3,476 research outputs found

    A critical analysis of security vulnerabilities and countermeasures in a smart ship system

    Get PDF
    It is timely to raise cyber security awareness while attacks on maritime infrastructure have not yet gained critical momentum. This paper analyses vulnerabilities in existing shipborne systems and a range of measures to protect them. It discusses Information Technology network flaws, describes issues with Industrial Control Systems, and lays out major weaknesses in the Automated Identification System, Electronic Chart Display Information System and Very Small Aperture Terminals. The countermeasures relate to the concept of “Defence-in-depth”, and describe procedural and technical solutions. The maritime sector is interconnected and exposed to cyber threats. Internet satellite connections are feasible and omnipresent on vessels, offshore platforms and even submarines. It enables services that are critical for safety and rescue operations, navigation and communication in a physically remote environment. Remote control of processes and machinery brings benefits for safety and efficiency and commercial pressure drives the development and adaptation of new technologies. These advancements include sensor fusion, augmented reality and artificial intelligence and will lead the way to the paradigm of “smart” shipping. Forecasts suggest unmanned, autonomous ships in international waters by 2035. This paper is the starting point for future research, to help mapping out the risks and protect the maritime community from cyber threats

    Inverse-designed spinodoid metamaterials

    Get PDF
    After a decade of periodic truss-, plate-, and shell-based architectures having dominated the design of metamaterials, we introduce the non-periodic class of spinodoid topologies. Inspired by natural self-assembly processes, spinodoid metamaterials are a close approximation of microstructures observed during spinodal phase separation. Their theoretical parametrization is so intriguingly simple that one can bypass costly phase-field simulations and obtain a rich and seamlessly tunable property space. Counter-intuitively, breaking with the periodicity of classical metamaterials is the enabling factor to the large property space and the ability to introduce seamless functional grading. We introduce an efficient and robust machine learning technique for the inverse design of (meta-)materials which, when applied to spinodoid topologies, enables us to generate uniform and functionally graded cellular mechanical metamaterials with tailored direction-dependent (anisotropic) stiffness and density. We specifically present biomimetic artificial bone architectures that not only reproduce the properties of trabecular bone accurately but also even geometrically resemble natural bone

    Estimating carbon dioxide residence time scales through noble gas and stable isotope diffusion profiles

    Get PDF
    The study of natural carbon dioxide reservoirs provides fundamental insight into processes involved in carbon capture and storage. However, the calculations of process rates such as dissolution of CO2 into formation water remain uncertain due to indirectly determined ages of the CO2 influx. The proposed ages for the Bravo Dome gas field in New Mexico, USA, vary from 56 ka to 1.5 Ma. Here we demonstrate that residence times can be estimated from simple modeling of noble gas and stable isotope diffusion profiles from the gas-water contact through the gas column. The Bravo Dome gas field shows a gradient in noble gas concentrations and isotopic ratios from east to west across the 70-km-wide field. A mantle-like end member with a 3He/4He (R/RA) ratio of up to 4.7 is found in the west in contrast to a groundwater end member with high concentrations of air- and crustal-derived noble gases in the east. The air- and crustal-derived noble gases decrease gradually toward the west. Stable isotope compositions (C and O) also vary across the field. Diffusion modeling of He, Ne, Ar, Kr, Xe, and δ13C data yield residence times for the CO2 between 14.1 ± 0.2 ka and 16.9 +1.1/–0.5 ka. This is far less than the previous estimates of 1.2–1.5 Ma based on apatite (U-Th)/He thermochronology, leading to a dissolution rate of 29,900 +11,800/–10,700 t/a to 35,900 ± 12,300 t/a, implying that 28% of the total emplaced CO2 dissolved. This new method can be applied to a wide variety of gas fields with variation in the concentration of groundwater-derived noble gases and allow a better assessment of the time scale of other diffusive fluid-fluid interactions

    On the Computational Power of Asynchronous Axon Membrane Systems

    Get PDF

    A quantitative method for determining spatial discriminative capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The traditional two-point discrimination (TPD) test, a widely used tactile spatial acuity measure, has been criticized as being imprecise because it is based on subjective criteria and involves a number of non-spatial cues. The results of a recent study showed that as two stimuli were delivered simultaneously, vibrotactile amplitude discrimination became worse when the two stimuli were positioned relatively close together and was significantly degraded when the probes were within a subject's two-point limen. The impairment of amplitude discrimination with decreasing inter-probe distance suggested that the metric of amplitude discrimination could possibly provide a means of objective and quantitative measurement of spatial discrimination capacity.</p> <p>Methods</p> <p>A two alternative forced-choice (2AFC) tracking procedure was used to assess a subject's ability to discriminate the amplitude difference between two stimuli positioned at near-adjacent skin sites. Two 25 Hz flutter stimuli, identical except for a constant difference in amplitude, were delivered simultaneously to the hand dorsum. The stimuli were initially spaced 30 mm apart, and the inter-stimulus distance was modified on a trial-by-trial basis based on the subject's performance of discriminating the stimulus with higher intensity. The experiment was repeated via sequential, rather than simultaneous, delivery of the same vibrotactile stimuli.</p> <p>Results</p> <p>Results obtained from this study showed that the performance of the amplitude discrimination task was significantly degraded when the stimuli were delivered simultaneously and were near a subject's two-point limen. In contrast, subjects were able to correctly discriminate between the amplitudes of the two stimuli when they were sequentially delivered at all inter-probe distances (including those within the two-point limen), and improved when an adapting stimulus was delivered prior to simultaneously delivered stimuli.</p> <p>Conclusion</p> <p>Subjects' capacity to discriminate the amplitude difference between two vibrotactile stimulations was degraded as the inter-stimulus distance approached the limit of their two-point spatial discriminative capacity. This degradation of spatial discriminative capacity lessened when an adapting stimulus was used. Performance of the task, as well as improvement on the task with adaptation, would most likely be impaired if the cortical information processing capacity of a subject or subject population were systemically altered, and thus, the methods described could be effective measures for use in clinical or clinical research applications.</p

    Somatosensory Information Processing in the Aging Population

    Get PDF
    While it is well known that skin physiology – and consequently sensitivity to peripheral stimuli – degrades with age, what is less appreciated is that centrally mediated mechanisms allow for maintenance of the same degree of functionality in processing these peripheral inputs and interacting with the external environment. In order to demonstrate this concept, we obtained observations of processing speed, sensitivity (thresholds), discriminative capacity, and adaptation metrics on subjects ranging in age from 18 to 70. The results indicate that although reaction speed and sensory thresholds change with age, discriminative capacity, and adaptation metrics do not. The significance of these findings is that similar metrics of adaptation have been demonstrated to change significantly when the central nervous system (CNS) is compromised. Such compromise has been demonstrated in subject populations with autism, chronic pain, acute NMDA receptor block, concussion, and with tactile–thermal interactions. If the metric of adaptation parallels cortical plasticity, the results of the current study suggest that the CNS in the aging population is still capable of plastic changes, and this cortical plasticity could be the mechanism that compensates for the degradations that are known to naturally occur with age. Thus, these quantitative measures – since they can be obtained efficiently and objectively, and appear to deviate from normative values significantly with systemic cortical alterations – could be useful indicators of cerebral cortical health

    Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography

    Get PDF
    Dynamic contrast-enhanced magnetic resonance imaging has been recently shown to be effective for diagnostic urography. High-resolution urographic images can be acquired with T1 contrast agents for the kidney and urinary tract with minimal noise in the abdomen. Currently, clinical contrast agents are low molecular weight agents and can rapidly extravasate from blood circulation, leading to slow contrast agent elimination through kidney and consequently providing limited contrast enhancement in urinary tract. In this study, a new biodegradable macromolecular contrast agent, nanoglobule-G4-cystamine-(Gd-DO3A), was prepared by conjugating Gd-DO3A chelates on the surface of a generation 4 nanoglobule, poly-l-lysine octa(3-aminopropyl)silsesquioxane dendrimer, via a disulfide spacer, where the carrier had a precisely defined nanosize that is far smaller than the renal filtration threshold. The in vivo contrast enhancement and dynamic imaging of the urinary tract of the agent was evaluated in nude mice using a low molecular weight agent Gd(DTPA-BMA) as a control. The agent eliminated rapidly from blood circulation and accumulated more abundantly in urinary tract than Gd(DTPA-BMA). The fast elimination kinetics is ideal for functional evaluation of the kidneys. The morphology of the kidneys and urinary tract was better visualized by the biodegradable nanoglobular contrast agent than Gd(DTPA-BMA). The agent also resulted in low liver contrast enhancement, indicating low nonspecific tissue deposition. These features render the G4 nanoglobule-cystamine-(Gd-DO3A) conjugate a promising contrast agent for magnetic resonance urography
    corecore