
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 1

On the Computational Power of Asynchronous
Axon Membrane Systems

Tao Song, Senior Member, IEEE, Pan Zheng, Senior Member, IEEE, M. L. Dennis Wong, Senior Member, IEEE,
Min Jiang , Senior Member, IEEE, and Xiangxiang Zeng , Senior Member, IEEE

Abstract—Axon membrane systems, also called axon P systems,
are a group of neuron system inspired neural computing devices.
The system are designed by the mimic of the way axon (connecting
neurons in central nerves systems) processing impulse signals pass-
ing along it. In the systems, all the “computing units” are aligned
one after another along the axon, achieving a linear topological
structure. It was known that synchronous axon P systems can com-
pute the families of Turing computable sets of both natural num-
bers and recursive functions. However, the computational power
of asynchronous axon P systems is still open. In this paper, we
investigate the computational power of asynchronous axon P sys-
tems, where the nonsynchronization is induced by either the node’s
asynchronously spiking (working in asynchronous mode) or the
randomly assigned time consumption for each time spiking of the
nodes (working in time-free mode). As results, it is proved that
axon P systems working in either asynchronous or time-free mode
are Turing universal as number generators, which indicates that
the nonsynchronization will not reduce the computation power of
axon P systems. It is worth noting that it needs O(n) spikes to
encode natural number n in asynchronous axon P systems, but it
needs O(n2) spikes in Turing universal synchronous axon P sys-
tems. These results partially answer an open problem left in [IEEE
NNLS 26(11): 2816-29, 2015], and may also provide some hints on
designing novel learning strategies by imposing computation tasks
on the synapses of neural networks models.

Manuscript received August 17, 2018; revised December 2, 2018 and Febru-
ary 3, 2019; accepted February 18, 2019. The work of T. Song was supported
in part by the Tai Shan Scholar Foundation, National Natural Science Founda-
tion of China under Grant 61873280, Grant 61672033, and Grant 61672248;
in part by the Key Research and Development Program of Shandong Province
under Grant 2017GGX10147, in part by the Natural Science Foundation of
Shandong Province under Grant ZR2017MF004, in part by the Fundamental
Research Funds for the Central Universities under Grant 18CX02152A, Project
TIN2016-81079-R (MINECO AEI/FEDER, Spain-EU), and the InGEMICS-
CM Project (B2017/BMD-3691, FSE/FEDER, Comunidad de Madrid-EU), Re-
search Project TIN2016-81079-R (AEI/FEDER, Spain-EU), and Grant 2016-
T2/TIC-2024 from Talento-Comunidad de Madrid. The work of X. Zeng was
supported in part by the Juan de la Cierva position (code: IJCI-2015-26991), and
in part by the President Fund of Xiamen University under Grant 20720170054.
(Corresponding author: Xiangxiang Zeng.)

T. Song is with the College of Computer and Communication Engineering,
China University of Petroleum, Qingdao 266580, China, and also with the De-
partment of Artificial Intelligence, Polytechnical University of Madrid, Madrid
28660, Spain (e-mail:,tsong@upm.es).

P. Zheng is with the Department of Accounting and Information Sys-
tems, University of Canterbury, Christchurch 8041, New Zealand (e-mail:,
pzheng@swinburne.edu.my).

M. L. D. Wong is with the Heriot-Watt University, Putrajaya 62200, Malaysia
(e-mail:,wongmld@ieee.org).

M. Jiang is with the Department of Cognitive Science and Technology, Xia-
men University, Xiamen 361005, China (e-mail:,minjiang@xmu.edu.cn).

X. Zeng is with the Department of Computer Science, Xiamen Univer-
sity, Xiamen 361005, China, and also with the Department of Artificial In-
telligence, Polytechnical University of Madrid, Madrid 28660, Spain (e-mail:,
xzeng@xmu.edu.cn).

Digital Object Identifier 10.1109/TETCI.2019.2907724

Index Terms—Natural computing, membrane computing, axon
membrane system, computational power, universality, non-
synchronization.

I. INTRODUCTION

HUMAN brain, known as “born to be powerful”, provides
rich ideas for computer scientists to develop powerful and

practical brain-inspired computing devices and models, such as
peering CNNs (Convolutional neural networks) [1] and classical
neural networks models [2], [3]. Neural-like computing models
are computing devices inspired from the way neurons commu-
nicating by means of spikes. A neural network can be achieved
or built by connecting a series of computing units or neurons.
Neural networks, i.e., neural-like computing models gain their
popularity for its learning functions [4]–[9] as well as their suc-
cessful applications in solving problems in practice [10]–[13].
Among the the computing units or neurons, information (rep-
resented by a number or a stack of impulse or spikes) can pass
from one to another [14]–[16].

Membrane computing, initiated in 2002, is an attractive
branch of bio-inspired computing. It aims to design comput-
ing models with biological information processing intelligence
[17], [18]. Computing models studied in membrane comput-
ing are usually named membrane systems or P systems. There
are two main classes of neural-like membrane systems: spiking
neural P systems (SN P systems) and axon P systems.

– Spiking neural P systems are known as a novel candidate of
the third generation of spiking neural networks [19]. The
systems are proposed by modelling the way of biological
neurons firing and communicating via electrical impulse
or spikes [20]–[22]. Research on new variants of SN P
systems is formulated in [23] as a promising branch in
membrane computing [24]–[29].

– Axon P systems are obtained in a constructive way by
mimic axon processing and transmitting information of im-
pulse signals (spikes) passing along it [30]–[32].

It is shown in Figure 1 the biological structure of a neuron,
where a number of computing units, namely Ranvier nodes, are
with linear structure along with a axon.

In neural-like computing models, axons and synapses are ab-
stracted as uniform edges among each pair of connecting neu-
rons, which are only used for transmitting the spikes, and the
weights (the link strength denoted by real numbers) on the
synapses can be updated during the computation by different

2471-285X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Heriot Watt Pure

https://core.ac.uk/display/287503622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-2946-6974
https://orcid.org/0000-0003-1081-7658
mailto:tsong@upm.es
mailto:pzheng@swinburne.edu.my
mailto:wongmld@ieee.org
mailto:minjiang@xmu.edu.cn
mailto:xzeng@xmu.edu.cn


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 1. The biological structure of a neuron from [33].

learning strategies. (Significant works and some peering works
on learning approaches from data have been heavily investigated,
see e.g. [34]–[40].) However, this is not exactly biological fact.
Besides transmitting spikes, an axon has also the function of
processing the spikes passed along it. Specifically, when a num-
ber of spikes pass from one Ranvier node to its left and right
neighboring node, the spikes can be reduced or increased when
they arrive at the target nodes, which depends on the excitatory
or inhibitory function passing Ranvier node [41], [42]. Axon P
systems were initialized and developed with the biological facts
that Ranvier node process the spikes transmitting along axons
[30]. The system has a finite set of computing units (denoting
Ranvier nodes) with linear arrangement. and has the limitation
that each computing unit can send spikes only to its left and right
neighboring nodes, but not the other nodes.

In [30], it is reported that synchronous axon P systems cannot
produce and accept the set of recursively enumerable languages.
After that, an axon P system with two nodes was constructed,
which can generate non-semilinear sets of natural numbers [31].
In 2015, an exciting result was obtained that axon P systems with
4 nodes can generate/compute the family of sets of Turing com-
putable natural numbers, with 9 nodes can compute recursive
functions, thus achieving Turing universality. In the systems,
each computing node works in a non-synchronous mode and
each information processing rule should be executed and com-
pleted in one time unit [32].

In the field of axon P systems, the computational power of
using axons to do computation is not clear, particularly working
in asynchronous mode. The results in the theoretical level is
important for the application of the system. If we use axon P
system to modelling neuro-biological systems, more computing
models which are close to biological facts are needed. In this
work, we consider the computational power of asynchronous
axon P systems.

In neuro-biological fact, transitions of spikes among Ranvier
nodes are not obligatory (even with enabled firing conditions) at
any moment. Also, it is not proper to limit or request different
nodes to complete their spike passing task in a uniform time
unit. We investigate in this work asynchronous axon P systems.
In the systems, the non-synchronization is obtained by either the
obligatory use of enabled rules at any moment (non-synchronous
mode from [43], [44]) or imposing a randomly execution time for

each rule (the time-free mode from [45], [46]). Specifically, the
computational power of asynchronous axon P systems as natural
numbers computing devices is studied. As results, it is proved
that axon P systems with 4 neurons in either non-synchronous or
time-free working mode are Turing universal, which indicates
that the non-synchronization will not reduce the power of axon P
systems to compute/generate natural numbers. It is noted that in
the universality proofs, the number of spikes for encoding arbi-
trary number n in asynchronous axon P systems is improved to
O(n) from O(n2) spikes used in Turing universal synchronous
axon P systems [32].

The results indicate that axon P systems having 4 comput-
ing units and simple topological structure (linear structure) can
achieve a “desired” computational power even working in non-
synchronous modes and time-free modes. Axon P systems per-
form better than spiking neural P systems and certain class of
artificial neural networks in terms of using a less number of
computing or information processing units (such as neurons,
processors or nodes) to achieve Turing universality. These re-
sults partially answer to the problem left and formulated in [32],
and may provide some hints on designing novel learning strate-
gies by imposing computation tasks on the synapses of neural
networks models.

II. AXON P SYSTEMS

We firstly recall some basic concepts and notions in formal
language and automata theory [18], which are helpful in un-
derstanding the definition of axon P systems. After that, asyn-
chronous axon P systems are introduced by imposing non-
synchronization on the application of rules (non-synchronous
working mode) and execution time of the rules (time-free work-
ing mode).

Let V be an alphabet. We denote by V ∗ the set of strings
produced by connection of a finite number of symbols from V .
If a string has no symbol, then it is called empty and denoted by
λ. The set of strings except for empty ones over V is represented
by V + = V ∗ − λ. If V = {a}, V ∗ and V + can simplify written
{a}∗ and {a}+ as a∗ and a+, if respectively.

Given a finite alphabet V , the regular expressions associated
with V is defined as follows.
� empty set ∅, i.e., the set containing no element is a regular

expression;
� the set containing “empty” string only is a regular expres-

sion, that is, no characters contained at all;
� for any symbol a in V , the set composed of symbol a is a

regular expression.
For any two regular expressions under the following opera-

tions, including concatenation, alternation and Kleene star, reg-
ular expressions can be produced. More details about regular
expressions can be found in [47], [48].

The definition of regular language over an alphabet V is de-
fined as follows, which can be referred to [49].
� The empty language ∅ is a regular language.
� For any symbol v ∈ V , the singleton language {v} is a

regular language.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG et al.: ON THE COMPUTATIONAL POWER OF ASYNCHRONOUS AXON MEMBRANE SYSTEMS 3

Fig. 2. The structure of an axon P system with linear m nodes.

� If A is a regular language , A∗ (Kleene star) is a regular
language.

� If A and B are regular languages, then A ·B (concatena-
tion) and A ∪B are regular languages.

� No other languages over V are regular.
With each regular expression E, a regular language L(E) is

associated.
An axon P system (having m ≥ 1 computing units) from [32]

is defined as

Π = (O, ρ1, . . . , ρm), where:

� O is an alphabet having unique symbol a, which is named
as spike;

� ρ1, . . . , ρm are m computing units (representing Ranvier
nodes), each of which can be mathematically represented
by ρj = (nj , Rj), j ∈ {1, 2, . . . ,m}, where:
a) nj is the number of spikes initially placed in node ρj ;
b) Rj is a set of firing rules in node ρj , in which firing

rules are of the form E/ac → (al, ar).
� ρ1 (the leftmost node) is specified as input node to read

spikes into the system from the environment, having only
rules of the form E/ac → (λ, ar). Node ρm (the rightmost
node) is the output node, which can emit spikes into the
environment.

An axon P system holds a linear structure with nodes being
aligned one after another along the axon. Any axon P system
of degree m nodes (having m nodes) has the same topological
structure, which is shown in Figure 2. The nodes aligned in linear
order from ρ1 to ρm. Node ρ1, the input node, can read spikes
from the environment, and node ρm can sends or emits spikes
to its neighboring node ρm−1 as well as to the environment, i.e.,
it is the output node.

The node transmits spikes to its neighboring nodes by using
firing rule E/ac → (al, ar). The application of the firing rule in
node ρi is as follows. At any moment t, if node ρi accumulates
k spikes such that ak ∈ L(E), k ≥ c, the firing rule is enabled.
After using the firing rule, c spikes are consumed from node ρi
(and k − c spikes left), meanwhile, node ρi emits l spikes to its
left neighboring node ρi−1 and r spikes to its right neighboring
node ρi+1, immediately. The spikes can be used for firing in
the next step when they arrived at the target nodes. If any firing
rule has r = 0 (resp. l = 0), then no spike is emitted to its right
node ρi+1 (resp. left node ρi−1). For the first node ρ1, it holds
rules of the form E/ac → (λ, ar). For the rightmost node ρm,
besides sending spikes to its left node, node ρm will send spikes
to the environment, which are counted and used to define the
computation result of the system. If a firing rule has E = ac,
then it can simply be as ac → (al, ar).

At certain moment, it is possible to have two firing rules with
common regular expressions, which means more than one firing

rule in a node is applicable at that moment, but only one of the
applicable firing rules can be randomly chosen and applied. In
this way, the system works sequentially in the node, i.e., at most
one rule can be used at any step, but for all nodes they work in
a parallel manner.

The “state” (also known as configuration) of the system at a
computation step is defined by the number of spikes accumulated
in each node. With the notation, the initial configuration of axon
P system is 〈n1, n2, . . . , nm〉. When the system halts, that is, the
system reaches a “state” with no node having enabled rule(s),
the number of spikes sent to the environment from the rightmost
node in total is counted and taken as the computation result of the
system. The nodes in the system can fire non-deterministically,
thus the system can generate a set of natural numbers.

We consider in this work the computational power of asyn-
chronous axon P systems, where the non-synchronization is in-
duced by either the non-obligatory use of enabled rules at any
moment (namely working in non-synchronous mode) or impos-
ing a randomly execution time for time node spiking (namely
working in the time-free mode).
� Working in non-synchronous mode

In each time unit (marked by a global clock), if a node
has an applicable firing rule, it is not obligatory to use the
rule. In other words, each node can keep still/inactive in
spite of having certain applicable firing rules against its
spikes. For any node, it can decide to fire or not even with
enabled firing rules and sufficient spikes. If the number of
spikes in certain node is not changed, the applicable firing
rule may be applied later. if the node receive some spikes
to make the firing rule unable to use, then the computation
proceeds in a new configuration. The set of natural numbers
computed by asynchronous axon P system Π is denoted by
Nasyn

all (Π), where all means all the spikes emitted from
the rightmost nodes into the environment are counted as
the computation result. It is denoted by Nasyn

all AxonPm

the family of sets of numbers generated by synchronous
axon P systems having m modes.

� Working in time-free mode
Before introducing the notation of time-free working mode
in axon P systems, we shall revisit the notion of timed axon
P systems. An axon P system is called timed, if there exits
a time mapping e : R → N, by which each firing rule is
associated with a execution time. The set of all the firing
rules in the system is R = R1 ∪R2 ∪ · · · ∪Rm, and N is
the set of natural numbers.

In timed axon P system, denoted by Π(e), an external clock
is assumed to mark time-units of equal length, starting from
instant 0. The computation step t is the period of time that goes
from instant t− 1 to t. For a firing rule r, its execution will
take e(r) time units to complete. In general, if the execution of
rule r is started at instant j, it is completed at instant j + e(r)
and emitting spikes to its neighboring nodes at the beginning of
moment j + e(r) + 1. When a rule r is started, then the node
is in a “close” status and can not receive any spikes from its
neighboring nodes. The spikes sending to the nodes in a “close”
status will be lost, that is, be removed from the system. If there
is no limitation on the time-mapping e, that is, by time-mapping



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

e, each firing rule can be associated with an arbitrary execution
time, then the system is named time-free.

The set of all numbers computed/generated by a time-free
axon P system Π(e) is denoted by N tf

all(Π(e)). The sets of
numbers computed by time-free axon P systems of degree m
is N tf

allAxonPm(e).

III. UNIVERSALITY RESULTS

In this section, it is obtained that asynchronous and time-free
axon P systems having 4 nodes are Turing universal as number
generators. The universality proofs are based on the computation
of counter machine, which is equivalent with Turing machine as
number computing device.

A counter machine M is composed by a set of counters and
a set of instructions, in which the counters are used to store
numbers and instructions are used to add or subtract number 1
from certain counter. The counter machine starts its computa-
tions from the initial instruction, and halts when the machine
reaches the halt instruction. The computing results is the num-
ber stored in the output counter. Counter machine M can be
formally denoted by M = (m,H, l0, lh, I), where l0 is the ini-
tial instruction, lh is the halt label of instruction HALT; H is the
set of instruction labels; m is the amount of counters; I is a set
of instructions.
� ADD instruction: li : (ADD(r), lj , lk) (add 1 to counter r

and non-deterministically go to instruction lj or lk);
� SUB instruction: li : (SUB(r), lj , lk) (if the number stored

in counter r is greater than zero, then subtract 1 from it and
perform instruction lj , otherwise proceed to instruction lk)

� HALT instruction: lh : HALT (stop the computation of M ).
At the beginning, a counter machineM has all counters empty

(storing number zero) and performs the initial instruction l0, and
then it continues its computation by applying indicated instruc-
tions. When HALT instruction lh is applied, the counter machine
halts. Counter 1 is used as the output counter, and the number
stored in it is said to be computed by M . The set of natural num-
bers generated by a counter machine M is written as N(M).

From [50] counter machine M having 3 counters are Turing
universality, which computes the family of length sets of re-
cursively enumerable languages NRE. By RE, we denote the
language generated and recognized by Turing machine, which
is named recursively enumerable languages. Once a computing
device can compute the length of recursively enumerable lan-
guages, it is said to be Turing universal, or can achieve Turing
universality.) In the 3 counters (labeled by 1, 2 and 3), counter
1 is usually used to store the computation result. Without lose
of generality, it is assumed that no SUB instruction acting on
counter 1, but ADD instruction [50].

A. Working in Non-Synchronous Mode

The universality proof is achieved by constructing an asyn-
chronous axon P systems with 4 nodes to simulate the compu-
tation of counter machine.

Theorem 3.1: Nasyn
all AxonP4 = NRE.

Proof: It is sufficient to prove NRE ⊆ Nasyn
all AxonP4,

since the converse inclusion can be obtained directly with

Fig. 3. The topological structure of axon P system Π.

Church-Turing thesis. An asynchronous axon P system Π with
4 nodes is constructed to simulate the computation of universal
counter machine M with 3 counters, whose topological struc-
ture is shown in Figure 3. The nodes are labelled by ρ0, ρ1, ρ2
and ρ3, respectively.

In general, node ρ0 works as a program node, whose function
is similar to the state controller of automata, focusing on con-
trolling the instruction to be simulated currently. Specifically,
each instruction li of counter machine M is associated with a
firing rule in node ρ0. The firing rule is enabled (but not applied
obligatorily due to the non-synchronous working mode) if and
only if node ρ0 contains T + l(i) spikes, where T = 2L with
L being the number of instructions of M and l(i) = i, simulat-
ing counter machine M reaching instruction li. Node ρ0 starts
by reading T + l(0) = 2L spikes from the environment, which
indicates system Π has to simulate the first instruction l0 of M .

For counters 1, 2 and 3 of counter machine M , nodes ρ1,
ρ2 and ρ3 are associated in system Π, and the number stored
in counter r is encoded by the number of spikes in nodes ρ1,
ρ2 and ρ3. If counter 1 has number n ≥ 0 at certain moment,
then there are 7n spikes in nodes ρ1; if counter 2 has number
n ≥ 0 at certain moment, then there are 11n spikes in nodes ρ2;
if counter 3 has number n ≥ 0 at certain moment, then there are
13n spikes in nodes ρ3.

During a computation, when node ρ0 contains T + i spikes
at certain computation step, it fires to simulate instruction li :
(OP(r), lj , lk) (OP ∈ {ADD, SUB}) of M : starting by firing node
ρ0, adding or subtracting a number of spikes in node ρr, and
introducing j or k spikes back to node ρ0. In this way, node
ρ0 holds T + j or T + k spikes and can fire again to simulate
instruction label lj or lk. When node ρ1 (the output node) has
7n+ T spikes, it means the computation of counter machine M
is completely simulated. System Π needs to output the compu-
tation result.

The formal definition of the constructed axon systemΠhaving
4 nodes is as follows.

Π = (O, ρ0, ρ1, ρ2, ρ3),

where the sets of rules R0, R1, R2, R3 in each node are listed in
Table I.

Simulating the ADD instructions
It is obtained that 3 counters are sufficient for counter machine

M to generate NRE, so the simulation of ADD instructions of
M by system Π can be divided into three parts with respect to
the acting counters.

(a) ADD instructions acting on counter 1
Assume at certain moment, system Π starts to simulate

an ADD instruction li on counter 1. Node ρ0 accumulates
T + l(i) spikes at that moment such that both firing rules
aT+l(i)/aT+l(i)−l(j) → (λ, a8) and aT+l(i)/aT+l(i)−l(k) →
(λ, a8) are can both be used. One of the two enabled firing rules



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG et al.: ON THE COMPUTATIONAL POWER OF ASYNCHRONOUS AXON MEMBRANE SYSTEMS 5

TABLE I
RULES IN EACH NODE OF SYSTEM Π, WHERE T = 2L AND l(i) = i WITH 0 ≤ i ≤ L

is non-deterministically related to be applied. Since the system
works in non-synchronous mode, the selected rule is not applied
obligatorily at that moment. But the rule will be applied later,
because no further spike can arrive at node ρ0.

– If rule aT+l(i)/aT+l(i)−l(j) → (λ, a8) is applied, node
ρ0 ends up with T + l(i)− (T + l(i)− l(j)) = l(j) and
sends 8 spikes to node ρ3. The number of spikes in node ρ3
becomes 13n+ 8, and firing rule (a13)∗a8/a7 → (λ, a7)
will be applied, consuming 7 spikes and sending 7 spikes
to node ρ2. The number of spikes in node ρ2 becomes
to 11n+ 7, n ≥ 0. Firing rule (a11)∗a7/a7 → (a, a7) will
be applied in certain moment. Eventually, node ρ2 sends
7 spikes to its right node ρ1, and the number of spikes in
node ρ1 is increased by 7, simulating adding 1 to counter 1.

Meanwhile, node ρ2 sends one spike back to its left node
ρ3, which holds 13n+ 2, n ≥ 0 spikes and will become
active immediately or some steps later by using firing rule
(a13)∗a2/a2 → (aT , λ). When the rule is applied, node ρ3
sends T spikes to node ρ0 such that node ρ0 has T + l(j)
spikes, which indicates systemΠ starts to simulate instruc-
tion lj of M .

– If firing rule aT+l(i)/aT+l(i)−l(k) → (λ, a8) is applied at
some moment, node ρ0 ends up with l(k) and sends 8
spikes to node ρ3. Having 13n+ 8, n ≥ 0 spikes inside,
node ρ3 becomes active at certain moment by using fir-
ing rule (a13)∗a8/a7 → (λ, a7), consuming 7 spikes (one
spike left) and sending 7 spikes to node ρ2. Node ρ2 holds
11n+ 7, n ≥ 0 spikes such that firing rule (a11)∗a7/a7 →



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

(a, a7) will be applied at that moment or some steps
later. When the rule is applied, node ρ2 sends 7 spikes
to node ρ1. The number of spikes in node ρ1 is incre-
mented by 7, simulating the operation of adding one to
counter 1. Meanwhile, node ρ2 sends one spike back to
its left node ρ3. With 13n+ 2, n ≥ 0 spikes, node ρ3 can
become active immediately or some steps later by using
rule (a13)∗a2/a2 → (aT , λ). When the rule is applied, T
spikes are sent to node ρ0 such that node ρ0 has T + l(k)
spikes. Asynchronous axon P system Π starts to simulate
instruction lk of M .

(b) ADD instruction acting on counter 2
Let li : (ADD(2), lj , lk) be an ADD instruction acting on

counter 2. When system Π starts to simulate it, node ρ0
contain T + l(i) spikes at that moment. Having T + l(i)
spikes, both of firing rules aT+l(i)/aT+l(i)−l(j) → (λ, a11) and
aT+l(i)/aT+l(i)−l(k) → (λ, a11) are enabled, but only one of
them can be used at certain moment.

– If firing rule aT+l(i)/aT+l(i)−l(j) → (λ, a11) is chosen to
apply, node ρ0 ends with l(j) spikes and sends 11 spikes
to node ρ3. By receiving 11 spikes, node ρ3 contains
13n+ 11, n ≥ 0 spikes and will fire at certain moment by
using rule (a13)∗a11/a11 → (aT , a11), sending 11 spikes
to node ρ2. The number of spikes in node ρ2 is increased
by 11, simulating the number stored in counter 2 is added
by 1. At the same moment, node ρ3 ends T spikes to node
ρ0. Asynchronous anon P system Π starts to simulate in-
struction lj of M .

– Similarly, if aT+l(i)/aT+l(i)−l(j) → (λ, a11) is chosen to
apply, the number of spikes in node ρ2 will be increased by
11, simulating adding 1 on counter 2, and the number of
spikes in node ρ0 becomes T + l(k). Asynchronous axon
P system Π starts to simulate instruction lk of M .

(c) ADD instruction acting on counter 3
When system Π simulates an ADD instruction li acting on

counter 3, node ρ0 holds T + l(i) spikes such that node ρ0
can non-deterministically choose one of the two firing rules,
aT+l(i)/aT+l(i)−l(j) → (λ, a14) and aT+l(i)/aT+l(i)−l(k) →
(λ, a14) and fire, ending with l(j) or l(k) spikes and emitting
14 spikes to node ρ3. With 13n+ 14, n ≥ 0 spikes, firing rule
(a13)∗a14/a → (aT , λ) can be applied, consuming one spike
and sending T spikes to node ρ0. The number of spikes in node
ρ3 is increased by 13, simulating the operation of adding 1 on
counter 3, and node ρ0 holds T + l(j) or t+ l(k) spikes. At that
moment, asynchronous axon P system Π proceeds to simulate
instruction lj or lk, non-deterministically.

Simulating SUB instructions
Without lose of generality, it is assumed that there is no SUB

instruction operated on counter 1, i.e., the output counter. So,
there are only SUB instructions acting on counter 2 and 3.

(a) Simulating SUB instruction on counter 2
When system Π starts the simulation of SUB instruction li

operated on counter 2, node ρ0 has T + l(i) spikes and firing
rule aT+l(i) → (λ, a3) can be applied at certain moment. By
using the rule, node ρ0 transmits 3 spikes to node ρ3, and a
certain step later node ρ3 transmits the 3 spikes to node ρ2. In
node ρ2, it has the following two cases.

– If node ρ2 accumulates 11n, n > 0 spikes, then firing rule
(a11)+a3/a14 → (a4, λ) is enabled and applied at certain
moment. By using the rule, 14 spikes are canceled by node
ρ2 and 4 spikes are passed to node ρ3. By removing 14
spikes, nodeρ2 ends with 11n+ 3− 14 = 11(n− 1), n ≥
1 spikes. In this way, system Π simulates that the num-
ber in counter 2 has been decremented by one. Node
ρ3 fires at certain moment by firing rule (a13)∗a4/a4 →
(aT+l(j), λ), transmitting T + l(j) spikes to node ρ0.
This indicates instruction lj of M is to be simulated by
system Π.

– If node ρ2 has no spike (corresponding to the fact that
the number stored in counter 2 is 0), then firing rule
(a3/a3 → (a5, λ) is applied at certain moment. By using
the rule, 5 spikes are sent to node ρ3 such that firing rule
(a13)∗a5/a4 → (aT+l(k), λ) will be used in some step. In
this case, node ρ3 sends T + l(k) spikes to node ρ0. Asyn-
chronous axon P system Π goes to simulate instruction lk
of M .

(b) Simulating SUB instruction operated counter 3
Assume at certain step, systemΠ starts the simulation of SUB

instruction li acting on counter 3. At that moment, node ρ0 has
T + l(i) spikes and firing rule aT+l(i) → (λ, a6) can be applied
at certain moment to send 6 spikes to node ρ3. In node ρ3, it has
the following two cases.

– If node ρ3 accumulates 13n, n > 0 spikes (corresponding
to the fact that the number stored in counter 3 is larger
than 0), then firing rule (a13)+a6/a19 → (aT+l(j), λ) is
applied at certain moment. With using the neuron, node
ρ3 consumes 19 spikes and transmit T + l(j) spikes to
node ρ0. In node ρ3, there are in total 13n+ 6− 19 =
13(n− 1) (n ≥ 1) spikes. This simulates the operation that
the number in counter 2 is decremented by one. Nodeρ0 has
T + l(j) spikes, which means system Π starts to simulate
instruction lj of M .

– If node ρ3 has no spike (corresponding to the fact that the
number stored in counter 3 is 0), then firing rule (a6/a6 →
(aT+l(k), λ) is applied at certain moment, sending node
T + l(k) spikes to node ρ0. This means system Π starts to
simulate instruction lk of M .

Outputting the computation result
It is assumed that at ceratin computation step counter ma-

chine M reaches the halting instruction. In system Π, node
ρ0 accumulates T + l(h) spikes. At that moment, node ρ1
contains 7n spikes, i.e., counter 1 hold number n when M
halts.

With T + l(h) spikes in node ρ0, firing rule aT+l(h) →
(λ, aT ) in node ρ0 is applied, emittingT spikes to node ρ3. Node
ρ3 sendsT spikes to nodeρ2 by using firing rule (a13)∗aT /aT →
(λ, aT ), and the theT spikes will be transmitted to node ρ1 when
node ρ2 fires. Node ρ1 accumulates 7n+ T spikes and fires by
using firing rule (a7)+aT /a7 → (λ, a). Such firing rule will be
applied in total for n times by node ρ1. And in each time fir-
ing, node ρ1 sends one spike into the environment. When the
computation of system Π halts, n spikes are emitted into the
environment, which is exactly the number stored in counter 1 of
M when it halts.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG et al.: ON THE COMPUTATIONAL POWER OF ASYNCHRONOUS AXON MEMBRANE SYSTEMS 7

TABLE II
RULES IN EACH NODE OF SYSTEM Π′, WHERE T = 2L AND l(i) = i WITH 0 ≤ i ≤ L

From the above description, the computation of universal
counter machine M (with 3 counters) can be correctly simu-
lated by asynchronous axon P system Π with 4 nodes. It has
Nasyn

all AxonP4 = N(M).
Therefore, it holds NRE = Nasyn

all AxonP4, and this com-
pletes the proof. �

B. Working in Time-Free Mode

In this subsection, the universality of axon P systems working
in time-free mode is obtained by simulating the computation of
universal counter machine.

Theorem 3.2. N tf
allAxonP4(e) = NRE.

Proof: It is sufficient to prove NRE ⊆ N tf
allAxonP4(e). A

time-free axon P system Π′ with 4 nodes is constructed to sim-
ulate universal counter machine M with 3 counters. The topo-
logical structure of system Π′ is the same with the one shown in
Figure 3.

The constructed time-free axon P system Π′ is formally de-
fined as

Π′ = (O, ρ′0, ρ
′
1, ρ

′
2, ρ

′
3, e).

The sets of firing rules R′
0, R

′
1, R

′
2, R

′
3 are the same with the

ones in system Π. A random time-mapping e : R′ → N is intro-
duced, by which each rule is associated with a random execution
time, instead of one time unit as working in non-synchronous



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

mode. The rules and its execution time are shown in Table II.
For counters 1, 2 and 3 of M , nodes ρ′1, ρ′2 and ρ′3 are associated
in system Π′, and the number stored in counter r is encoded by
the number of spikes in the nodes. If counter 1 stores number
n ≥ 0, there are 7n spikes in nodes ρ′1; if counter 2 stores num-
ber n ≥ 0, there are 11n spikes in nodes ρ′2; if counter 3 stores
number n ≥ 0, there are 13n spikes in nodes ρ′3.

In time-free axon P systemΠ′, node ρ′0 works to control which
instruction of M to be simulated. In general, when system Π′

simulates instruction li of M at any step, there are T + i spikes
in node ρ′0. Since the initial instruction of M is l0, node ρ′0 starts
by reading T + l(0) = 2L spikes from the environment. This
indicates system Π′ starts to simulate the initial instruction l0 of
M . During the simulation, when nodeρ′0 hasT + i spikes, it fires
to simulate that register machineM reaches instruction li. When
node ρ′1 (the output node) has 7n+ T spikes, the computation in
M is completely simulated by system Π′ and it begins to output
the computation result.

Different from the case of working in non-synchronous mode,
node in time-free axon systemΠ′ becomes active if it has enabled
rule(s), but the execution time is determined by the time mapping
e, can be random number. It is not hard to find that the universal
counter machine M with 3 counters can be correctly simulated
by time-free axon P system Π′ having 4 nodes. The details of
the proof are quite similar with Theorem 3.1, which are omitted
here. �

IV. DISCUSSION AND CONCLUSION

In this paper, we has obtained the computational power of
axon P systems working in non-synchronous mode, where the
non-synchronization can be obtained by either the obligatory use
of enabled rules at any moment (namely the non-synchronous
mode) or imposing a random execution time for each rule
(namely time-free mode). It is proved that asynchronous and
time-free axon P systems having 4 nodes with the same topo-
logical structure can compute/genrate the family of sets of length
of recursively enumerable languages, i.e., the set of Turing com-
putable natural numbers, thus achieving Turing universality.
This indicates that the non-synchronization will not reduce the
computational power of axon P systems. As well, it is found that
the number of nodes used in non-synchronous axon P systems is
not more than the ones needed for synchronous axon P systems.

In [30], the encoding of value n is done by 3Ln spikes, where
L is amount of instructions in the register machine. The encoding
mechanism is still linear (O(n)), not quadratic. In our systems,
we use 13n spikes to encode number n, which also improves the
information encoding way from [30].

Moreover, in the universality proofs, the number of spikes
used to encode arbitrary number n in nodes associated with
counters of universal counter machine in asynchronous and time-
free axon P systems are 7n, 11n, 13n, i.e., it is O(n). This im-
proved the strategy in universal synchronous axon P systems,
wherein O(n2) spikes are used to represent number n in the
nodes associated with the counters [32]. Comparing with SN P
systems (4 neurons with request rules [39] or white hole rules
[40]) and recurrent neural networks (886 units needed [51]) to

achieve Turing universality, axon P systems doing computation
along axon are with a smaller number of computing units to
achieve Turing universality. Moreover, this is the first attempt to
do computation along with axon working in non-synchronous
mode in axon P systems.

These results give a partial answer to an open problem left in
[32], and may provide some hints on designing novel learning
strategies or training method for neural-like computing models
by imposing some computation tasks on the synapses of neural
networks models.

In 2015, memcomputing machines were proposed in [52].
The machine has linear structure with units in memory, and can
run multiple instructions in a parallel manner. It is of interests
to design memcomputing machines with firing rules and linear
structure as axon P systems working in synchronous or non-
synchronous mode, which will increase the level of realism a
neural simulation, thus resulting power brain-inspired comput-
ing machines or systems.

In the theoretical level, axon P systems working in both syn-
chronous and asynchronous modes perform better than artificial
neural networks [51] in terms of using less number of comput-
ing units to achieve Turing universality. Few results focus on
solving real-life problems, like natural language processing or
optimization problems by axon P systems It is quite an inter-
esting research topic for further research. One of the most vital
problems is that the data structure of axon P system are discrete
spikes, and it needs to find a way to represent natural languages
and other problems by spikes, and then axon P systems can be
used to deal with the information represented by the spikes or
spike trains.

In 2019, spiking neural P systems with learning functions are
proposed in [53], in which synapses and their weights can be
updated during the computation. The idea is directly from the
neural systems in human brain for learning. This can also be
useful in developing learning axon P systems, such as spiking
rules can be updated during the computation of axon P system.

REFERENCES

[1] P. Swietojanski, A. Ghoshal, and S. Renals, “Convolutional neural net-
works for distant speech recognition,” IEEE Signal Process. Lett., vol. 21,
no. 9, pp. 1120–1124, Sep. 2014.

[2] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural Network
Design, vol. 20. Boston, MA, USA: PWS-Kent, 1996.

[3] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Netw., vol. 10, no. 9, pp. 1659–1671, 1997.

[4] G. A. Carpenter, “Neural network models for pattern recognition and as-
sociative memory,” Neural Netw., vol. 2, no. 4, pp. 243–257, 1989.

[5] G. Deco and B. Schürmann, “The coding of information by spiking neu-
rons: An analytical study,” Netw., Comput. Neural Syst., vol. 9, no. 3,
pp. 303–317, 1998.

[6] X. Zhang, K. Zhou, H. Pan, L. Zhang, X. Zeng, and Y. Jin, “A network
reduction based multi-objective evolutionary algorithm for community
detection in large-scale complex networks,” IEEE Trans. Cybern., to be
published, doi: 10.1109/TCYB.2018.2871673.

[7] N. K. Kasabov, “Neucube: A spiking neural network architecture for map-
ping, learning and understanding of spatio-temporal brain data,” Neural
Netw., vol. 52, pp. 62–76, 2014.

[8] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator based
multi-objective evolutionary algorithm with reference point adaptation for
better versatility,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 609–622,
Aug. 2018.

https://dx.doi.org/10.1109/TCYB.2018.2871673


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG et al.: ON THE COMPUTATIONAL POWER OF ASYNCHRONOUS AXON MEMBRANE SYSTEMS 9

[9] Y. Tian, R. Cheng, X. Zhang, Y. Su, and Y. Jin, “A strengthened dom-
inance relation considering convergence and diversity for evolutionary
many-objective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 2,
pp. 331–345, Apr. 2019.

[10] D. V. Buonomano and M. Merzenich, “A neural network model of tem-
poral code generation and position-invariant pattern recognition,” Neural
Comput., vol. 11, no. 1, pp. 103–116, 1999.

[11] F. Ponulak and A. Kasinski, “Supervised learning in spiking neural net-
works with resume: Sequence learning, classification, and spike shifting,”
Neural Comput., vol. 22, no. 2, pp. 467–510, 2010.

[12] T. Song, S. Pang, S. Hao, A-R. Paton, and P. Zheng, “A parallel image
skeletonizing method using spiking neural P systems with weights,” Neural
Process. Lett., 2019, doi: 10.1007/s11063-018-9947-9.

[13] X. Wang, P. Zheng, T. Ma, and T. Song, “Computing with bacteria conjuga-
tion: Small universal systems,” Moleculer, vol. 23, no. 6, pp. 1307–1313,
2018.

[14] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation in tem-
porally encoded networks of spiking neurons,” Neurocomputing, vol. 48,
no. 1, pp. 17–37, 2002.

[15] C. W. Eurich and S. D. Wilke, “Multidimensional encoding strategy of
spiking neurons,” Neural Comput., vol. 12, no. 7, pp. 1519–1529, 2000.

[16] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable cluster-
ing based evolutionary algorithm for large-scale many-objective optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 97–112, Feb. 2018.

[17] G. Păun, “Computing with membranes,” J. Comput. Syst. Sci., vol. 61,
no. 1, pp. 108–143, 2000.

[18] G. Păun, G. Rozenberg, and A. Salomaa, The Oxford Handbook of Mem-
brane Computing. London, U.K.: Oxford Univ. Press, 2010.

[19] T. Song, X. Zeng, Z. Pan, J. Min, and R.-P. Alfonso, “A parallel workflow
pattern modeling using spiking neural P systems with colored spikes,”
IEEE Trans. Nanobiosci., vol. 17, no. 4, pp. 474–484, Oct. 2018.

[20] M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P systems,” Fun-
damenta Informaticae, vol. 71, no. 2, pp. 279–308, 2006.

[21] A. Păun and G. Păun, “Small universal spiking neural P systems,” BioSyst.,
vol. 90, no. 1, pp. 48–60, 2007.

[22] X. Zeng, T. Song, X. Zhang, and L. Pan, “Performing four basic arith-
metic operations with spiking neural P systems,” IEEE Trans. NanoBiosci.,
vol. 11, no. 4, pp. 366–374, Dec. 2012.

[23] S. Pang, T. Ding, A. Rodriguez-Paton, T. Song, and P. Zheng, “A paral-
lel bioinspired framework for numerical calculations using enzymatic P
system with an enzymatic environment,” IEEE Access, vol. 6, pp. 65548–
65556, 2018, doi: 10.1109/ACCESS.2018.2876364.

[24] T. Song, P. Zheng, D. M. Wong, and X. Wang, “Design of logic gates using
spiking neural P systems with homogeneous neurons and astrocytes-like
control,” Inf. Sci., vol. 372, 2016, Art. no. 380C391.

[25] X. Zeng, X. Zhang, and L. Pan, “Homogeneous spiking neural P systems,”
Fundamenta Informaticae, vol. 97, no. 1, pp. 275–294, 2009.

[26] A. Leporati, G. Mauri, C. Zandron, G. Păun, and M. J. Pérez-Jiménez,
“Uniform solutions to SAT and subset sum by spiking neural P systems,”
Natural Comput., vol. 8, no. 4, pp. 681–702, 2009.

[27] T. Song, L. Pan, K. Jiang, B. Song, and W. Chen, “Normal forms for some
classes of sequential spiking neural P systems,” IEEE Trans. NanoBiosci.,
vol. 12, no. 3, pp. 255–264, Sep. 2013.

[28] T. Song, J. Xu, and L. Pan, “On the universality and non-universality of
spiking neural P systems with rules on synapses,” IEEE Trans. Nanobiosci.,
vol. 14, no. 8, pp. 960–966, Dec. 2015.

[29] X. Wang, T. Song, F. Gong, and P. Zheng, “On the computational power of
spiking neural P systems with self-organization,” Sci. Rep., vol. 6, 2016,
Art. no. 27624.

[30] C. Haiming, T.-O. Ishdorj, and G. Paun, “Computing along the axon,”
Prog. Natural Sci., vol. 17, no. 4, pp. 417–423, 2007.

[31] X. Zhang, J. Wang, and L. Pan, “A note on the generative power of axon
P systems,” Int. J. Comput. Commun. Control, vol. 4, no. 1, pp. 92–98,
2009.

[32] X. Zhang, L. Pan, and A. Păun, “On the universality of axon P systems,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 11, pp. 2816–2829,
Nov. 2015.

[33] 2018. [Online]. Available: https://www.studyblue.com/notes/michigan-
schools/us/mi

[34] A. Krogh et al., “Neural network ensembles, cross validation, and ac-
tive learning,” Adv. Neural Inf. Process. Syst., vol. 7, pp. 231–238,
1995.

[35] S. Haykin, “A comprehensive foundation,” Neural Network, Englewood
Cliffs, N.J.: Prentice-Hall, 2004.

[36] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory.
London, U.K.: Psychology Press, 2005.

[37] T. Song, X. Wang, Z. Zhang, and Z. Chen, “Homogenous spiking neural
P systems with anti-spikes, neural computing and applications,” Neural
Comput. Appl., vol. 24, no. 7–8, pp. 1833–1841, 2014.

[38] B. Wang and K. Liu, “Designing DNA code: Quantity and quality,” Int. J.
Adaptive Innov. Syst., to be published.

[39] T. Song and L. Pan, “Spiking neural P systems with request rules,” Neu-
rocomputing, vol. 193, pp. 193–200, 2016.

[40] T. Song, F. Gong, X. Liu, Y. Zhao, and X. Zhang, “Spiking neural P
systems with white hole rules,” IEEE Trans. Nanobiosci., vol. 15, no. 7,
pp. 666–673, Oct. 2016.

[41] B. D. Clark, E. M. Goldberg, and B. Rudy, “Electrogenic tuning of
the axon initial segment,” The Neurosci., vol. 15, no. 6, pp. 651–668,
2009.

[42] D. Khodagholy et al., “Neurogrid: Recording action potentials from the
surface of the brain,” Nature Neurosci., vol. 18, no. 2, pp. 310–315,
2015.

[43] M. Cavaliere, O. H. Ibarra, G. Păun, O. Egecioglu, M. Ionescu, and S.
Woodworth, “Asynchronous spiking neural P systems,” Theor. Comput.
Sci., vol. 410, no. 24, pp. 2352–2364, 2009.

[44] T. Song, L. Pan, and G. Păun, “Asynchronous spiking neural P systems
with local synchronization,” Inf. Sci., vol. 219, pp. 197–207, 2012.

[45] L. Pan, X. Zeng, and X. Zhang, “Time-free spiking neural P systems,”
Neural Comput., vol. 23, no. 5, pp. 1320–1342, 2011.

[46] T. Song, L. F. Macías-Ramos, L. Pan, and M. J. Pérez-Jiménez, “Time-free
solution to sat problem using P systems with active membranes,” Theor.
Comput. Sci., vol. 529, pp. 61–68, 2014.

[47] M. Sipser, Introduction to the Theory of Computation. Boston, MA, USA:
Cengage Learning, 2012.

[48] J. E. Hopcroft, Introduction to Automata Theory, Languages, and Compu-
tation. London, U.K.: Pearson, 1979.

[49] R. Mitkov, The Oxford Handbook of Computational Linguistics. London,
U.K.: Oxford Univ. Press, 2005.

[50] M. L. Minsky, Computation: Finite and Infinite Machines. Upper Saddle
River, NJ, USA: Prentice-Hall, 1967.

[51] H. T. Siegelmann and E. D. Sontag, “On the computational power of neural
nets,” J. Comput. Syst. Sci., vol. 50, no. 1, pp. 132–150, 1995.

[52] F. L. Traversa and M. Di Ventra, “Universal memcomputing machines,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 11, pp. 2702–2715,
2015.

[53] S. Tao, P. Linqiang, Z. Pan, W. D. Mouling, and R.-P. Alfonso, “Spiking
neural P systems with learning functions,” IEEE Trans. Nanobiosci., to be
published, doi: 10.1109/TNB.2019.2896981.

https://dx.doi.org/10.1007/s11063-018-9947-9
https://dx.doi.org/10.1109/ACCESS.2018.2876364
https://www.studyblue.com/notes/michigan-schools/us/mi
https://dx.doi.org/10.1109/TNB.2019.2896981

