- Estimating carbon dioxide residence times cales through
- 2 noble gas and stable isotope diffusion profiles
- 3 Carmen A. Zwahlen^{1,2*}, Niko Kampman^{1,3}, Paul Dennis⁴, Zheng Zhou¹ and Greg
- 4 Holland^{1,2}
- 5 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- 6 ²School of Earth and Environmental Sciences, University of Manchester, Manchester
- 7 M13 9PL, UK
- 8 ³Shell Global Solutions International, Kessler Park 1, 2288 GS Rijswijk, Netherlands
- 9 ⁴School of Environmental Sciences, University of East Anglia, Norwich Research Park,
- 10 Norwich NR4 7TJ, UK
- 11 E-mail: carmen.zwahlen@manchester.ac.uk

12 **ABSTRACT**

- The study of natural carbon dioxide reservoirs provides fundamental insight into
- processes involved in carbon capture and storage. However the calculations of process
- 15 rates such as dissolution of CO₂ into the formation water remain uncertain due to
- indirectly determined ages of the CO₂ influx. The proposed ages for the Bravo Dome gas
- 17 field in New Mexico, USA, vary from 56 ka to 1.5 Ma. Here we demonstrate that
- 18 residence times can be estimated from simple modeling of noble gas and stable isotope
- diffusion profiles from the gas water contact through the gas column. The Bravo Dome
- 20 gas field shows a gradient in noble gas concentrations and isotopic ratios from East to
- West across the 70 km wide field. A mantle like endmember with a ${}^{3}\text{He}/{}^{4}\text{He}$ (R/R_A) ratio
- of up to 4.7 is found in the west in contrast to a ground water endmember with high

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G39291.1

23 concentrations of air and crustal derived noble gases in the east. The air and crustal 24 derived noble gases decrease gradually toward the west. Stable isotope compositions (C 25 and O) also vary across the field. Diffusion modeling of He, Ne, Ar, Kr, Xe and δ^{13} C data yield residence times for the CO₂ between 14.1 ± 0.2 and 16.9 + 1.1 = 0.5 ka. This is far less 26 27 than the previous estimates of 1.2–1.5 Ma based on apatite (U-Th)/He thermochronology, leading to a dissolution rate of 29900 $^{+11800}_{-10700}$ t/a to 35900 \pm 12300 t/a, implying that 28 29 28% of the total emplaced CO₂ dissolved. This new method can be applied to a wide 30 variety of gas fields with variation in the concentration of groundwater derived noble 31 gases and allow a better assessment of the timescale of other diffusive fluid-fluid 32 interactions. 33

INTRODUCTION

34

35

36

37

38

39

40

41

42

43

44

45

Natural carbon dioxide reservoirs serve as natural analogues for geological CO₂ storage and hence are studied extensively to understand processes that act over geological timescales (Bickle et al., 2013). In order to quantify the rates of interactions between carbon dioxide, subsurface fluids and the host rock, it is crucial to know the residence time of the CO₂ in the reservoir. Previous estimates of CO₂ reservoir residence times include dating of surface intrusive igneous rocks (Armstrong, 1969), dating of close-by effusive igneous rocks (Condit, 1995; Stroud, 1997) and apatite (U-Th)/He thermochronology (Sathaye et al., 2014). These methods have been used to infer residence times for the Bravo Dome (New Mexico, USA) CO₂ reservoir ranging between 56 ka (Stroud, 1997) and 1.5 Ma (Sathaye et al., 2014). Petrographic studies on drill cores suggest the carbon dioxide filling of Bravo Dome in mid Cenozoic (Hartig et al., 2011), but rely exclusively on relative time constraints of diagenetic mineral growths with

poorly developed textures. Here we present a model for estimating directly the CO₂ residence time applied to the Bravo Dome gas field. The model relies on spatial sampling of gases across the field and uses the diffusion of groundwater derived noble gases entering the gas column at the gas water contact, with known diffusion constants, to estimate residence ages.

BRAVO DOME FIELD

46

47

48

49

50

51

52	Bravo Dome is a well-studied sandstone hosted CO2 reservoir in New Mexico,
53	USA (Baines and Worden, 2004; Cassidy, 2006; Dubacq et al., 2012; Gilfillan et al.,
54	2008; Gilfillan et al., 2009; Hartig et al., 2011; Holland and Ballentine, 2006; Kessler et
55	al., 2001; Sathaye et al., 2014). The gas is primarily of magmatic origin (Staudacher,
56	1987), has ${}^{3}\text{He}/{}^{4}\text{He}$ (R/R _A) ratios up to 4.7 and CO ₂ / ${}^{3}\text{He}$ ratios in the mid-oceanic ridge
57	basalt (MORB) range (Ballentine et al., 2001; Cassidy, 2006; Gilfillan et al., 2008;
58	Holland and Ballentine, 2006). The gas field comprises a thin laterally extensive reservoir
59	with an east-west extent of more than 70 km (Fig. 1) and supercritical reservoir
60	conditions (Broadhead, 1993). The western portion of the gas field is not in contact with
61	formation water since it overlies dry impermeable basement (Cassidy, 2006) and we
62	assume the most western fault on the map in Figure 1 represents the east-west gas water
63	contact (Appendix DR4). On the east side of this fault the water table is within the
64	sandstone formation and the CO ₂ overlies water-saturated rock, with lateral juxtaposition
65	of CO ₂ and formation water also occurring laterally to the extreme east (Fig. 1). Oxygen
66	isotope data of CO ₂ gas confirm the western fault as a gas water contact since the gas
67	samples east of the fault have $\delta^{18} O$ of 29% (Vienna standard mean ocean water, V-
68	SMOW) on average, which is the value predicted from CO ₂ -H ₂ O fractionation

(Brenninkmeijer et al., 1983) and complete equilibration with formation water of $\delta^{18}O =$

The gas samples were collected in two different sampling campaigns (b and c) of

70 −11‰ at 33 °C (Cassidy, 2006) (Fig. 2A).

MODEL

69

71

72

73

Data and Corrections

74 the Bravo Dome gas field (Gilfillan et al., 2008; Gilfillan et al., 2009; Holland and 75 Ballentine, 2006). Noble gas data of sample set b are from previous studies (Gilfillan et 76 al., 2008; Gilfillan et al., 2009; Holland and Ballentine, 2006), whereas sample set c has 77 been measured following previous methods (Holland and Ballentine, 2006) (Appendix 78 DR1). The oxygen isotopic and carbon isotopic analysis of sample set b were performed 79 at the University of East Anglia (Norwich, UK) using MIRA (multi- isotopologue ratio 80 analyzer) mass spectrometer (P. Dennis, unpublished data) with procedures following 81 Royle (2015) and precision for standard replicates of <0.01‰. The carbon isotopes of 82 sample set c were measured at Lancaster University (UK) using an Isoprime100 mass 83 spectrometer with a multiflow inlet. The data were corrected to V-PDB (Vienna Peedee 84 belemnite) using international standards LSVEC (δ^{13} C –46.6%), NBS 18 (δ^{13} C 85 -5.014%) and CO1 (δ^{13} C +2.492%). Precision for standard replicates (n = 5, 1 standard 86 deviation) was <0.1% for carbon isotopes. 87 The data for the model comprise the noble gas measurements and their sampling 88 distance to the gas water contact. The distance from the 26 selected wells to the gas water 89 contact have been measured horizontally for the wells west of the main fault and 90 vertically for the wells east of it, since these are the shortest distances to the gas water

- been considered for the wells with vertical distances to the gas water contact.
- At the gas water contact, the air and crustal derived noble gases, which
- accumulated in the formation water, degas into the CO₂ because of the higher
- oncentration and lower solubility in the formation water than in the CO₂ phase. In
- addition to this increase in noble gas concentration in the CO₂, noble gas concentrations
- 97 in the gas phase are also enhanced by contemporaneous CO₂ dissolution into the
- 98 formation water. This solvent loss effect can be corrected based on ³He concentrations
- 99 (Appendix DR3) (Dubacq et al., 2012).

Parameters and Error Calculation

- Following the noble gas concentration correction, the data can then be compared
- to a diffusion profile based on Fick's second law of diffusion:

$$\left[\frac{\partial c}{\partial t} = D_{eff} \frac{\partial^2 c}{\partial x^2} \right] (1)$$

100

- where C stands for concentration, t for time, D_{eff} for the effective diffusion
- 105 coefficient and x for the distance. The solution of the equation involves two boundary
- 106 conditions which are set to be a constant noble gas concentration in the CO₂ at the gas
- water contact (C_{start}) and a magmatic derived noble gas concentration (C_{end}) at the
- western end of the gas field: $[C(x,t) = C_{start} (C_{start} C_{end}) * erf(\frac{x}{2\sqrt{t*D_{eff}}})]$ (2)
- The effective diffusion coefficient compensates for the indirect travel paths of the
- particles and differs from the common diffusion coefficient by taking into account the
- porosity and tortuosity: $[D_{eff} = D \frac{\emptyset}{\tau}]$ (3) where D stands for the diffusion coefficient, \emptyset
- the porosity and τ the tortuosity. The diffusion coefficients have been calculated after the

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G39291.1

method of He and Yu (1998) since no experimental data exists for diffusion of noble gases in supercritical CO₂ (Appendix DR2). Poling et al. (2001) tested this approach for the vitamin K₁ in supercritical CO₂ and found a low error of 0.4% compared to the empirically determined diffusion coefficient. The calculated diffusion coefficients for the noble gases in CO₂ are approximately one order of magnitude higher compared to those in water. The reported porosity of the Tubb formation in New Mexico at Bravo Dome is 20% on average (Johnson, 1983; Cassidy, 2006) and the tortuosity has been calculated to be 2.4 which is a typical value for sandstones (Cassidy, 2006; Epstein, 1989; Matthews and Spearing, 1992).

Solutions for the diffusion profiles are calculated using a Monte Carlo simulation in Matlab where both boundary conditions and the diffusion time multiplied by the diffusion coefficient are fitted 1000 times to the data taking into account the error on measurements through minimizing X^2 .

126
$$X^{2} = \sum_{i}^{n} \frac{(x_{i} - x_{m})^{2}}{\frac{1}{2} x_{error \, range}^{2}} + \frac{(y_{i} - y(x_{m}))^{2}}{\sigma_{y}^{2}} (4)$$

where x_m and $y(x_m)$ are model values for the distance and the concentration, x_i and y_i are the distance and concentration of the data points, $x_{error\,range}$ is the error range of the distance and σ_y is the standard error of the concentration measurements (Appendix DR2). The data points in the simulation are picked randomly within the normal distribution of their standard error for the concentration and within the error range of their distance to the gas water contact. A second Monte Carlo simulation is set up to evaluate the error of the diffusion coefficient on the diffusion time. The most probable diffusion time, the diffusion coefficient, C_{start} and C_{end} are reported with asymmetric error brackets defining the 95% quantile (Fig. 2, Appendix DR2). In the simulation for xenon, about

one-fifth of the C_{end} concentrations resulted in negative values which were excluded since negative concentrations are meaningless. The model simplifies the field and does not account for lithology heterogeneities, residual water, compartmentalization of the field, lateral heterogeneities and temporal variation in the noble gas concentration in the formation water which would have the tendency to increase the diffusion time.

The fitted carbon isotope C_{start} composition of -7.9% (Appendix DR2) fits well with a CO₂ composition in equilibrium with formation water at Bravo Dome that is in equilibrium with dolomite. Dolomite with an δ^{13} C of \sim 2% PDB (Hoefs, 2008) in equilibrium with the formation water at Bravo Dome (Kessler et al., 2001; Hartig et al., 2011) results in a CO₂ groundwater endmember of -8% based on a CO₂(g)-dolomite (g-gaseous) fractionation of -10% (Sheppard and Schwarz, 1970; Clark and Fritz, 1997) at 33 °C (Cassidy, 2006). The fitted C_{end} composition of the carbon isotope is -4.1% which is in the range of magmatic derived CO₂ (Jenden et al., 1993).

AGE ESTIMATION

The model generates noble gas diffusion profiles from the gas/water contact in the east toward the western end of the field that are consistent with the observed well gas concentrations and place age constraints for the CO_2 emplacement at between 14.1 ± 0.2 and $16.9^{+1.1}_{-0.5}$ ka (Fig. 2C-H, Appendices DR2 and DR4). The age difference between the noble gases could arise from the uncertainty of the diffusion coefficients since the noble gas diffusion coefficients are calculated and not empirically measured. The diffusion ages are strongly influenced by the wells close to the gas water contact since these define the curvature and hence the age of the diffusion profile.

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G39291.1

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

The diffusion of the groundwater derived noble gases through the CO₂ most likely started when the CO₂ first contacted the formation water. The gas water contact probably moved down dip from the inferred entry point (see figure 4B in Sathaye et al., 2014) throughout the filling of the CO₂ but this does not affect the diffusion of the noble gases in the CO₂, assuming a slug like displacement of the formation water which is reasonable given the likely slow rates of filling. Today the gas water contact is more than 30 km away from the inferred entry point of the CO₂ (Sathaye et al., 2014). Therefore later CO₂ pulses, as proposed in previous studies (Baines and Worden, 2004; Sathaye et al., 2014), would not alter the noble gas diffusion profile at the gas water contact. The water table in the Bravo Dome field lies horizontally (Cassidy, 2006) and the anhydrite seal likely prevents groundwater recharge which suggests a stagnant aquifer (Akhbari and Hesse, 2017). The estimated CO₂ emplacement ages are younger than the youngest dated effusive rock in the area. Deep igneous activity, however, could have continued after the last lava flow 56ka ago (Stroud, 1997). Additionally, the change in carbon and oxygen isotopes has been investigated; this can give insight into the source of the CO₂ and extent of gas water exchange and CO₂ dissolution. The δ^{13} C varies from -3.2% PDB in the west to -5.8% PDB in the east. This isotopic difference originates from the presence of two sources of carbon. There is a magmatic carbon input in the west, which is isotopically distinct from the formation water derived carbon in the east. Similarly to the noble gases, diffusion controls the mixing between these two endmembers (Fig. 2B). Diffusion modeling of the δ^{13} C profile indicates a development period of 15.0 $^{+0.2}_{-0.5}$ ka (Fig. 2B). This age agrees well with the age estimates derived from diffusion modeling of the noble gas concentration profiles.

However, the evolution of oxygen isotopes is more complex. The $\delta^{18}\text{O}$ varies

from a minimum of 18.6% in the west to 29% in the east. The wells in the west have lighter isotopic composition but differ by more than 9–12‰ from an expected mantle like CO₂ composition of 6–9‰ (Eiler, 2001). During the displacement of the formation water by the invading CO₂ an irreducible water saturation of typically 5%–22% in sandstones (Krevor et al., 2012) will be trapped in the CO₂ filled pores. The pores in the Tubb formation thus contain an irreducible water saturation with a sufficient mass of oxygen such that, O-isotopic exchange can modify the O-isotopic composition across the entire CO₂ filled volume. A residual water content correction has been made to the O-isotope ratios based on the mass balance equation $\delta^{18}O^{f}_{CO2} = \delta^{18}O^{i}_{CO2}(1-X^{0}_{H2O})+X^{0}_{H2O}$ $(\delta^{18}O_{H2O}+\epsilon)$ (5) (Johnson et al., 2011) where ϵ is the $CO_2(g)$ -H₂O fractionation factor at 33 °C (Brenninkmeijer et al., 1983), $\delta^{l8}O^{i}_{CO2}$ and $\delta^{l8}O^{f}_{CO2}$ refer to initial and final composition of the CO₂ respectively, and X^0_{H2O} is the fraction of oxygen in the system from water. This amendment decreases the measured values only very little since the residual water saturation is as low as 5–10 vol% (Sathaye et al., 2014). Due to this complexity, the spatial trends in O-isotopic composition are not a useful constraint on the emplacement age.

DISSOLUTION RATE

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

Combining the range of residence times of 14.1 ± 0.2 and $16.9 + 1.1 \\ -0.5$ ka with the gas mass, which has been subject to dissolution, enables the estimation of the dissolution rate. The dissolved gas can simply be estimated by subtracting the present mass of gas in the reservoir from the mass of gas that was in place originally. The present gas volume in the reservoir has previously been estimated to be 1.3 ± 0.6 Gt CO₂ (Sathaye et al., 2014).

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G39291.1 alculated from the difference

204	The original gas mass can be calculated from the difference between the present gas and
205	the deviation from the highest CO ₂ / ³ He ratio (7.4*10 ⁹) (Appendix DR1), representing
206	dissolution of CO ₂ through apparent increase in ³ He. The dissolved gas mass has been
207	calculated in the past (Sathaye et al., 2014), however, the highest $CO_2/^3He$ ratio used was
208	5.35*109 (Cassidy, 2006; Gilfillan et al., 2008; Gilfillan et al., 2009). Therefore the
209	dissolved mass is by one-third larger than previously estimated (Sathaye et al., 2014) and
210	equates to 506 ± 166 Mt CO ₂ . This amount is 28% of the new total estimated
211	emplacement of 1.8 ± 0.67 Gt CO ₂ . The resulting dissolution rate ranges from 29900
212	$^{+11800}_{-10700}$ t/a to 35900 \pm 12300 t/a. The gas water contact covers an estimated area of 623
213	km ² (Sathaye et al., 2014) and enables estimating the flux that ranges from $48 + 19 - 17$ to 58
214	\pm 19.7 g/(m²a). This flux is over 500 times larger compared to previous estimates [0.1 $$
215	$g/(m^2a)$] (Sathaye et al., 2014) but still almost 400 times smaller than the estimates for the
216	permeable Sleipner CO ₂ storage site in the North Sea [20 kg/(m ² a)], (Neufeld et al.,
217	2010).
218	CONCLUSIONS
219	This diffusion model has, for the first time, been applied to estimation of the
220	residence time of CO ₂ in Bravo Dome. This is key for quantifying the rate of CO ₂
221	dissolution occurring in carbon dioxide reservoirs. Combining the range of residence
222	times of 14.1 ± 0.2 and $16.9 ^{+1.1}_{-0.5}$ ka with the gas volume, that has been subject to
223	dissolution, we could estimate the CO_2 dissolution rate of 29900 $^{+11800}_{-10700}$ t/a to 35900 \pm
224	12300 t/a. Furthermore, the model can be tested on other natural CO ₂ and enhanced oil
225	recovery (EOR) reservoirs to investigate gas-water interactions and quantify gas

226

Journal: GEOL: Geology DOI:10.1130/G39291.1

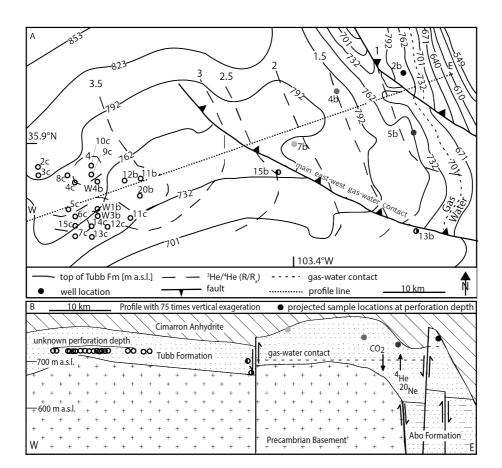
dissolution rates into the formation waters that are ubiquitously found in subsurface gas 227 reservoirs. 228 **ACKNOWLEDGMENTS** 229 We would like to thank Dr. Alina Marca from the University of East Anglia and 230 Dave Hughes from Lancaster University for technical assistance. We are also grateful to 231 the Statistics department at Lancaster University, Dr. Benoit Dubacq from the Centre national de la recherche scientifique (CNRS) and Prof. Jamie Gilmour from the 232 233 University of Manchester for their helpful advice regarding the fitting procedure. We 234 thank and Marc Hesse, Junji Yamamoto and one anonymous reviewer for valuable 235 comments on this manuscript. 236 **REFERENCES CITED** 237 Akhbari, D., and Hesse, M.A., 2017, Causes of underpressure in natural CO2 reservoirs 238 and implications for geological storage: Geology, v. 45, no. 1, p. 47–50. 239 Armstrong, R.L., 1969, K-Ar dating of laccolithic centers of the Colorado Plateau and 240 vicinity: Geological Society of America Bulletin, v. 80, no. 10, p. 2081–2086. 241 Baines, S.J., and Worden, R.H., 2004, The long-term fate of CO2 in the subsurface: 242 Natural analogues for CO2 storage: Geological Society of London, Special 243 Publications, v. 233, p. 59–85, doi:10.1144/GSL.SP.2004.233.01.06. 244 Ballentine, C.J., Schoell, M., Coleman, D., and Cain, B.A., 2001, 300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian basin: Nature, v. 409, no. 245 246 6818, p. 327–331. 247 Bickle, M., Kampman, N., and Wigley, M., 2013, Natural analogues: Reviews in

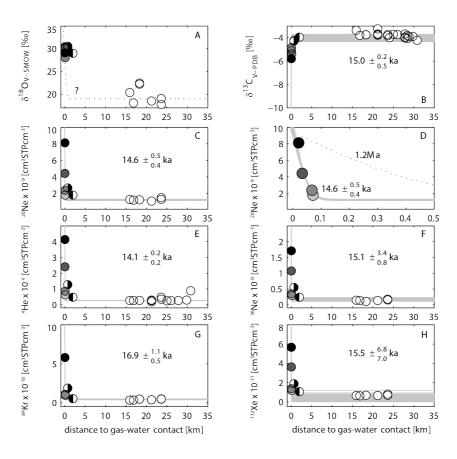
Journal: GEOL: Geology DOI:10.1130/G39291.1

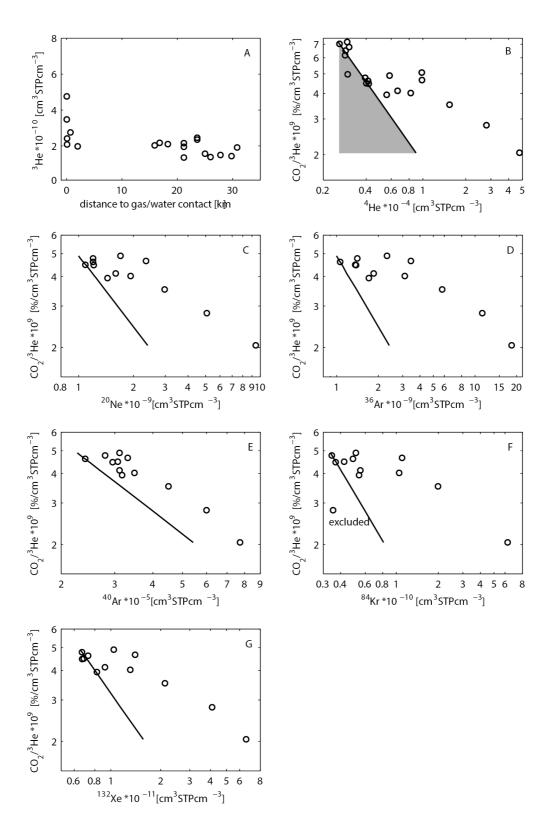
248 Mineralogy and C	Geochemistry, v. 77,	no. 1, p. 15–71.
----------------------	----------------------	------------------

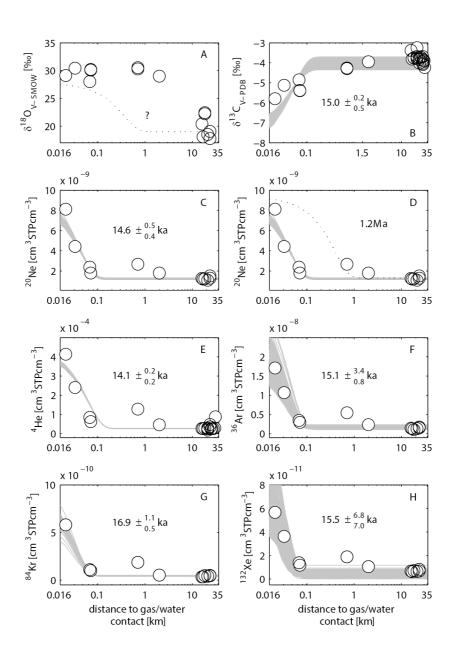
- Brenninkmeijer, C.A.M., Kraft, P., and Mook, W.G., 1983, Oxygen isotope fractionation
- between CO2 and H2O: Chemical Geology, v. 41, p. 181–190, doi:10.1016/S0009-
- 251 2541(83)80015-1.
- Broadhead, R.F., 1993, Carbon dioxide in northeast New Mexico: West Texas Geol. Soc.
- 253 Bull, v. 32, p. 5–8.
- 254 Cassidy, M.M., 2006, Occurrence and Origin of Free Carbon Dioxide Gas Deposits in the
- Earth's Continental Crust [Ph.D. Thesis]: Houston, Texas, University of Houston,
- 256 242 p.
- 257 Clark, I.D., and Fritz, P., 1997, Environmental Isotopes in Hydrogeology: Boca Raton,
- 258 Florida, CRC Press, LLC, 342 p.
- 259 Condit, C.D., 1995, DDM-SVF: A Prototype Dynamic Digital Map of the Springerville
- Volcanic Field, Arizona: GSA TODAY, v. 5, no. 4.
- Dubacq, B., Bickle, M.J., Wigley, M., Kampman, N., Ballentine, C.J., and Sherwood
- Lollar, B., 2012, Noble gas and carbon isotopic evidence for CO2-driven silicate
- 263 dissolution in a recent natural CO2 field: Earth and Planetary Science Letters, v.
- 264 341–344, p. 10–19, doi:10.1016/j.epsl.2012.05.040.
- Eiler, J.M., 2001, Oxygen isotope variations of basaltic lavas and upper mantle rocks:
- Reviews in Mineralogy and Geochemistry, v. 43, p. 319–364,
- 267 doi:10.2138/gsrmg.43.1.319.
- 268 Epstein, N., 1989, On tortuosity and the tortuosity factor in flow and diffusion through
- porous media: Chemical Engineering Science, v. 44, no. 3, p. 777–779.

Journal: GEOL: Geology DOI:10.1130/G39291.1


270	DOI:10.1130/G39291.1 Gilfillan, S.M.V., Ballentine, C.J., Holland, G., Blagburn, D., Lollar, B.S., Stevens, S.,
271	Schoell, M., and Cassidy, M., 2008, The noble gas geochemistry of natural CO2 gas
272	reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA:
273	Geochimica et Cosmochimica Acta, v. 72, p. 1174–1198,
274	doi:10.1016/j.gca.2007.10.009.
275	Gilfillan, S.M.V., Lollar, B.S., Holland, G., Blagburn, D., Stevens, S., Schoell, M.,
276	Cassidy, M., Ding, Z., Zhou, Z., Lacrampe-Couloume, G., and Ballentine, C.J.,
277	2009, Solubility trapping in formation water as dominant CO2 sink in natural gas
278	fields: Nature, v. 458, p. 614-618, doi:10.1038/nature07852.
279	Hartig, K.A., Soreghan, G.S., Goldstein, R.H., and Engel, M.H., 2011, Dolomite in
280	Permian paleosols of the Bravo Dome CO2 field, USA: Permian reflux followed by
281	late recrystallization at elevated temperature: Journal of Sedimentary Research, v.
282	81, p. 248–265, doi:10.2110/jsr.2011.24.
283	He, CH., and Yu, YS., 1998, New Equation for Infinite-Dilution Diffusion
284	Coefficients in Supercritical and High-Temperature Liquid Solvents: Industrial &
285	Engineering Chemistry Research, v. 37, p. 3793–3798, doi:10.1021/ie970898+.
286	Hoefs, J., 2008, Stable isotope geochemistry: Berlin, Springer Science & Business
287	Media, 288 p.
288	Holland, G., and Ballentine, C.J., 2006, Seawater subduction controls the heavy noble gas
289	composition of the mantle: Nature, v. 441, no. 7090, p. 186-191.
290	Jenden, P.D., Hilton, D.R., Kaplan, I.R., and Craig, H., 1993, Abiogenic hydrocarbons
291	and mantle helium in oil and gas fields, in Howell, D.G., et al., eds., U.S. Geological
292	Survey Professional Paper 1570: Reston, Virginia, U.S. Geological Survey, p. 31–56.


293	DOI:10.1130/G39291.1 Johnson, R.E., 1983, Bravo dome carbon dioxide area, northeast New Mexico, <i>in</i> Fassett,
294	J. E., ed., Oil and Gas Fields of the Four Corners Area: Four Corners Geological
295	Society, v. 3, p. 745–748.
296	Kessler, J.L.P., Soreghan, G.S., and Wacker, H.J., 2001, Equatorial aridity in western
297	Pangea: Lower Permian loessite and dolomitic paleosols in northeastern New
298	Mexico, USA: Journal of Sedimentary Research, v. 71, p. 817-832,
299	doi:10.1306/2DC4096B-0E47-11D7-8643000102C1865D.
300	Krevor, S., Pini, R., Zuo, L., and Benson, S.M., 2012, Relative permeability and trapping
301	of CO2 and water in sandstone rocks at reservoir conditions: Water Resources
302	Research, v. 48, p. W02532, doi:10.1029/2011WR010859.
303	Matthews, G.P., and Spearing, M.C., 1992, Measurement and modelling of diffusion,
304	porosity and other pore level characteristics of sandstones: Marine and Petroleum
305	Geology, v. 9, no. 2, p. 146–154.
306	Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., and Huppert,
306	Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., and Huppert,
306 307	Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., and Huppert, H.E., 2010, Convective dissolution of carbon dioxide in saline aquifers: Geophysical
306 307 308	Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., and Huppert, H.E., 2010, Convective dissolution of carbon dioxide in saline aquifers: Geophysical Research Letters, v. 37, L22404, doi:10.1029/2010GL044728.
306 307 308 309	 Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., and Huppert, H.E., 2010, Convective dissolution of carbon dioxide in saline aquifers: Geophysical Research Letters, v. 37, L22404, doi:10.1029/2010GL044728. Poling, B.E., Prausnitz, J.M., John Paul, O., and Reid, R.C., 2001, The properties of gases
306 307 308 309 310	 Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., and Huppert, H.E., 2010, Convective dissolution of carbon dioxide in saline aquifers: Geophysical Research Letters, v. 37, L22404, doi:10.1029/2010GL044728. Poling, B.E., Prausnitz, J.M., John Paul, O., and Reid, R.C., 2001, The properties of gases and liquids: New York, McGraw-Hill, 768 p.
306 307 308 309 310 311	 Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., and Huppert, H.E., 2010, Convective dissolution of carbon dioxide in saline aquifers: Geophysical Research Letters, v. 37, L22404, doi:10.1029/2010GL044728. Poling, B.E., Prausnitz, J.M., John Paul, O., and Reid, R.C., 2001, The properties of gases and liquids: New York, McGraw-Hill, 768 p. Royle, S., 2015, The coral Cladocora caespitosa as a high resolution palaeoclimate
306 307 308 309 310 311 312	 Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., and Huppert, H.E., 2010, Convective dissolution of carbon dioxide in saline aquifers: Geophysical Research Letters, v. 37, L22404, doi:10.1029/2010GL044728. Poling, B.E., Prausnitz, J.M., John Paul, O., and Reid, R.C., 2001, The properties of gases and liquids: New York, McGraw-Hill, 768 p. Royle, S., 2015, The coral Cladocora caespitosa as a high resolution palaeoclimate archive [Ph.D. Thesis]: Norwich, England, School of Environmental Sciences,
306 307 308 309 310 311 312 313	 Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., and Huppert, H.E., 2010, Convective dissolution of carbon dioxide in saline aquifers: Geophysical Research Letters, v. 37, L22404, doi:10.1029/2010GL044728. Poling, B.E., Prausnitz, J.M., John Paul, O., and Reid, R.C., 2001, The properties of gases and liquids: New York, McGraw-Hill, 768 p. Royle, S., 2015, The coral Cladocora caespitosa as a high resolution palaeoclimate archive [Ph.D. Thesis]: Norwich, England, School of Environmental Sciences, University of East Anglia, 240 p.


Journal: GEOL: Geology DOI:10.1130/G39291.1


316	of the National Academy of Sciences of the United States of America, v. 111, p.
317	15332–15337, doi:10.1073/pnas.1406076111.
318	Sheppard, S.M.F., and Schwarz, H.P., 1970, Fractionation of carbon and oxygen isotopes
319	and magnesium between coexisting metamorphic calcite and dolomite: Contributions
320	to Mineralogy and Petrology, v. 26, p. 161-198, doi:10.1007/BF00373200.
321	Staudacher, T., 1987, Upper mantle origin for Harding County well gases: Nature, v. 325,
322	p. 605–607, doi:10.1038/325605a0.
323	Stroud, J.R., 1997, The geochronology of the Raton-Clayton Volcanic Field, with
324	implications for volcanic history and landscape evolution [M.S. Thesis]: Socorro,
325	New Mexico, USA, New Mexico Institute of Mining and Technology, 164 p.
326	
327	FIGURE CAPTIONS
328	
329	Figure 1. A: Map of the Bravo Dome gas field (New Mexico, USA), showing the top of
330	the CO ₂ hosting Tubb formation (black contour lines, in m above sea level [a.s.l.]), gas
331	water contact (short dashed line), the ³ He/ ⁴ He ratio (long dashed line) and the 26
332	sampling wells (circles). B: West-east cross-section highlighting the gas water contact
333	within the Tubb formation on the eastern side of the western most fault, as opposed to the
334	west side, where the gas reservoir is not in contact with the formation water. The
335	sampling wells are projected with their perforation depth (circles).
336	
337	Figure 2. The CO ₂ dissolution corrected noble gas concentrations and the measured stable
338	isotopes are plotted against the distance to the gas water contact (A-H). The groundwater

339	derived noble gases diffusing from the gas water contact through the gas column are
340	fitted by a Monte Carlo simulation to Fick's second law of diffusion equation (C-H). This
341	reveals the residence time of the CO ₂ . Additionally the Ne diffusion profile is drawn for
342	1.2 Ma (D). The carbon isotopes show a diffusive mixing between a magmatic carbon
343	source and a formation water carbon source that is in equilibrium with dolomite (B). The
344	time estimated using the $\delta^{13}C$ isotopes is within the range of ages estimated from the
345	noble gases. Oxygen isotopes show full equilibration with formation water in the eastern
346	part of the field close to the gas water contact (A). Concentration and distance errors are
347	smaller than symbols (circles). Symbol fillings correspond to well locations in Figure 1.
348	$\delta^{18}O$ and $\delta^{13}C$ values are relative to: V-SMOW-Vienna standard mean ocean water; V-
349	PDB- Vienna Peedee belemnite. cm ³ STP-cubic centimeter at standard temperature and
350	pressure.
351	
352	1GSA Data Repository item 2017Appendices DR1-DR4, are available online at
353	http://www.geosociety.org/datarepository/2017/ or on request from
354	editing@geosociety.org.

