13,637 research outputs found

    Magneto-optical characteristics of magnetic nanowire arrays in anodic aluminium oxide templates

    Get PDF
    Nanocomposite films consisting of regularly ordered iron nanowires embedded in anodic aluminum oxide templates have been fabricated and their magneto-optical properties studied by determining the four Stokes parameters of the transmitted laser beam (λ=670 nm), originally linearly polarized and at normal incidence to the film surfaces. The results of the nanowire arrays are found to be considerably different from that of bulk iron. While an increase in diameter of the nanowire leads to a substantial increase in the values of the Faraday rotation angles per unit length at a fixed value of the magnetic fields, they are substantially less than that of bulk iron, indicating that the effective media theory may not be directly applicable

    Robust and Efficient Online Auditory Psychophysics

    Get PDF
    Most human auditory psychophysics research has historically been conducted in carefully controlled environments with calibrated audio equipment, and over potentially hours of repetitive testing with expert listeners. Here, we operationally define such conditions as having high 'auditory hygiene'. From this perspective, conducting auditory psychophysical paradigms online presents a serious challenge, in that results may hinge on absolute sound presentation level, reliably estimated perceptual thresholds, low and controlled background noise levels, and sustained motivation and attention. We introduce a set of procedures that address these challenges and facilitate auditory hygiene for online auditory psychophysics. First, we establish a simple means of setting sound presentation levels. Across a set of four level-setting conditions conducted in person, we demonstrate the stability and robustness of this level setting procedure in open air and controlled settings. Second, we test participants' tone-in-noise thresholds using widely adopted online experiment platforms and demonstrate that reliable threshold estimates can be derived online in approximately one minute of testing. Third, using these level and threshold setting procedures to establish participant-specific stimulus conditions, we show that an online implementation of the classic probe-signal paradigm can be used to demonstrate frequency-selective attention on an individual-participant basis, using a third of the trials used in recent in-lab experiments. Finally, we show how threshold and attentional measures relate to well-validated assays of online participants' in-task motivation, fatigue, and confidence. This demonstrates the promise of online auditory psychophysics for addressing new auditory perception and neuroscience questions quickly, efficiently, and with more diverse samples. Code for the tests is publicly available through Pavlovia and Gorilla

    PCN20 INFUSION REACTIONS IN PATIENTS TREATED WITH ANTI-EGFR MONOCLONAL ANTIBODY THERAPIES FOR METASTATIC COLORECTAL CANCER: RATES AND IMPACT FROM LITERATURE REVIEW

    Get PDF

    A thin layer angiogenesis assay: a modified basement matrix assay for assessment of endothelial cell differentiation

    Get PDF
    BACKGROUND: Basement matrices such as Matrigel™ and Geltrex™ are used in a variety of cell culture assays of anchorage-dependent differentiation including endothelial cell tube formation assays. The volumes of matrix recommended for these assays (approximately 150 μl/cm(2)) are costly, limit working distances for microscopy, and require cell detachment for subsequent molecular analysis. Here we describe the development and validation of a thin-layer angiogenesis (TLA) assay for assessing the angiogenic potential of endothelial cells that overcomes these limitations. RESULTS: Geltrex™ basement matrix at 5 μl/cm(2) in 24-well (10 μl) or 96-well (2 μl) plates supports endothelial cell differentiation into tube-like structures in a comparable manner to the standard larger volumes of matrix. Since working distances are reduced, high-resolution single cell microscopy, including DIC and confocal imaging, can be used readily. Using MitoTracker dye we now demonstrate, for the first time, live mitochondrial dynamics and visualise the 3-dimensional network of mitochondria present in differentiated endothelial cells. Using a standard commercial total RNA extraction kit (Qiagen) we also show direct RNA extraction and RT-qPCR from differentiated endothelial cells without the need to initially detach cells from their supporting matrix. CONCLUSIONS: We present here a new thin-layer assay (TLA) for measuring the anchorage-dependent differentiation of endothelial cells into tube-like structures which retains all the characteristics of the traditional approach but with the added benefit of a greatly lowered cost and better compatibility with other techniques, including RT-qPCR and high-resolution microscopy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-014-0041-5) contains supplementary material, which is available to authorized users

    Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.

    Get PDF
    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology

    The gas depletion factor in galaxy clusters: implication from Atacama Cosmology Telescope Polarization experiment measurements

    Get PDF
    The gas depletion factor γ (z), i.e., the average ratio of the gas mass fraction to the cosmic mean baryon fraction of galaxy clusters, plays a very important role in the cosmological application of the gas mass fraction measurements. In this paper, using the newest catalog of 182 galaxy clusters detected by the Atacama Cosmology Telescope (ACT) Polarization experiment,we investigate the possible redshift evolution of γ (z) through a new cosmologyindependent method. Themethod is based on non-parametric reconstruction using themeasurements ofHubble parameters from cosmic chronometers. Unlike hydrodynamical simulations suggesting constant depletion factor, our results reveal the trend of γ (z) decreasing with redshift. This result is supported by a parametricmodel fit as well as by calculations on the reduced ACTPol sample and on the alternative sample of 91 SZ clusters reported earlier in ACT compilation. Discussion of possible systematic effects leaves an open question about validity of the empirical relation Mtot– fgas obtained on very close clusters. These results might pave the way to explore the hot gas fraction within large radii of galaxy clusters as well as its possible evolution with redshift, which should be studied further on larger galaxy cluster samples in the upcoming X-ray/SZ cluster surveys

    Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation

    Full text link
    Universal quantum error-correction requires the ability of manipulating entanglement of five or more particles. Although entanglement of three or four particles has been experimentally demonstrated and used to obtain the extreme contradiction between quantum mechanics and local realism, the realization of five-particle entanglement remains an experimental challenge. Meanwhile, a crucial experimental challenge in multi-party quantum communication and computation is the so-called open-destination teleportation. During open-destination teleportation, an unknown quantum state of a single particle is first teleported onto a N-particle coherent superposition to perform distributed quantum information processing. At a later stage this teleported state can be readout at any of the N particles for further applications by performing a projection measurement on the remaining N-1 particles. Here, we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation. In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single photon state to achieve the experimental goals. The methods developed in our experiment would have various applications e.g. in quantum secret sharing and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200
    corecore