72 research outputs found

    Development of Single-Crystalline and 3D-Printable Porous Organic Materials

    Get PDF
    Porous organic materials with designable structures, large surface areas, low densities, and unique electronic and optical properties have found widespread applications in adsorption, separation, energy storage, and catalysis. However, the majority of organic porous materials are synthesized as fluffy powders, which poses two fundamental challenges for them. Firstly, they lack a single-crystal structure at the microscopic scale, making it difficult to study the specific pore size, shape, and potential substrate binding sites at the atomic level and further establish the structure-property relationship. Secondly, they lack the general processing method and macroscopic shape design, making it difficult to manufacture suitable components for specific applications in real-world settings. Such deficiencies can also potentially impact the material\u27s mass transfer efficiency and other performance aspects. In this thesis, based on my research on porous organic materials, I propose my thoughts and design to help solve the two challenges mentioned. Firstly, I discussed why we need single crystals and how to synthesize a single-crystalline covalently connected framework. (1) I present examples of the fundamental study of host-guest and guest-guest interactions of multiple guest molecules within a hydrogen-bonded organic framework (HOF) through single-crystal structure analysis. (2) Using our group\u27s unique method for designing hydrogen-bonded cross-linked organic frameworks (HCOFs), I demonstrate the synthesis of single-crystal ionic HCOF-7 with halogen bonding and anion exchanging active sites, which is utilized for both I2 and I- at high temperatures. Second, I introduce 3D-printing technology to fabricate porous organic materials with macroscopic structures. (1) For the first time, I describe a general method for large-scale synthesis of 3D-printable imine-based covalent organic frameworks (COFs) using the hierarchical self-assembly enabled template synthesis. (2) I discovered that the template synthesis-based 3D printing technique could also be employed for the fabrication of covalently cross-linked amorphous porous polymers with nano-tubular cavities, which could be used for highly efficient natural product separation. Overall, by integrating knowledge from different fields, I aim to help connect the micro to the macro and establish bridges between the molecular design, materials properties, and real-life application of porous organic materials

    Family-clinician shared decision making in intensive care units : cluster randomized trial in China

    Get PDF
    We thank the China Medical Board, which financially supported our study.Objective To investigate if a Family-Clinician Shared Decision-Making (FCSDM) intervention benefits patients, families and intensive care units (ICUs) clinicians.  Methods Six ICUs in China were allocated to intervention or usual care. 548 patients with critical illness, 548 family members and 387 ICU clinicians were included into the study. Structured FCSDM family meetings were held in the intervention group. Scales of SSDM, HADS, QoL2 and CSACD were used to assess families’ satisfaction and distress, patients’ quality of life, and clinicians’ collaboration respectively.  Results Comparing the intervention group with the control group at post-intervention, there were significant differences in the families’ satisfaction (P =0.0001), depression level (P =0.005), and patients’ quality of life (P =0.0007). The clinicians’ mean CSCAD score was more positive in the intervention group than controls (P < 0.05). There was no significant between-group differences on ICU daily medical cost, but the intervention group demonstrated shorter number of days’ stay in ICU (P=0.0004).  Conclusion The FCSDM intervention improved families’ satisfaction and depression, shortened patients’ duration of ICU stay, and enhanced ICU clinicians’ collaboration.  Practice implications Further improvement and promotion of the FCSDM model are needed to provide more evidence to this field in China.Publisher PDFPeer reviewe

    Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes

    Get PDF
    Objective: To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment. Methods: Whole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays. Results: Common clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that de- fective KARS function is responsible for the phenotypes in these individuals. Conclusions: Our results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease

    Dataset of Phase-modulated continuous-wave coherent ranging method for optical phased array Lidar

    No full text
       Light detection and ranging (Lidar) is widely accepted as an indispensable sensor for autonomous vehicle. There are two fundamental challenges in a Lidar system: optical beam steering technique and ranging method. Optical phased array (OPA) is considered as one of the most promising beam steering schemes due to its solid state, compact size, and high reliability. As for ranging method, time-of-flight and frequency-modulate continuous-wave (FMCW) are commonly utilized in numerous of research. However, they are impractical to commercial OPA Lidar due to either requiring excessive optical power or the poor stability, high complexity, and high insertion loss of the FMCW source. As a result, the development of OPA Lidars is significantly hindered by the lack of a feasible ranging method. In this paper, we present a phase-modulated continuous-wave (PhMCW) ranging method with excellent ranging accuracy and precision. Ranging error as low as 0.1 cm and precision on order of 3.5 cm are achieved. In addition, theoretical and experimental study on simultaneous velocity measurement is carried out and velocity error as low as 0.15 cm/s is obtained. Finally, we develop a proof-of-concept OPA-PhMCW Lidar and obtain a point cloud with excellent fidelity. Our work paves a novel approach to solid-state, cost-effective and high-performance OPA Lidars.</p

    Single-Crystalline Hydrogen-Bonded Crosslinked Organic Frameworks and Their Dynamic Guest Sorption

    No full text
    Porous organic framework materials constructed by periodically aligned molecular entities offer chemically tailored microenvironments to absorb molecules and ions for various applications. Fundamentally understanding the microenvironments of these porous organic materials─from pore size, shape, and dynamics to potential substrate binding sites─is critical for the rational design of porous organic materials. The solid-state structures of these porous organic materials, such as covalent organic frameworks (COFs), can provide unambiguous atomic-level structural details. However, it remains challenging to synthesize these materials as single crystals that can be fully characterized by single-crystal X-ray diffraction (SCXRD) or rotational electron diffraction (RED) analysis. In addition, the balance of single crystallinity, permanent porosity, and good chemical stability requires delicate control of the assembly of the molecular building blocks and covalent crosslinking during synthesis. In this Account, we discuss the development of hydrogen-bonded crosslinked organic frameworks (HCOFs) possessing balanced single crystallinity and high chemical stability. HCOFs are obtained through covalently crosslinking molecular crystals that are preorganized via hydrogen bonding. Due to the dual hydrogen-bonded network and covalent crosslinking, HCOFs can deform upon guest adsorption by breaking the hydrogen bonds and subsequently restore their original form through the desorption of guests by re-establishing the hydrogen-bonded networks. Thus, HCOFs can dynamically adjust their pore sizes according to the framework–substrate interactions. In the discussion, we link HCOFs with COFs and single-crystalline 2D polymers by comparing their synthetic approaches to accessing high crystallinity. The method to synthesize HCOFs allows for the employment of various flexible building blocks and linking motifs that are largely avoided in the current design regimes of COFs and 2D polymers. We also draw the connections between HCOFs and hydrogen-bonded organic frameworks (HOFs) by highlighting their shared design principles for constructing hydrogen-bonding networks with large voids. Compared to their hydrogen-bonded precursor crystals, reinforcing the hydrogen-bonded networks with covalent linkages endows HCOFs with enhanced chemical and structural stability. In addition, we emphasize that the structure elucidation of HCOFs often requires combined SCXRD analysis and experimental evidence, with the methods and challenges thoroughly discussed. The details are presented in the following sequence: (1) synthesizing single-crystalline COFs by matching the polycondensation rate to the nucleation rate and their subsequent analyses by SCXRD/RED; (2) obtaining single-crystalline polymers and networks through topochemical reactions; (3) constructing HOFs with designed voids using highly directional hydrogen bonding building blocks; and (4) developing HCOFs via monomer crystal engineering followed by single-crystal to single-crystal (SCSC) synthesis and studying their unique dynamic guest sorption behaviors. We hope this Account will inspire researchers to expand the synthetic methods for advancing HCOFs with detailed solid-state structures, as well as designing porous organic framework materials with dynamic sorption capabilities to enhance their performance for applications in molecular storage, separation, catalysis, etc

    A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing

    No full text
    Spatially explicit information on the distribution of dominant tree species groups and aboveground biomass (AGB) in forested areas is essential for developing targeted forest management and biodiversity conservation measures, as well as assessing forest carbon sequestration capacity. There is a shortage of continuously updated 30-m spatial resolution products for mapping dominant tree species groups. The vast majority of remote sensing-based AGB estimation approaches have relatively low accuracy for dominant tree species groups or forest types and are unsuitable for AGB modeling. Therefore, this study aims to develop an integrated framework that considers the phenological characteristics of different tree species to improve the mapping accuracies of forest dominant tree groups and corresponding AGB estimates. Thirty-meter resolution maps of dominant tree species groups were created using machine learning algorithms and phenological parameters. Features extracted from optical and radar images and phenological characteristics were used to construct AGB estimation models in a temporally consistent manner to improve the AGB estimation accuracy and perform dynamic AGB monitoring. The proposed method accurately characterized the dynamic distribution of the dominant tree species groups in the study area. The traditional AGB model that does not consider different forest types or species had an R2 value of 0.52, whereas the proposed model that considers phenology and forest types had an R2 value of 0.67. This result indicates that incorporating information on phenology and dominant species improves the accuracy of AGB estimations. The AGB in most regions was 30–55 t/ha, showing that the majority of the forests were young or middle-aged stands, and the areal percentage of AGB greater than 30 t/ha increased during the study period, suggesting an improvement in forest quality. Furthermore, the oak AGB was the highest, indicating that oak afforestation should be encouraged to enhance the carbon sequestration capacity of future forest ecosystems. The results provide new insights for researchers and managers to understand the trends of forest development and forest health, as well as technical information and a database for formulating more rational forest management strategies

    Comparative Transcriptomic Analysis of Head in <i>Laodelphax striatellus</i> upon Rice Stripe Virus Infection

    No full text
    Rice stripe virus (RSV) is transmitted by the small brown planthopper (SBPH), Laodelphax striatellus, in a circulative-propagative manner. Multiple studies have proved that RSV can manipulate vector insects to facilitate its transmission and can alter the gene expressions in viruliferous SBPH. However, to the best of our knowledge, nobody has investigated the gene expressions in the head of SBPH after RSV acquisition. In this study, to investigate the genes and gene functions regulated by RSV infection in the head of SBPH, we used RNA sequencing to compare the transcriptional profiles between SBPH head samples that acquired RSV or not. Compared with the non-viruliferous SBPH, a total of 336 differentially expressed genes (DEGs) were identified in the head samples of viruliferous SBPH groups, including 186 up-regulated and 150 down-regulated genes. Here, we focused on DEGs that may be involved in RSV replication or transmission, primarily genes associated with the nervous system, cytochrome P450s, sugar metabolism, the olfactory system, and cuticular process, as well as genes that have been previously reported to affect virus transmission in insect vectors including ubiquitin-protein ligase (E3), ecdysone response gene (E74A), and vitellogenin receptor (VgR). Finally, we verified the accuracy of the transcriptome sequencing results using qRT-PCR by selecting 16 DEGs. Our results can contribute to the understanding of the effects of RSV infection on gene regulation in the head of SBPH and provide insight into the control of plant virus transmission and insect vectors
    • 

    corecore