26 research outputs found
New high-resolution age data from the Ediacaran-Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion
The replacement of the late Precambrian Ediacaran biota by morphologically disparate animals at the beginning of the Phanerozoic was a key event in the history of life on Earth, the mechanisms and the timescales of which are not entirely understood. A composite section in Namibia providing biostratigraphic and chemostratigraphic data bracketed by radiometric dating constrains the EdiacaranâCambrian boundary to 538.6â538.8 Ma, more than 2 Ma younger than previously assumed. The UâPb-CA-ID TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fossils to a 410 ka time window of 538.99±0.21 Ma to 538.58±0.19 Ma. The extremely short duration of the faunal transition from Ediacaran to Cambrian biota within less than 410 ka supports models of ecological cascades that followed the evolutionary breakthrough of increased mobility at the beginning of the Phanerozoic
Neoproterozoic glaciations of southern Namibia (Kalahari Craton) - Characteristics, geotectonic setting, provenance and geochronological correlation
There exist various glacial units in the Neoproterozoic strata of southern Namibia (Kalahari Craton). They were recognised and discussed in the scientific literature for at nearly 100 years (e.g. Coleman, 1926; Gevers, 1931; Schwellnuss, 1941; Martin, 1965). The Snowball Earth theory (Hoffman et al., 1998) had an huge impact on Neoproterozoic geosciences and especially outcrops of the Otavi Group in northern Namibia helped to strengthen and support this idea. Nevertheless, the Neoproterozoic glacial horizons in southern Namibia were difficult to interpret and even more difficult to correlate, due to their tectonic overprint and their scarce outcrops.
In order to correlate and differentiate the various Neoproterozoic glacial units of southern Namibia (western rim of Kalahari Craton) a multiâmethod approach based on isotopic analyses on zircon grains, whole rock geochemistry, grain size measurements combined with extensive field work, mapping and sampling was applied. In total, ten sections were mapped and measured from which 33 samples were chosen for further analyses. Two of these samples represent local basement rocks, 19 the siliciclastic Neoproterozoic sedimentary cover including glacial diamictites, and twelve carbonate samples. 3474 single zircon grains were picked and measured for their dimensions (width and length). Of those, 2404 zircons were analysed with LAâICPâMS techniques for their UâPb and ThâU ratios in order to calculate detrital zircon ages and to obtain information about the source magma. 1535 of those gave concordant ages (90â110 % of concordance). Further, selected zircon grains (in total 346) with concordant UâPb ages were analyses for their ΔHf(t) values. To gather more information and to be able to provide absolute ages for the Neoproterozoic glacial units the new technique of LAICPâMS UâPb dating on carbonate samples was tested and gave reliable results for ten out of twelve samples (representing seven different sample locations).
Field work revealed two sections containing the Sturtian as well as the Marinoan glacial diamictites in relatively undisturbed succession that qualified as reference profiles for Neoproterozoic strata in southern Namibia: the Dreigratberg and the Namuskluft section in the Gariep Belt close to the Orange River.
All analysed samples contain a very similar detrital zircon isotopic record and the whole rock geochemical analyses confirm this interpretation. All siliciclastic samples show a general felsic provenance, with zircon ages mainly divided into two age groups (Mesoproterozoic 1.0 â 105 Ga and Palaeoproterozoic 1.7 â 2.1 Ga), reflecting four different growth and recycling events of Mesoproterozoic to Archaean crustal units. The samples have a geochemical signature of continental island arc and the zircon grain dimensions (width vs. length) are also very similar for all samples. Direct age dating of the samples based on detrital zircons was not possible caused by the lack of ages reflecting deposition times. Nevertheless, the most important differences between the various glacial horizons were found in petrographic features (diamictite pebble contents) and the age peak shift of detrital zircon UâPb ages (P/M ratio). Based on these and the two reference profiles correlations to other sections were achievable and the differentiation of four distinct Neoproterozoic glacial horizons for southern Namibia was possible.
Furthermore, these new results provide new insights into the Neoproterozoic Gariep Belt formation comprising Tonian rifting events, Cryogenian formation of the Arachania Terrane and final Ediacaran collision of the Rio de la Plata and Kalahari cratons.
The combination of all results reflects a continuous sedimentary recycling on the western Kalahari Craton. Comparison and statistical similarity tests based on zircon age data bases for possible source areas defined the Namaqua Natal and Gariep belts as the most likely sedimentary source areas, providing the rock material that got recycled for at least 200 Ma from Kaigas glaciation at ca. 750 Ma to Vingerbreek glaciation at ca. 550 Ma.
In addition, the lack of exotic detrital zircon ages within the two Snowball Earth events of this study suggests the interpretation of none or only very minor glacial movement confirming the idea of a completely iceâcovered Earth. The assumed Sturtian and Marinoan ages of Numees Fm and Namaskluft Mbr diamictites were confirmed by the results of UâPb cap carbonate dating. Based on these, a minimum duration of ca. 8 Ma for the Sturtian and of ca. 14 Ma for the Marinoan glaciation can be assumed.:Abstract
Kurzfassung
Contents
List of Figures
List of Tables
List of abbreviations
Scientific question and thesis structure
1 Introduction
1.1 The Neoproterozoic era: Supercontinent dispersal and global glaciations
1.1.1 Rodinia supercontinent: Formation, dispersal, and location of Kalahari Craton
1.1.2 Glacial events during the Neoproterozoic era
1.1.2.1 A brief history on the discovery of Snowball Earth events
1.1.2.2 Formation and termination of a Snowball Earth event: The Snowball Earth flow chart
1.1.2.3 Hypotheses for cap carbonate formation
1.1.2.4 Survival of life during a Snowball Earth event
1.2 The Kalahari Craton
1.2.1 Evolution of the Kalahari Craton
1.3 Overview over the Geology of Namibia under special consideration of southern
Namibia (Kalahari Craton)
2 Characteristics of southern Namibian Neoproterozoic glacial samples and sides
3 The problematic correlations of Neoproterozoic glacial deposits of the Kalahari
Craton (southern Namibia)
4 Methods
4.1 Field work
4.2 Whole Rock geochemical analyses
4.3 Heavy mineral separation and SEM analyses on zircon grains of siliciclastic samples
4.4 Zircon grain size analyses
4.5 LAâICPâMS analyses on zircon grains
4.5.1 UâPb analyses with LAâSFâICPâMS
4.5.2 ThâU ratio determination on zircon grains
4.5.3 Hfâisotope measurements with LAâMSâICPâMS
4.6 LAâICPâMS UâPb dating on carbonates
4.7 Provenance interpretations and likeness tests based on zircon UâPb age data bases
5 Study I: âThe Namuskluft and Dreigratberg sections in southern Namibia (Kalahari
Craton, Gariep Belt): a geological history of Neoproterozoic rifting and recycling of
cratonic crust during the dispersal of Rodinia until the amalgamation of Gondwanaâ
5.1 Introduction and geological setting
5.2 Samples and methods
5.3 Results
5.4 Discussion and interpretation
5.5 Summary
6 Study II: âThe four Neoproterozoic glaciations of southern Namibia and their
detrital zircon record: The fingerprints of four crustal growth events during two
supercontinent cyclesâ
6.1 Introduction
6.2 The samples
6.3 Methods
6.4 Results
6.5 Interpretation and discussion
6.6 Conclusion/Summary
7 Study III: âCorrelation of Neoproterozoic diamictites in southern Namibiaâ
7.1 Introduction
7.2 Sample sites
7.2.1. The Kaigas and Sturtian Numees diamictites at the Orange River section
2.1.1. Outcrops of the Kaigas Fm diamictites
7.2.1.2 Outcrop of the Numees Fm diamictites (Sturtian)
7.2.2 The Sturtian diamcitite of the Blaubeker Fm (Witvlei Grp) at the farmgrounds
Blaubeker and Tahiti
7.2.2.1 The Blaubeker diamictite at Blaubeker Farm (type locality)
7.2.2.2 The Blaubeker diamictite at Tahiti Farm (Gobabisâsyncline)
7.2.2.3 Correlation of Blaubeker diamictite at Blaubeker and Tahiti farms
7.2.3 The Sturtian diamictite at the Trekpoort Farm section
7.2.4 The Sturtian and Marinoan diamictites at Namuskluft section (reference profile)
7.2.5 The Sturtian and Marinoan diamictites at Dreigratberg section
7.2.6 Sturtian diamictite and Marinoanâtype cap carbonate at Dreigratberg North
section
7.2.7 The Marinoan diamictite at the Witputs Farm section
7.2.8 The postâGaskiers Vingerbreek diamictite
7.2.8.1 The Vingerbreek diamictite along the Orange River
7.2.8.2 The Vingerbreek diamictite at Tierkloof Farm (Klein Karas Mountains)
7.3 Methods
7.4 Data and Results
7.4.1 Results of the UâPb detrital zircon data
7.4.2 Results of the UâPb carbonate dating
7.4.3 Results of zircon grain width and length measurements
7.4.4 Results of the ThâU zircon ratios
7.4.5 Results of LuâHf isotopic measurements
7.4.6 Geochemical results of the siliciclastic and basement samples
7.4.7 Geochemical results of the carbonate samples
7.5 Discussion and Conclusion
8 Sediment provenance and Snowball Earth ice dynamics
9 Implications on the evolution of the Gariep Belt
10 Conclusions and outlook
11 References
Supplementary MaterialDie neoproterozoischen Einheiten des sĂŒdlichen Namibias (Kalahari Kraton) umfassen verschiedene glaziale Einheiten, die schon seit fast 100 Jahren bekannt sind und wissenschaftlich beschrieben wurden (z.B. Coleman, 1926; Gevers, 1931; Schwellnuss, 1941; Martin, 1965). Die Schneeball Erde Theorie (Hoffman et al., 1998) hatte einen enormen Einfluss auf die geologischen Studien des Neoproterozoikums, wobei besonders AufschlĂŒsse der Otavi Gruppe Nordnamibias die Theorie stĂ€rken und bestĂ€tigen. Im Gegensatz dazu sind neoproterozoische glaziale Horizonte SĂŒdnamibias aufgrund ihrer tektonischen ĂberprĂ€gung und der wenigen AufschlĂŒsse schwer zu interpretieren und zu korrelieren.
Mit dem Ziel, die neoproterozoischen glazialen Einheiten SĂŒdnamibias zu unterscheiden und zu korrelieren, wurde ein Multimethodenansatz basierend auf Isotopenanalysen an Zirkonmineralen, Gesamtgesteinsgeochemie, MineralkorngröĂenmessungen und intensiver Feldarbeit angewandt. Insgesamt wurden zehn Profile kartiert und vermessen, von denen 33 Proben zur weiteren Analyse ausgewĂ€hlt wurden. Zwei dieser Proben stammen vom lokalen Grundgebirge, 19 aus den sedimentĂ€ren Einheiten darĂŒber (inklusive der glazialen Ablagerungen) und zwölf reprĂ€sentieren Karbonatgesteinsproben. 3474 Einzelzirkone wurden hinsichtlich ihrer Breite und LĂ€nge vermessen, wovon 2404 Minerale mittels LAâICPâMS nach ihren UâPb und ThâUâGehalten analysiert wurden. 1535 dieser Minerale ergaben konkordante Alter (90 â 110% Konkordanz). DarĂŒber hinaus wurden von 346 ausgewĂ€hlten konkordanten Zirkonen die ΔHf(t) Werte bestimmt. Um das Datenset zu vervollstĂ€ndigen wurden LAâICPâMS UâPb Analysen an Karbonatgesteinen an zehn von zwölf Proben erfolgreich getestet.
Im Zuge der Feldarbeiten kristallisierten sich zwei Profile nahe des Oranje heraus, welche die Sturtian und die Marinoan Vereisung in nahezu ungestörter Lagerung enthalten und sich deshalb als Referenzprofile qualifizieren.
Alle analysierten Proben zeichnen sich durch sehr Ă€hnliche Zirkonisotopenwerte aus, was durch die Gesamtgesteinsgeochemieanalysen weiterhin bestĂ€tigt wird. Alle siliziklastischen Proben zeigen eine generelle felsische Provenienz mit Zirkonaltern welche sich hauptsĂ€chlich in zwei Altersgruppen unterteilen lassen (mesoproterozoisch 1.0 â 1.5 Mrd Jahre, palĂ€oproterozoisch 1.7 â 2.1 Mrd Jahre).
Diese reflektieren vier verschiedene krustale Entwicklungsstadien vom Mesoproterozoikum bis Archaikum. Die geochemische Signatur aller Proben deutet auf einen kontinentalen Inselbogen hin und auch die ZirkonmineralgröĂen sind fĂŒr alle Proben Ă€hnlich. Eine direkte Altersdatierung auf Grundlage der detritischen Zirkone war aufgrund fehlender junger Alter nicht möglich. Dennoch ist eine Unterscheidung der glazialen Schichten SĂŒdnamibias basierend auf den petrographischen Eigenschaften und dem sich verschiebenden Alterstrend der detritischen Zirkone möglich (P/M VerhĂ€ltnis). In Kombination mit den zwei Referenzprofilen ist eine umfassende Korrelation aller untersuchten Profile möglich und die Unterscheidung von vier Neoproterozoischen glazialen Schichten in Namibia gelungen.
Die Ergebnisse geben weitere Einblicke in die neoproterozoische Entwicklung des Gariep GĂŒrtels, welcher durch RiftvorgĂ€nge im Tonium, die Bildung des Arachania Terranes wĂ€hrend des Cryogeniums und die ediakarische finale Kollision zwischen den Rio de la Plata und Kalahari Kratonen geprĂ€gt ist. Die Kombination aller Ergebnisse zeigt ein kontinuierliches Sedimentrecycling auf dem westlichen Kalahari Kraton. Vergleiche und statistische Ăhnlichkeitsanalysen basierend auf UâPb Zirkonalterdatenbanken ergaben, dass der Namaqua Natal und der Gariep GĂŒrtel die wahrscheinlichsten Liefergebiete sind. Das Recycling fand fĂŒr mindestens 200
Millionen Jahre zwischen der Kaigas Vereisung (etwa vor 750 Millionen Jahren) und der Vingerbreek Vereisung (etwa vor 550 Millionen Jahren) statt.
DarĂŒber hinaus zeigt das Fehlen fremder Zirkonalter fĂŒr die Schneeball Erde Proben, dass sich die Eispanzer kaum oder nur sehr wenig bewegt haben können, was die Theorie einer komplett zugefrorenen Erde unterstĂŒtzt. Die Ergebnisse der UâPb Karbonatgesteinsdatierungen bestĂ€tigen des angenommene Sturtian und Marinoan Alter der Numees Fm und des Namaskluft Mbr. Basierend auf diesen Analysen kann eine MindestlĂ€nge von etwa 8 Millionen Jahren fĂŒr das Sturtian und etwa 14 Millionen Jahren fĂŒr das Marinoan Schneeball Erde Ereignis angenommen werden.:Abstract
Kurzfassung
Contents
List of Figures
List of Tables
List of abbreviations
Scientific question and thesis structure
1 Introduction
1.1 The Neoproterozoic era: Supercontinent dispersal and global glaciations
1.1.1 Rodinia supercontinent: Formation, dispersal, and location of Kalahari Craton
1.1.2 Glacial events during the Neoproterozoic era
1.1.2.1 A brief history on the discovery of Snowball Earth events
1.1.2.2 Formation and termination of a Snowball Earth event: The Snowball Earth flow chart
1.1.2.3 Hypotheses for cap carbonate formation
1.1.2.4 Survival of life during a Snowball Earth event
1.2 The Kalahari Craton
1.2.1 Evolution of the Kalahari Craton
1.3 Overview over the Geology of Namibia under special consideration of southern
Namibia (Kalahari Craton)
2 Characteristics of southern Namibian Neoproterozoic glacial samples and sides
3 The problematic correlations of Neoproterozoic glacial deposits of the Kalahari
Craton (southern Namibia)
4 Methods
4.1 Field work
4.2 Whole Rock geochemical analyses
4.3 Heavy mineral separation and SEM analyses on zircon grains of siliciclastic samples
4.4 Zircon grain size analyses
4.5 LAâICPâMS analyses on zircon grains
4.5.1 UâPb analyses with LAâSFâICPâMS
4.5.2 ThâU ratio determination on zircon grains
4.5.3 Hfâisotope measurements with LAâMSâICPâMS
4.6 LAâICPâMS UâPb dating on carbonates
4.7 Provenance interpretations and likeness tests based on zircon UâPb age data bases
5 Study I: âThe Namuskluft and Dreigratberg sections in southern Namibia (Kalahari
Craton, Gariep Belt): a geological history of Neoproterozoic rifting and recycling of
cratonic crust during the dispersal of Rodinia until the amalgamation of Gondwanaâ
5.1 Introduction and geological setting
5.2 Samples and methods
5.3 Results
5.4 Discussion and interpretation
5.5 Summary
6 Study II: âThe four Neoproterozoic glaciations of southern Namibia and their
detrital zircon record: The fingerprints of four crustal growth events during two
supercontinent cyclesâ
6.1 Introduction
6.2 The samples
6.3 Methods
6.4 Results
6.5 Interpretation and discussion
6.6 Conclusion/Summary
7 Study III: âCorrelation of Neoproterozoic diamictites in southern Namibiaâ
7.1 Introduction
7.2 Sample sites
7.2.1. The Kaigas and Sturtian Numees diamictites at the Orange River section
2.1.1. Outcrops of the Kaigas Fm diamictites
7.2.1.2 Outcrop of the Numees Fm diamictites (Sturtian)
7.2.2 The Sturtian diamcitite of the Blaubeker Fm (Witvlei Grp) at the farmgrounds
Blaubeker and Tahiti
7.2.2.1 The Blaubeker diamictite at Blaubeker Farm (type locality)
7.2.2.2 The Blaubeker diamictite at Tahiti Farm (Gobabisâsyncline)
7.2.2.3 Correlation of Blaubeker diamictite at Blaubeker and Tahiti farms
7.2.3 The Sturtian diamictite at the Trekpoort Farm section
7.2.4 The Sturtian and Marinoan diamictites at Namuskluft section (reference profile)
7.2.5 The Sturtian and Marinoan diamictites at Dreigratberg section
7.2.6 Sturtian diamictite and Marinoanâtype cap carbonate at Dreigratberg North
section
7.2.7 The Marinoan diamictite at the Witputs Farm section
7.2.8 The postâGaskiers Vingerbreek diamictite
7.2.8.1 The Vingerbreek diamictite along the Orange River
7.2.8.2 The Vingerbreek diamictite at Tierkloof Farm (Klein Karas Mountains)
7.3 Methods
7.4 Data and Results
7.4.1 Results of the UâPb detrital zircon data
7.4.2 Results of the UâPb carbonate dating
7.4.3 Results of zircon grain width and length measurements
7.4.4 Results of the ThâU zircon ratios
7.4.5 Results of LuâHf isotopic measurements
7.4.6 Geochemical results of the siliciclastic and basement samples
7.4.7 Geochemical results of the carbonate samples
7.5 Discussion and Conclusion
8 Sediment provenance and Snowball Earth ice dynamics
9 Implications on the evolution of the Gariep Belt
10 Conclusions and outlook
11 References
Supplementary Materia
Tracing southern Gondwanan sedimentary paths: A case study of northern Namibian late Palaeozoic sedimentary rocks
The northern Namibian Karooâaged successions are part of a Gondwanaâwide sedimentary system emerging at the CarboniferousâPermian boundary and existing for more than 50âMa. The Karoo Supergroup sedimentary successions are of importance in understanding the evolution of the Karoo rift system. This study presents new wholeârock geochemical data combined with detrital zircon morphology as well as UâPb ages and LuâHf composition of late Palaeozoic siliciclastic rocks of the Namibian Huab Basin and Kunene area (southâwest Africa). Inferred by youngest detrital zircon UâPb ages the Verbrande Berg Formation (lower Ecca Group) yields a Sakmarian to Asselian maximum depositional age, whereas the overlying Tsarabis Formation yields an Artinskian maximum depositional age. These ages coincide with the end of the Dwyka ice age and an overall warming and a contemporaneous evolution of the Karoo I rift system across southern Gondwana. The zircon age distribution of the investigated samples yields clusters ranging between ca 500 to 650âMa (Cambrianâlate Neoproterozoic), ca 950 to 1200âMa (early NeoproterozoicâMesoproterozoic) and ca 1800 to 1900âMa (Palaeoproterozoic). Their rounded shapes characterize the zircon grains of the Kunene area and the lower Huab Basin section, whereas upper Huab Basin strata yield mostly unrounded grains. The rounded nature of zircon grains with a diverse UâPb age spectrum putatively points towards sediment homogenization and multiple recycling stages during the deposition of the sediments and large catchment areas of the depositing rivers. As suggested by zircon grains with a low roundness value and a single Palaeoproterozoic age cluster, the upper Huab Basin successions were probably deposited under drier climatic conditions, small catchment areas and limited sedimentary homogenization. Therefore, the southern Gondwana sedimentary transport and homogenization system may change over time and is dependent on the climate prevailing during deposition. This study shows that the laws of detrital zircon are very complex and are yet to be explored.Senckenberg Gesellschaft Fur Naturforschun