26 research outputs found

    New high-resolution age data from the Ediacaran-Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion

    Full text link
    The replacement of the late Precambrian Ediacaran biota by morphologically disparate animals at the beginning of the Phanerozoic was a key event in the history of life on Earth, the mechanisms and the timescales of which are not entirely understood. A composite section in Namibia providing biostratigraphic and chemostratigraphic data bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb-CA-ID TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fossils to a 410 ka time window of 538.99±0.21 Ma to 538.58±0.19 Ma. The extremely short duration of the faunal transition from Ediacaran to Cambrian biota within less than 410 ka supports models of ecological cascades that followed the evolutionary breakthrough of increased mobility at the beginning of the Phanerozoic

    Neoproterozoic glaciations of southern Namibia (Kalahari Craton) - Characteristics, geotectonic setting, provenance and geochronological correlation

    Get PDF
    There exist various glacial units in the Neoproterozoic strata of southern Namibia (Kalahari Craton). They were recognised and discussed in the scientific literature for at nearly 100 years (e.g. Coleman, 1926; Gevers, 1931; Schwellnuss, 1941; Martin, 1965). The Snowball Earth theory (Hoffman et al., 1998) had an huge impact on Neoproterozoic geosciences and especially outcrops of the Otavi Group in northern Namibia helped to strengthen and support this idea. Nevertheless, the Neoproterozoic glacial horizons in southern Namibia were difficult to interpret and even more difficult to correlate, due to their tectonic overprint and their scarce outcrops. In order to correlate and differentiate the various Neoproterozoic glacial units of southern Namibia (western rim of Kalahari Craton) a multi‐method approach based on isotopic analyses on zircon grains, whole rock geochemistry, grain size measurements combined with extensive field work, mapping and sampling was applied. In total, ten sections were mapped and measured from which 33 samples were chosen for further analyses. Two of these samples represent local basement rocks, 19 the siliciclastic Neoproterozoic sedimentary cover including glacial diamictites, and twelve carbonate samples. 3474 single zircon grains were picked and measured for their dimensions (width and length). Of those, 2404 zircons were analysed with LA‐ICP‐MS techniques for their U‐Pb and Th‐U ratios in order to calculate detrital zircon ages and to obtain information about the source magma. 1535 of those gave concordant ages (90‐110 % of concordance). Further, selected zircon grains (in total 346) with concordant U‐Pb ages were analyses for their ΔHf(t) values. To gather more information and to be able to provide absolute ages for the Neoproterozoic glacial units the new technique of LAICP‐MS U‐Pb dating on carbonate samples was tested and gave reliable results for ten out of twelve samples (representing seven different sample locations). Field work revealed two sections containing the Sturtian as well as the Marinoan glacial diamictites in relatively undisturbed succession that qualified as reference profiles for Neoproterozoic strata in southern Namibia: the Dreigratberg and the Namuskluft section in the Gariep Belt close to the Orange River. All analysed samples contain a very similar detrital zircon isotopic record and the whole rock geochemical analyses confirm this interpretation. All siliciclastic samples show a general felsic provenance, with zircon ages mainly divided into two age groups (Mesoproterozoic 1.0 – 105 Ga and Palaeoproterozoic 1.7 – 2.1 Ga), reflecting four different growth and recycling events of Mesoproterozoic to Archaean crustal units. The samples have a geochemical signature of continental island arc and the zircon grain dimensions (width vs. length) are also very similar for all samples. Direct age dating of the samples based on detrital zircons was not possible caused by the lack of ages reflecting deposition times. Nevertheless, the most important differences between the various glacial horizons were found in petrographic features (diamictite pebble contents) and the age peak shift of detrital zircon U‐Pb ages (P/M ratio). Based on these and the two reference profiles correlations to other sections were achievable and the differentiation of four distinct Neoproterozoic glacial horizons for southern Namibia was possible. Furthermore, these new results provide new insights into the Neoproterozoic Gariep Belt formation comprising Tonian rifting events, Cryogenian formation of the Arachania Terrane and final Ediacaran collision of the Rio de la Plata and Kalahari cratons. The combination of all results reflects a continuous sedimentary recycling on the western Kalahari Craton. Comparison and statistical similarity tests based on zircon age data bases for possible source areas defined the Namaqua Natal and Gariep belts as the most likely sedimentary source areas, providing the rock material that got recycled for at least 200 Ma from Kaigas glaciation at ca. 750 Ma to Vingerbreek glaciation at ca. 550 Ma. In addition, the lack of exotic detrital zircon ages within the two Snowball Earth events of this study suggests the interpretation of none or only very minor glacial movement confirming the idea of a completely ice‐covered Earth. The assumed Sturtian and Marinoan ages of Numees Fm and Namaskluft Mbr diamictites were confirmed by the results of U‐Pb cap carbonate dating. Based on these, a minimum duration of ca. 8 Ma for the Sturtian and of ca. 14 Ma for the Marinoan glaciation can be assumed.:Abstract Kurzfassung Contents List of Figures List of Tables List of abbreviations Scientific question and thesis structure 1 Introduction 1.1 The Neoproterozoic era: Supercontinent dispersal and global glaciations 1.1.1 Rodinia supercontinent: Formation, dispersal, and location of Kalahari Craton 1.1.2 Glacial events during the Neoproterozoic era 1.1.2.1 A brief history on the discovery of Snowball Earth events 1.1.2.2 Formation and termination of a Snowball Earth event: The Snowball Earth flow chart 1.1.2.3 Hypotheses for cap carbonate formation 1.1.2.4 Survival of life during a Snowball Earth event 1.2 The Kalahari Craton 1.2.1 Evolution of the Kalahari Craton 1.3 Overview over the Geology of Namibia under special consideration of southern Namibia (Kalahari Craton) 2 Characteristics of southern Namibian Neoproterozoic glacial samples and sides 3 The problematic correlations of Neoproterozoic glacial deposits of the Kalahari Craton (southern Namibia) 4 Methods 4.1 Field work 4.2 Whole Rock geochemical analyses 4.3 Heavy mineral separation and SEM analyses on zircon grains of siliciclastic samples 4.4 Zircon grain size analyses 4.5 LA‐ICP‐MS analyses on zircon grains 4.5.1 U‐Pb analyses with LA‐SF‐ICP‐MS 4.5.2 Th‐U ratio determination on zircon grains 4.5.3 Hf‐isotope measurements with LA‐MS‐ICP‐MS 4.6 LA‐ICP‐MS U‐Pb dating on carbonates 4.7 Provenance interpretations and likeness tests based on zircon U‐Pb age data bases 5 Study I: “The Namuskluft and Dreigratberg sections in southern Namibia (Kalahari Craton, Gariep Belt): a geological history of Neoproterozoic rifting and recycling of cratonic crust during the dispersal of Rodinia until the amalgamation of Gondwana” 5.1 Introduction and geological setting 5.2 Samples and methods 5.3 Results 5.4 Discussion and interpretation 5.5 Summary 6 Study II: “The four Neoproterozoic glaciations of southern Namibia and their detrital zircon record: The fingerprints of four crustal growth events during two supercontinent cycles” 6.1 Introduction 6.2 The samples 6.3 Methods 6.4 Results 6.5 Interpretation and discussion 6.6 Conclusion/Summary 7 Study III: “Correlation of Neoproterozoic diamictites in southern Namibia” 7.1 Introduction 7.2 Sample sites 7.2.1. The Kaigas and Sturtian Numees diamictites at the Orange River section 2.1.1. Outcrops of the Kaigas Fm diamictites 7.2.1.2 Outcrop of the Numees Fm diamictites (Sturtian) 7.2.2 The Sturtian diamcitite of the Blaubeker Fm (Witvlei Grp) at the farmgrounds Blaubeker and Tahiti 7.2.2.1 The Blaubeker diamictite at Blaubeker Farm (type locality) 7.2.2.2 The Blaubeker diamictite at Tahiti Farm (Gobabis‐syncline) 7.2.2.3 Correlation of Blaubeker diamictite at Blaubeker and Tahiti farms 7.2.3 The Sturtian diamictite at the Trekpoort Farm section 7.2.4 The Sturtian and Marinoan diamictites at Namuskluft section (reference profile) 7.2.5 The Sturtian and Marinoan diamictites at Dreigratberg section 7.2.6 Sturtian diamictite and Marinoan‐type cap carbonate at Dreigratberg North section 7.2.7 The Marinoan diamictite at the Witputs Farm section 7.2.8 The post‐Gaskiers Vingerbreek diamictite 7.2.8.1 The Vingerbreek diamictite along the Orange River 7.2.8.2 The Vingerbreek diamictite at Tierkloof Farm (Klein Karas Mountains) 7.3 Methods 7.4 Data and Results 7.4.1 Results of the U‐Pb detrital zircon data 7.4.2 Results of the U‐Pb carbonate dating 7.4.3 Results of zircon grain width and length measurements 7.4.4 Results of the Th‐U zircon ratios 7.4.5 Results of Lu‐Hf isotopic measurements 7.4.6 Geochemical results of the siliciclastic and basement samples 7.4.7 Geochemical results of the carbonate samples 7.5 Discussion and Conclusion 8 Sediment provenance and Snowball Earth ice dynamics 9 Implications on the evolution of the Gariep Belt 10 Conclusions and outlook 11 References Supplementary MaterialDie neoproterozoischen Einheiten des sĂŒdlichen Namibias (Kalahari Kraton) umfassen verschiedene glaziale Einheiten, die schon seit fast 100 Jahren bekannt sind und wissenschaftlich beschrieben wurden (z.B. Coleman, 1926; Gevers, 1931; Schwellnuss, 1941; Martin, 1965). Die Schneeball Erde Theorie (Hoffman et al., 1998) hatte einen enormen Einfluss auf die geologischen Studien des Neoproterozoikums, wobei besonders AufschlĂŒsse der Otavi Gruppe Nordnamibias die Theorie stĂ€rken und bestĂ€tigen. Im Gegensatz dazu sind neoproterozoische glaziale Horizonte SĂŒdnamibias aufgrund ihrer tektonischen ÜberprĂ€gung und der wenigen AufschlĂŒsse schwer zu interpretieren und zu korrelieren. Mit dem Ziel, die neoproterozoischen glazialen Einheiten SĂŒdnamibias zu unterscheiden und zu korrelieren, wurde ein Multimethodenansatz basierend auf Isotopenanalysen an Zirkonmineralen, Gesamtgesteinsgeochemie, MineralkorngrĂ¶ĂŸenmessungen und intensiver Feldarbeit angewandt. Insgesamt wurden zehn Profile kartiert und vermessen, von denen 33 Proben zur weiteren Analyse ausgewĂ€hlt wurden. Zwei dieser Proben stammen vom lokalen Grundgebirge, 19 aus den sedimentĂ€ren Einheiten darĂŒber (inklusive der glazialen Ablagerungen) und zwölf reprĂ€sentieren Karbonatgesteinsproben. 3474 Einzelzirkone wurden hinsichtlich ihrer Breite und LĂ€nge vermessen, wovon 2404 Minerale mittels LA‐ICP‐MS nach ihren U‐Pb und Th‐U‐Gehalten analysiert wurden. 1535 dieser Minerale ergaben konkordante Alter (90 – 110% Konkordanz). DarĂŒber hinaus wurden von 346 ausgewĂ€hlten konkordanten Zirkonen die ΔHf(t) Werte bestimmt. Um das Datenset zu vervollstĂ€ndigen wurden LA‐ICP‐MS U‐Pb Analysen an Karbonatgesteinen an zehn von zwölf Proben erfolgreich getestet. Im Zuge der Feldarbeiten kristallisierten sich zwei Profile nahe des Oranje heraus, welche die Sturtian und die Marinoan Vereisung in nahezu ungestörter Lagerung enthalten und sich deshalb als Referenzprofile qualifizieren. Alle analysierten Proben zeichnen sich durch sehr Ă€hnliche Zirkonisotopenwerte aus, was durch die Gesamtgesteinsgeochemieanalysen weiterhin bestĂ€tigt wird. Alle siliziklastischen Proben zeigen eine generelle felsische Provenienz mit Zirkonaltern welche sich hauptsĂ€chlich in zwei Altersgruppen unterteilen lassen (mesoproterozoisch 1.0 – 1.5 Mrd Jahre, palĂ€oproterozoisch 1.7 – 2.1 Mrd Jahre). Diese reflektieren vier verschiedene krustale Entwicklungsstadien vom Mesoproterozoikum bis Archaikum. Die geochemische Signatur aller Proben deutet auf einen kontinentalen Inselbogen hin und auch die ZirkonmineralgrĂ¶ĂŸen sind fĂŒr alle Proben Ă€hnlich. Eine direkte Altersdatierung auf Grundlage der detritischen Zirkone war aufgrund fehlender junger Alter nicht möglich. Dennoch ist eine Unterscheidung der glazialen Schichten SĂŒdnamibias basierend auf den petrographischen Eigenschaften und dem sich verschiebenden Alterstrend der detritischen Zirkone möglich (P/M VerhĂ€ltnis). In Kombination mit den zwei Referenzprofilen ist eine umfassende Korrelation aller untersuchten Profile möglich und die Unterscheidung von vier Neoproterozoischen glazialen Schichten in Namibia gelungen. Die Ergebnisse geben weitere Einblicke in die neoproterozoische Entwicklung des Gariep GĂŒrtels, welcher durch RiftvorgĂ€nge im Tonium, die Bildung des Arachania Terranes wĂ€hrend des Cryogeniums und die ediakarische finale Kollision zwischen den Rio de la Plata und Kalahari Kratonen geprĂ€gt ist. Die Kombination aller Ergebnisse zeigt ein kontinuierliches Sedimentrecycling auf dem westlichen Kalahari Kraton. Vergleiche und statistische Ähnlichkeitsanalysen basierend auf U‐Pb Zirkonalterdatenbanken ergaben, dass der Namaqua Natal und der Gariep GĂŒrtel die wahrscheinlichsten Liefergebiete sind. Das Recycling fand fĂŒr mindestens 200 Millionen Jahre zwischen der Kaigas Vereisung (etwa vor 750 Millionen Jahren) und der Vingerbreek Vereisung (etwa vor 550 Millionen Jahren) statt. DarĂŒber hinaus zeigt das Fehlen fremder Zirkonalter fĂŒr die Schneeball Erde Proben, dass sich die Eispanzer kaum oder nur sehr wenig bewegt haben können, was die Theorie einer komplett zugefrorenen Erde unterstĂŒtzt. Die Ergebnisse der U‐Pb Karbonatgesteinsdatierungen bestĂ€tigen des angenommene Sturtian und Marinoan Alter der Numees Fm und des Namaskluft Mbr. Basierend auf diesen Analysen kann eine MindestlĂ€nge von etwa 8 Millionen Jahren fĂŒr das Sturtian und etwa 14 Millionen Jahren fĂŒr das Marinoan Schneeball Erde Ereignis angenommen werden.:Abstract Kurzfassung Contents List of Figures List of Tables List of abbreviations Scientific question and thesis structure 1 Introduction 1.1 The Neoproterozoic era: Supercontinent dispersal and global glaciations 1.1.1 Rodinia supercontinent: Formation, dispersal, and location of Kalahari Craton 1.1.2 Glacial events during the Neoproterozoic era 1.1.2.1 A brief history on the discovery of Snowball Earth events 1.1.2.2 Formation and termination of a Snowball Earth event: The Snowball Earth flow chart 1.1.2.3 Hypotheses for cap carbonate formation 1.1.2.4 Survival of life during a Snowball Earth event 1.2 The Kalahari Craton 1.2.1 Evolution of the Kalahari Craton 1.3 Overview over the Geology of Namibia under special consideration of southern Namibia (Kalahari Craton) 2 Characteristics of southern Namibian Neoproterozoic glacial samples and sides 3 The problematic correlations of Neoproterozoic glacial deposits of the Kalahari Craton (southern Namibia) 4 Methods 4.1 Field work 4.2 Whole Rock geochemical analyses 4.3 Heavy mineral separation and SEM analyses on zircon grains of siliciclastic samples 4.4 Zircon grain size analyses 4.5 LA‐ICP‐MS analyses on zircon grains 4.5.1 U‐Pb analyses with LA‐SF‐ICP‐MS 4.5.2 Th‐U ratio determination on zircon grains 4.5.3 Hf‐isotope measurements with LA‐MS‐ICP‐MS 4.6 LA‐ICP‐MS U‐Pb dating on carbonates 4.7 Provenance interpretations and likeness tests based on zircon U‐Pb age data bases 5 Study I: “The Namuskluft and Dreigratberg sections in southern Namibia (Kalahari Craton, Gariep Belt): a geological history of Neoproterozoic rifting and recycling of cratonic crust during the dispersal of Rodinia until the amalgamation of Gondwana” 5.1 Introduction and geological setting 5.2 Samples and methods 5.3 Results 5.4 Discussion and interpretation 5.5 Summary 6 Study II: “The four Neoproterozoic glaciations of southern Namibia and their detrital zircon record: The fingerprints of four crustal growth events during two supercontinent cycles” 6.1 Introduction 6.2 The samples 6.3 Methods 6.4 Results 6.5 Interpretation and discussion 6.6 Conclusion/Summary 7 Study III: “Correlation of Neoproterozoic diamictites in southern Namibia” 7.1 Introduction 7.2 Sample sites 7.2.1. The Kaigas and Sturtian Numees diamictites at the Orange River section 2.1.1. Outcrops of the Kaigas Fm diamictites 7.2.1.2 Outcrop of the Numees Fm diamictites (Sturtian) 7.2.2 The Sturtian diamcitite of the Blaubeker Fm (Witvlei Grp) at the farmgrounds Blaubeker and Tahiti 7.2.2.1 The Blaubeker diamictite at Blaubeker Farm (type locality) 7.2.2.2 The Blaubeker diamictite at Tahiti Farm (Gobabis‐syncline) 7.2.2.3 Correlation of Blaubeker diamictite at Blaubeker and Tahiti farms 7.2.3 The Sturtian diamictite at the Trekpoort Farm section 7.2.4 The Sturtian and Marinoan diamictites at Namuskluft section (reference profile) 7.2.5 The Sturtian and Marinoan diamictites at Dreigratberg section 7.2.6 Sturtian diamictite and Marinoan‐type cap carbonate at Dreigratberg North section 7.2.7 The Marinoan diamictite at the Witputs Farm section 7.2.8 The post‐Gaskiers Vingerbreek diamictite 7.2.8.1 The Vingerbreek diamictite along the Orange River 7.2.8.2 The Vingerbreek diamictite at Tierkloof Farm (Klein Karas Mountains) 7.3 Methods 7.4 Data and Results 7.4.1 Results of the U‐Pb detrital zircon data 7.4.2 Results of the U‐Pb carbonate dating 7.4.3 Results of zircon grain width and length measurements 7.4.4 Results of the Th‐U zircon ratios 7.4.5 Results of Lu‐Hf isotopic measurements 7.4.6 Geochemical results of the siliciclastic and basement samples 7.4.7 Geochemical results of the carbonate samples 7.5 Discussion and Conclusion 8 Sediment provenance and Snowball Earth ice dynamics 9 Implications on the evolution of the Gariep Belt 10 Conclusions and outlook 11 References Supplementary Materia

    Tracing southern Gondwanan sedimentary paths: A case study of northern Namibian late Palaeozoic sedimentary rocks

    No full text
    The northern Namibian Karoo‐aged successions are part of a Gondwana‐wide sedimentary system emerging at the Carboniferous–Permian boundary and existing for more than 50 Ma. The Karoo Supergroup sedimentary successions are of importance in understanding the evolution of the Karoo rift system. This study presents new whole‐rock geochemical data combined with detrital zircon morphology as well as U−Pb ages and Lu−Hf composition of late Palaeozoic siliciclastic rocks of the Namibian Huab Basin and Kunene area (south‐west Africa). Inferred by youngest detrital zircon U−Pb ages the Verbrande Berg Formation (lower Ecca Group) yields a Sakmarian to Asselian maximum depositional age, whereas the overlying Tsarabis Formation yields an Artinskian maximum depositional age. These ages coincide with the end of the Dwyka ice age and an overall warming and a contemporaneous evolution of the Karoo I rift system across southern Gondwana. The zircon age distribution of the investigated samples yields clusters ranging between ca 500 to 650 Ma (Cambrian–late Neoproterozoic), ca 950 to 1200 Ma (early Neoproterozoic–Mesoproterozoic) and ca 1800 to 1900 Ma (Palaeoproterozoic). Their rounded shapes characterize the zircon grains of the Kunene area and the lower Huab Basin section, whereas upper Huab Basin strata yield mostly unrounded grains. The rounded nature of zircon grains with a diverse U−Pb age spectrum putatively points towards sediment homogenization and multiple recycling stages during the deposition of the sediments and large catchment areas of the depositing rivers. As suggested by zircon grains with a low roundness value and a single Palaeoproterozoic age cluster, the upper Huab Basin successions were probably deposited under drier climatic conditions, small catchment areas and limited sedimentary homogenization. Therefore, the southern Gondwana sedimentary transport and homogenization system may change over time and is dependent on the climate prevailing during deposition. This study shows that the laws of detrital zircon are very complex and are yet to be explored.Senckenberg Gesellschaft Fur Naturforschun
    corecore