased during the first 12 h post infection, remained

elevated until ,36 h, and declined thereafter. The EhClpB

mRNA signal was almost undetectable after 54 h post infection. In

Chaperone Activity of ClpB from E. chaffeensis
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contrast, the transcript levels of ClpA and DnaK showed less

variability between 6 and 84 h post infection. The increase in the

ClpB mRNA level occurred during the time when the replicating

reticulate bodies are typically abundant and the ClpB mRNA

declined when reticulate bodies transform to the non-replicating

form [44].

Biochemical Properties of EhClpB
To begin investigating the biological role of ClpB during the

infection cycle of E. chaffeensis, we produced the recombinant

EhClpB in Rosetta BL21(DE3) strain of E. coli., which contains

tRNAs for the rare Arg codons found in the EhClpB mRNA

(assessed with the graphical codon usage analyzer [45]). The

recombinant EhClpB in E. coli remained soluble and its mobility in

the lysate supernatant resolved with SDS-PAGE was consistent

with the predicted monomer molecular weight of 95.5 kDa (data

not shown). The identity of the purified EhClpB was further

confirmed by the mass-spectrometry analysis of tryptic peptides

(data not shown).

Since the oligomerization of Hsp100 proteins is linked to their

chaperone activity [46], we tested the self-association properties of

the recombinant EhClpB using sedimentation velocity. As shown

in Fig. 2A, EhClpB in the absence of nucleotides sedimented as a

single species with the apparent sedimentation coefficient of

,4.5 S, which agreed with the previously determined sedimenta-

tion coefficient of the monomeric E. coli ClpB (EcClpB) [46]. The

addition of a non-hydrolyzable ATP analog, ATPcS induced self-

association of EhClpB into ,14.7-S particles (see Fig. 2B), which

approximates the sedimentation coefficient of the hexameric

EcClpB [47]. We next investigated the ATPase activity of

EhClpB. As shown in Fig. 3, the basal ATPase of EhClpB was

similar to that of the purified EcClpB. However, while the ATPase

of EcClpB was efficiently activated in the presence of casein or

Figure 1. Messenger-RNA levels of the selected molecular chaperones in E. chaffeensis during infection of macrophages. E. chaffeensis
RNA concentration was estimated by real-time RT-PCR targeted to 16 S rRNA and the concentration levels were equalized in all samples assessed.
Transcript levels for ClpB (A), DnaK (B), and ClpA (C) were assessed by semi-quantitative RT-PCR using 40 PCR cycles (A, C) or 25 PCR cycles (B). Lanes:
M, molecular weight markers; RNA recovered at different time post inoculation of a macrophage culture; +ve, RT-PCR signal from the E. chaffeensis
genomic DNA (positive control); –ve, RT-PCR in the absence of the DNA template (negative control).
doi:10.1371/journal.pone.0062454.g001

Figure 2. Sedimentation velocity of ClpB from E. chaffeensis.
Shown are the apparent distributions of the sedimentation coefficient
for 0.3 mg/ml EhClpB in the absence of nucleotides (A) and in the
presence of 2 mM ATPcS (B).
doi:10.1371/journal.pone.0062454.g002
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poly-lysine, the ATPase of EhClpB did not respond to the putative

activators.

Aggregate-Reactivation Activity of EhClpB
We tested the reactivation of two previously investigated in vitro

substrates of Hsp100 chaperones: large aggregates produced from

chemically denatured glucose-6-phosphate dehydrogenase

(G6PDH) [37,48] and thermally aggregated firefly luciferase

[46]. As shown in Fig. 4A, EhClpB reactivated aggregated

G6PDH in the presence of the E. coli co-chaperones DnaK/

DnaJ/GrpE (KJE). The apparent rate of the G6PDH disaggre-

gation was ,5-fold higher for EhClpB than for EcClpB (see

Fig. 4A, C). Unexpectedly, we found that EhClpB reactivated

aggregated G6PDH even in the absence of KJE (Fig. 4B) with the

reactivation rate close to that found for EcClpB in the presence of

the co-chaperones (Fig. 4C).

EhClpB and EcClpB reactivated aggregated luciferase with

similar apparent rates in the presence of KJE (t-test p = 0.5,

Fig. 5B). No measurable reactivation of aggregated luciferase was

observed in the absence of KJE for either EhClpB or EcClpB (data

not shown).

We tested if the apparently higher rate of G6PDH reactivation

observed for EhClpB, as compared to EcClpB (see Fig. 4) could be

due to a more efficient binding of the Ehrlichia chaperone to the

aggregated substrate. Previous studies demonstrated that stable

interaction of EcClpB with aggregated substrates occurs in the

‘‘frozen’’ ATP-bound state of the chaperone [49], which can be

mimicked by supplying a non-hydrolysable ATP analog, ATPcS

[50]. We incubated EcClpB and EhClpB with the native or

aggregated substrates in the presence of different nucleotides and

nucleotide analogs. The aggregates were then separated from

soluble proteins using filtration and the aggregate-bound proteins

analyzed with SDS-PAGE (Fig. 6). Only background amounts of

EcClpB or EhClpB were retained on filters in the absence of the

aggregates (first lane in Fig. 6A, B, C). As has been shown before

for several aggregated substrates [38,50], only ATPcS induces

significant binding of EcClpB to the aggregates (Fig. 6A). In

contrast, we found that EhClpB interacted more efficiently with

the aggregated G6PDH and luciferase in the presence of the

hydrolysable ATP rather than ATPcS (Fig. 6B, C). We tested if the

aggregated G6PDH inhibits the ATP turnover of EhClpB, which

could be responsible for the increased stability of the ClpB-

substrate complex with ATP. However, as shown in Fig. 3, the

rates of ATP hydrolysis supported by EhClpB and EcClpB were

similar in the presence of the G6PDH aggregates and were not

below the basal rate. Importantly, the amount of aggregate-bound

EhClpB in the presence of ATP was similar to that of EcClpB in

the presence of ATPcS (Fig. 6A, B), which suggests that the

apparent 5-fold difference in the reactivation rate of aggregated

G6PDH between EhClpB and EcClpB (Fig. 4) may not be due to

a higher affinity of the Ehrlichia chaperone towards the aggregated

substrate.

Figure 3. ATPase activity of ClpB from E. chaffeensis and E. coli.
The initial rate of hydrolysis of ATP catalyzed by EhClpB or EcClpB was
determined at 37uC in the absence of other proteins (basal activity),
with k-casein, poly-lysine, or aggregated G6PDH. The average values
from three separate experiments are shown with the standard
deviations.
doi:10.1371/journal.pone.0062454.g003

Figure 4. Reactivation of aggregated glucose-6-phosphate
dehydrogenase in the presence of ClpB from E. chaffeensis
and E. coli. (A) A representative time-course of the reactivation of
aggregated G6PDH in the presence of DnaK/DnaJ/GrpE from E. coli
without ClpB and with EcClpB or EhClpB. (B) A representative time-
course of the reactivation of aggregated G6PDH in the absence of
chaperones (control) and in the presence of EcClpB or EhClpB. (C) Initial
rates of G6PDH reactivation (from the linear slopes of the data in (A)
and (B)). The average values from three independent experiments are
shown with the standard deviations. T-test scores: **, p,0.01; ***,
p,0.001.
doi:10.1371/journal.pone.0062454.g004
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ClpB-Dependent Heat-Shock Survival of E. coli
In E. coli, ClpB is dispensable for growth under normal

conditions, but becomes essential for survival during heat-shock

[26]. We tested if EcClpB can be functionally substituted in E. coli

with EhClpB. We subcloned the EhClpB DNA sequence into a

low-copy pGB2 plasmid and placed it under a control of the native

EcClpB heat-shock promoter. Autoradiography of the E. coli

lysates in Fig. 7A showed that the heat-shock conditions (45uC)

induced a prominent expression of a discrete set of proteins, which

likely represented the major heat-shock protein families. The

Hsp100 signal was absent in the clpB-null strain transformed with

pGB2, but was present in that strain transformed with pGB2

containing either the EhClpB or EcClpB coding sequence. As

reported earlier [26], the lack of a functional ClpB decreased the

growth rate of E. coli at 45uC (Fig. 7B) and inhibited survival at

50uC (Fig. 7C). Interestingly, the heat-shock-inducible production

of EhClpB (Fig. 7A) did not rescue the temperature-sensitive

phenotypes in the clpB-null E. coli (Fig. 7B, C).

Discussion

In this work, we performed the first biochemical characteriza-

tion of an Hsp100 chaperone ClpB from E. chaffeensis. The amino-

acid sequence of EhClpB contains two modules (D1, D2) with

several motifs characteristic for the AAA+ superfamily: Walker-A/

B and sensor-1/2 (Fig. S1). In the previously studied Hsp100

proteins, the D1 and D2 modules form an ATP-dependent

molecular ‘‘engine’’, which drives the processing of substrates. The

sequence of each AAA+ module in EhClpB also contains a ‘‘pore-

loop’’ motif (see Fig. S1), which is involved in binding and

processing of substrates inside the central pore in the hexameric

form of Hsp100 [51,52]. Moreover, like other Hsp100 proteins,

EhClpB contains two less conserved sequence regions: the 145-

residue-long N-terminal domain and the middle domain inserted

into D1 (see Fig. S1). The N-terminal domain of EhClpB contains

a conserved triad Thr7, Asp104, Glu110, which supports the

aggregate binding and reactivation in EcClpB [37,53]. The middle

domain of EhClpB contains a conserved Tyr505, which supports

the functional cooperation between Hsp100 and Hsp70/40 [54].

The Hsp100-like domain organization and the presence of

multiple conserved sequence motifs (see Fig. S1) indicate that

EhClpB is a bona fide Hsp100, which may perform the function of a

molecular chaperone in E. chaffeensis.

As shown in Fig. 1, a strong induction of the EhClpB mRNA

correlates with the Ehrlichia infection of macrophages and the

pathogen entry into an intense replicative stage inside the host

cells. The EhClpB mRNA subsequently declines to very low levels

as the pathogen stops replicating and prepares for its release from

host cells. The transcript level of EhClpB during the infection cycle

is more variable than those of E. chaffeensis ClpA and DnaK (see

Fig. 1), which are known regulators of protein homeostasis under

stressed, but also non-stressed conditions [55]. The expression

pattern of EhClpB mRNA suggests that the function of EhClpB is

linked to the pathogen’s adjustment to the intracellular phase of its

lifecycle and possibly to its response to host-induced stress.

Purified recombinant EhClpB shows the hallmark biochemical

features of Hsp100 proteins: it forms nucleotide-induced hexamers

and catalyzes the hydrolysis of ATP (see Figs. 2, 3). EhClpB

Figure 5. Reactivation of aggregated firefly luciferase in the
presence of ClpB from E. chaffeensis and E. coli. (A) A
representative time-course of the reactivation of aggregated luciferase
in the presence of DnaK/DnaJ/GrpE from E. coli without ClpB and with
EcClpB or EhClpB. (B) Initial rates of G6PDH reactivation (from the linear
slopes of the data in (A)). The average values from three independent
experiments are shown with the standard deviations. T-test scores: **,
p,0.01.
doi:10.1371/journal.pone.0062454.g005

Figure 6. Interactions of ClpB with aggregated substrates.
EcClpB (A) or EhClpB (B, C) was incubated with the native (N) or
aggregated G6PDH (A, B) or luciferase, Luc (C) in the presence of the
indicated nucleotides. The solutions were passed through a 0.1- mm
filter and the fractions retained on the filter were analyzed by SDS-PAGE
with Coomassie stain. The first lane in (A) shows EcClpB incubated with
the native G6PDH and ATPcS, in (B, C) it shows EhClpB incubated with
the native G6PDH or luciferase and ATP.
doi:10.1371/journal.pone.0062454.g006
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reactivates inactivated aggregated enzymes: G6PDH and lucifer-

ase in vitro (see Figs. 4, 5). The aggregate reactivation mediated by

EhClpB is more efficient in the presence of the co-chaperones

DnaK/DnaJ/GrpE (KJE) from E. coli, but, unlike EcClpB,

EhClpB does not require the co-chaperones to disaggregate

G6PDH (see Fig. 4B, C). Two important conclusions can be

drawn from the above observation. First, it has been observed

before that there is an apparent ‘‘species-specificity’’ in coopera-

tion between Hsp100 and Hsp70/40 during aggregate reactivation

and that such specificity is linked to the sequence of the ClpB

middle domain [56,57]. As shown in Figures 4 and 5, EhClpB

does functionally cooperate with KJE from E. coli. Thus, the

apparent differences in the sequence of the middle domain (see

Fig. S1) between EhClpB and EcClpB do not break the functional

linkage with KJE. Second, it has been argued that Hsp70/40 are

required for the Hsp100-mediated aggregate reactivation because

they either perform an obligatory disaggregation step upstream of

Hsp100 [58] or target Hsp100 to its aggregated substrates [59].

Our results (see Fig. 4B, C) show that EhClpB displays an intrinsic

disaggregase activity, which is independent, at least for some

substrates, from that of the co-chaperones.

The Hsp100-mediated aggregate reactivation is linked to the

extraction of polypeptides from aggregated particles and their

translocation through the central pore in the Hsp100 hexamer

[60]. Due to a small diameter of the pore, the extracted

polypeptides are released from Hsp100 in unfolded conformation

and need to refold in order to manifest a biochemical activity.

Efficient refolding of unfolded proteins is often dependent on

Hsp70/40 [61]. Thus, the reason why some substrates, like

luciferase, are not reactivated by EhClpB without KJE is that they

may not refold efficiently without a downstream chaperone

assistance. In contrast, unfolded G6PDH does apparently spon-

taneously refold without chaperone assistance and shows enzy-

matic activity after its disaggregation by EhClpB (see Fig. 4B, C). It

is striking that the apparent rate of G6PDH disaggregation with

EhClpB without KJE is similar to that found for EcClpB with KJE

(see Fig. 4C).

EcClpB does not form stable complexes with aggregated

substrates under conditions of the ATP turnover unless the co-

chaperones are also present [62]. Indeed, isolation of the EcClpB-

aggregate complexes has been only possible in the presence of the

non-hydrolysable ATPcS [50], which induces a stable substrate-

binding conformation in ClpB. Unexpectedly, we found that

EhClpB binds stably to aggregated substrates in the presence of

ATP and does so more efficiently than with ATPcS (see Fig. 6).

ATPcS does fit into the nucleotide binding sites of EhClpB since it

induces the formation of EhClpB hexamers (see Fig. 2). One

should note that not all ATP analogs induce strong binding of

substrates to Hsp100, as shown in Fig. 6 by the background levels

of aggregate binding to either EcClpB or EhClpB in the presence

of AMPPNP. Thus, a subtle allosteric linkage connects the

nucleotide binding sites and the aggregate binding site(s) in

Hsp100. The allosteric link between the ATPcS-occupied

nucleotide sites and the aggregate binding site(s) appears less

functional in EhClpB than in EcClpB (see Fig. 6B, C).

The apparent switch in nucleotide preference for stable

substrate binding between ATPcS in EcClpB and ATP in EhClpB

is perhaps the most unexpected difference between the two

chaperones. Previous data suggested that Hsp100 without Hsp70/

40 could not maintain contact with the surface of an aggregate

while hydrolyzing ATP [62]. Our results demonstrate that EhClpB

maintains substrate contact without a support of Hsp70/40 in the

presence of ATP (see Fig. 6), which possibly translates into the

Hsp70/40-independent reactivation of aggregates by EhClpB (see

Fig. 4).

Apparent differences between EhClpB and EcClpB are not

limited to the linkage between a nucleotide and substrate binding.

EhClpB produced in E. coli is biochemically functional (see Figs. 2,

3, 4, 5), cooperates well with the E. coli co-chaperones in vitro (see

Figs. 4, 5) but does not rescue the growth-defect of the clpB-null E.

coli under heat-shock (see Fig. 7). The results in Fig. 7 suggest that

the protein clients of EcClpB, which aggregate during heat-shock

are not rescued by EhClpB. One can speculate that the substrate

specificities of EcClpB and EhClpB are different, possibly because

of a different nature of stress experienced by both types of bacteria.

Importantly, the EhClpB clients in the replicating Ehrlichia may

need chaperone assistance during infection of mammalian cells

and show distinct recognition motifs from the heat-aggregated

proteins in E. coli. This hypothesis is consistent with the

observation that the ATPase of EhClpB fails to respond to the

known pseudo-substrates of EcClpB: casein and poly-lysine (see

Figure 7. Effect of the production of ClpB from E. coli and E.
chaffeensis on the growth and survival of E. coli under heat
shock. (A) Autoradiography of the E. coli cell lysates obtained from the
clpB-null strain transformed with pGB2, or with pGB2-EhClpB, or with
pGB2-EcClpB, grown at 30uC or 45uC (heat shock conditions, HS). (B)
Growth curves of the clpB-null strain transformed with pGB2, pGB2-
EhClpB, or pGB2-EcClpB at 45uC. (C) Survival of the clpB-null strain
transformed with pGB2, pGB2-EhClpB, or pGB2-EcClpB, 50uC. The
average values from two experiments are shown in (B) and (C).
doi:10.1371/journal.pone.0062454.g007
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Fig. 3). Altogether, our study revealed several distinct properties of

EhClpB. Considering the unique intraphagosomal environment of

a phagocytic host cell (monocyte or macrophage) in which E.

chaffeensis replicates, EhClpB might have evolved to meet specific

demands of the pathogen’s survival under the host-induced stress.

Understanding the role of molecular chaperones in pathogen-

host interactions has emerged as a novel direction in studies of the

mechanisms of infection. Interfering with the function of

chaperones may offer an efficient way of controlling the infectivity

and survival of pathogens. Among the known molecular chaper-

ones, the Hsp100 family is particularly promising as a potential

target for antibiotics because the Hsp100 proteins are not

produced in animal cells. We made the first step towards

understanding the biological function and mechanism of the

Hsp100 disaggregase ClpB from an important human pathogen E.

chaffeensis. Further characterization of the EhClpB role in the

pathogen’s life cycle and its in vivo substrates may create

opportunities for developing novel approaches in treating ehrlich-

iosis and possibly other infectious diseases caused by rickettsial

pathogens.

Supporting Information

Figure S1 Sequence alignment of the ClpB sequences
from Ehrlichia chaffeensis, Escherichia coli, Thermus
thermophilus, Saccharomyces cerevisiae, and Arabidop-
sis thaliana. Structural domains: N-terminal domain (ND),

linker, D1, middle domain (MD), and D2 are indicated below the

alignment in bold typeface. The domains’ borders were obtained

from the crystallographic data for T. thermophilus ClpB [Lee S,

Sowa ME, Watanabe YH, Sigler PB, Chiu W, et al. (2003) The

structure of ClpB: a molecular chaperone that rescues proteins

from an aggregated state. Cell 115:229–240]. The characteristic

motifs of AAA+ ATPases are indicated below the alignment in

italics.

(PDF)
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