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ARTICLE OPEN ACCESS
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Abstract
Objective
To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which
so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly,
and nonsyndromic hearing impairment.

Methods
Whole-exome sequencing was performed on index patients from 4 unrelated families with
leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed
by Sanger sequencing. Effects of mutations on KARS protein function were examined by
aminoacylation assays and yeast complementation assays.

Results
Common clinical features of the patients in this study included impaired cognitive ability,
seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is
the main clinical presentation. Six previously unreported and 1 known KARS mutations were
identified and cosegregated in these families. Two patients are compound heterozygous for
missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored
an insertion mutation and a missense mutation. Functional and structural analyses revealed that
these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that de-
fective KARS function is responsible for the phenotypes in these individuals.

Conclusions
Our results demonstrate that patients with loss-of-function KARSmutations can manifest CNS
disorders, thus broadening the phenotypic spectrum associated with KARS-related disease.

*These authors contributed equally to the manuscript.

†These authors share senior authorship.
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Aminoacyl-tRNA synthetases (ARSs) play key roles in
charging specific tRNAs with cognate amino acids and are
critical for enabling protein translational fidelity and cellular
integrity. Pathogenic mutations in different ARSs have been
reported in patients with a variety of clinical presentations
including cardiomyopathy, cancer, autoimmune disorders,
and diabetes.1–3 Of interest, a number of mutations in genes
encoding ARSs have been linked to neurologic diseases, in-
cluding inherited peripheral neuropathy, sensorineural deafness,
leukodystrophies, or leukoencephalopathies, summarized in
table e-1, links.lww.com/NXG/A143.4–27

KARS is one of the 3 bifunctional ARSs and catalyzes the
specific attachment of L-lysine to cognate tRNA molecules.
Compound heterozygous disease–associated KARS mutations
were first identified in a single patient withCharcot-Marie-Tooth
disease.28 Later, other KARS mutations were also reported in 3
unrelated families with autosomal recessive nonsyndromic
hearing impairment,19 in 1 patient with a suspected mitochon-
drial disorder,29 in 2 siblings with severe infantile visual loss and
progressive microcephaly,15 and in a boy with combined re-
spiratory chain complex deficiencies (I and IV).30 However,
dysfunctions of CNS involved in leukoencephalopathy have not
been reported or observed as a major clinical presentation in
these affected individuals.

In this study, 4 unrelated nonconsanguineous families with
leukoencephalopathy were identified by whole-exome se-
quencing analysis. Functional and structural analyses revealed
that each variant was a loss-of-function KARS mutation. Our
findings highlight the association of KARS mutations in
patients with CNS involvement and broaden the phenotypic
spectrum associated with KARS-related disease.

Methods
Standard protocol approval, registrations, and
patient consents
Patient blood specimens were submitted to Baylor Genetics,
previously Medical Genetics Laboratories at Baylor College of
Medicine, Houston, TX, for WES-based analyses. Additional
patient specimens were from Fudan University Huashan
Hospital, Shanghai, China. The ethical review boards of the
participating institutions approved this study.

Exome sequencing in probands and
family studies
Library preparation, exome capture, HiSeq next-generation
sequencing, and data analyses were conducted as
described.31–33 Variants identified in KARS were further val-
idated by Sanger sequencing in these patients. Family

members were also tested to evaluate the mode of inheritance
and disease segregation.

Functional studies
Aminoacylation assays in vitro were performed as previously
described.28,34,35 The initial rate of aminoacylation as a func-
tion of tRNA concentration was fit to a hyperbola equation,
from which the Michaelis constant (Km) for tRNA and the
catalytic turnover (kcat) were derived. Analysis of the catalytic
efficiency (kcat/Km) of aminoacylation was presented for each
mutant enzyme.

Yeast complementation assays were performed using a hap-
loid Saccharomyces cerevisiae strain with the endogenousKRS1
gene deleted (ΔKRS1)28 in both solid and liquid -Leu-
Ura media (Teknova, Hollister, CA) containing 0.1%
5-fluoroorotic acid (5-FOA) (Boeke, Trueheart et al. 1987).
Each human KARS variant (GenBank accession number
AAG30114.1, NM_005548) was modeled in yeast KRS1
(GenBank accession number AAA66916.1) using Gateway
technology (Invitrogen). The human KARS residues p.L233,
p.E427, p.R505, p.P533, p.T587, and p.L596 correspond to
the following yeast residues, respectively: p.L208, p.E403,
p.R480, p.P508, p.T562, and p.L571.

Results
Patient history and clinical presentations
Patient 1 is a 26-year-old woman who developed progressive
neurocognitive decline at age 25 years. Her key clinical fea-
tures included hypotonia, mild intellectual disability, slurred
speech, ataxia, and abnormal movement, as well as congenital
hearing loss. Two KARS variants c.1514G>A (p.R505H) and
c.1597C>T (p.P533S) were identified in the compound
heterozygous state. The EMG and histochemical analysis of
muscle biopsy did not reveal any myogenic or neurogenic
damage. Brain MRI showed symmetric hyperintensity in bi-
lateral frontal white matter, extending along the anterior limb
of inner capsule on FLAIR and DWI (figure 1, A and B).
Magnetic resonance spectroscopy was performed with Stim-
ulated Echo Acquisition Mode sequence, and data were an-
alyzed with the LC Model (version 6.3). The spectroscopy
showed distinctly reduced N-acetylaspartate and slightly ele-
vated lactate peak in the right frontal lesion (figure 1E)
compared with that in the ipsilateral normal white matter
(figure 1F). The brother of patient 1, who also harbored the
same 2 variants, had hearing loss, and his brain MRI per-
formed at age 16 years showed bilateral abnormality in the
periventricular white matter (figure 1C). The parents were
clinically unaffected and had normal MRI scans, and each was
heterozygous for one of these 2 variants. Therefore, variants

Glossary
ARS = aminoacyl-tRNA synthetase; 5-FOA = 5-fluoroorotic acid; OXPHOS = oxidative phosphorylation system.
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c.1514G>A (p.R505H) (from the mother) and c.1597C>T
(p.P533S) (from the father) segregate with leukoencephalop-
athy in an autosomal recessive manner in the family of patient 1.
She was deceased after 2 years of neurologic features appeared.

Patient 2 is a 35-year-old man who developed progressive
neurocognitive decline, hypertonia, seizures, ataxia, and abnor-
mal movement over 3 years. Other clinical features included
congenital hearing loss, likely secondary hypothyroidism and
possible left eye blindness. Brain MRI revealed abnormality in
the white matter, and EEG was normal. Family history indicated
a sister with congenital deafness and hydrocephaly and 2 second
cousins with congenital deafness. He was compound heterozy-
gous for a novel missense variant c.881T>C (p.I294T) and
a reported variant c.1760C>T (p.T587M).

Patient 3 is a 3-year-old boy present with developmental delay
and regression, failure to thrive, microcephaly, and progressive
hypotonia. Other clinical presentations include hearing and
vision loss, nystagmus, hyperreflexia, progressive joint con-
tractures, febrile seizures, dysphagia, renal tubular acidosis type
I, mild hydronephrosis of the left kidney, and abnormal liver
ultrasound. Head CT showed increasing periventricular and
cerebellar nuclei calcifications and cerebral atrophy. He was

compound heterozygous for a novel insertion variant c.1281_
1282insAGA (p.E427_L428insR) and a novel missense variant
c.1786C>T (p.L596F).

Patient 4 is an 11-year-old girl whose clinical presentations
include global developmental delay, hypotonia, mild in-
tellectual disability, congenital bilateral profound sensori-
neural hearing loss, history of seizure disorder, mildly elevated
lactate, elevated CSF total protein, and developmental re-
gression. Family history was remarkable for a sister with bi-
lateral sensorineural hearing loss. Her brain MRI and CT
showed normal at age 1 year. However, the secondMRI at age
11 years showed extensive abnormality of the deep white
matter of both cerebral hemispheres with increased T2
hyperintensity and involvement of the corticospinal tracts
with sparing of the subcortical U fibers (figure 1D). Mild
cerebellar volume loss with prominence of the fourth ventricle
was also observed. The patient died at age 12 years after
a rapid deterioration in her neurologic status over a period of 2
years. Her autopsy showed severe bilateral spongiform leu-
kodystrophy involving the internal capsule, frontal, parietal,
and occipital white matter. There was symmetric white matter
loss in the descending corticospinal tracts, brainstem, and
spinal cord. Dystrophic calcifications were noted in basal

Figure 1 Representative cases for novel KARS mutation with leukoencephalopathy

Characteristics of patients for novel KARS mutations with leukoencephalopathy. (A,B) Brain imaging of Patient 1 showed bilateral FLAIR and DWI signal
hyperintensity in the white matter of the frontal lobe. (C) The affacted brother of Patient 1 has also abnormality in the whitematter. (D) Brain MRI of Patient 4
showed bilateral T2 signal hyperintensity in the white matter of periventricular area. (E) The MRS showed reduced NAA and elevated lactate peak in the right
frontal lesion of Patient 1. (F) The MRS showed the presence of NAA and lactate in the normal white matter of Patient 1.
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ganglia, frontal, and parietal lobes. She harbored a homozy-
gous missense variant c.697C>G (p.L233V). Her mother was
found to be heterozygous for this variant. But the father’s
sample was not enough for further testing.

Computational evaluation of KARS variants
Six novel and 1 known KARS variants were identified by WES
in the index patients described here (table). All variants are
rare, and none is found in the homozygote state in the ExAC
database (table e-2, links.lww.com/NXG/A144). Sequence
alignments of KARS proteins from bacteria to human showed
that all the affected amino acids are highly conserved (figure 2F).
A variety of in silico prediction programs were used to predict
the possible effect of each amino acid substitution (table e-2).
All 8 novel variants were considered as likely pathogenic,
based on predictions by PolyPhen-2, Sorting Intolerant
from Tolerant, MutationTaster, MutationAssessor, etc.
(table e-2).

Functional studies
As shown in figure 3, all KARS mutations studied (p.L233V,
p.I294T, p.R505H, p.P533S, p.T587M, and p.L596F) re-
duced enzyme kinetics by at least 13-fold compared with that
of wild-type KARS, indicating that these mutations impaired
KARS aminoacylation activity.

To further evaluate the deleterious effects of KARSmutations,
yeast complementation assays were performed by modeling
each KARS variant in the S. cerevisiae ortholog KRS1. As
shown in figure 4A, yeast expressing p.E427_Lins428R and
p.R505H KRS1 demonstrated dramatically reduced, but not
ablated, growth. In addition, yeast expressing p.L233V,
p.P533S, p.T587M, and p.L596F KRS1 showed a slight but
significant reduction of yeast viability compared with wild-
type KRS1. These results suggested that p.L233V, p.P533S,
p.T587M, p.L596F, p.R505H, and p.E427_Lins428R are
hypomorphic alleles. Similar results were obtained from
growth curve analyses in liquid media containing 5-FOA
(figure 4B).

Mechanisms of pathogenicity for impaired
function of mutated residues
Patient 1 harbors 2 novel KARS missense variants
(c.1514G>A [p.R505H] and c.1597C>T [p.P533S]) in the
compound heterozygous state. Close examination of the
crystal structure revealed that Arg505 forms a hydrogen-bond
network with Asp374 and Glu512 of KARS and an adjacent
water molecule.36 Replacement with the side chain of His
would eliminate the positively charged side chain of Arg and
thus impair their hydrogen-bond network (figure 2, B and C).
Pro533 is located at the transition point of a helix to a β-strand
of KARS protein consisting of amino acids 520–545 to form
dimeric interface. The replacement with Ser would not permit
the required peptide bond turn of Pro and thus would be
expected to have a detrimental effect on the protein secondary
structure. Consistent with the predictions from structural
analysis, both mutations decreased in tRNA charging activity

by 20- and 200-fold relative to the wild-type enzyme, re-
spectively (figure 3). Of interest, although p.P533S mutation
caused a 10-fold reduction relative to p.R505H, p.R505H
mutation showed a more severe reduction in cellular growth
in yeast complementation assays. Thus, these 2 mutations
identified in this patient affect critical amino acids and reduce
tRNA charging capacity, suggesting a pathogenic role in
causing the patient phenotype.

Patient 2 has a novel variant c.881T>C (p.I294T) and
a known mutation c.1760C>T (p.T587M). The Ile294 resi-
due forms a hydrophobic interaction with Leu597 located
within the same monomer to form the dimeric interface.
Replacement of Ile294 with Thr introduces an extra hydroxyl
group, which may alter the nature of hydrophobic core. The
p.I294T mutant showed a reduction in tRNA charging by 13-
fold relative to the wild-type enzyme (figure 3). The p.T587M
variant, a previously reported mutation, almost completely
eliminated the enzyme activity.

Patient 3 has a novel c.1281_1282insAGA (p.E427_
L428insR) insertion mutation and a novel c.1786C>T
(p.L596F) missense mutation. Structural analysis indicated
that Glu427 and Leu428 are located in a helix tightly packed
against another helix consisting of residues 468–484. The
insertion of a bulky amino acid Arg into the middle of the first
helix will disrupt its secondary structure, affecting the enzyme
stability. In addition, Leu596 is embedded in the protein in-
terior and packed tightly with adjacent hydrophobic residues.
The replacement with Phe introduced a large bulky side chain
creating stereochemical clashes and causing protein instability.
Yeast expressing p.E427L_ins428R KRS1 showed a severe re-
duction of yeast viability compared with wild-type strain, in-
dicating that it is a loss-of-function allele, whereas the p.L596F
mutation caused a slight but significant reduction in yeast via-
bility. On the other hand, the tRNA charging activity of p.L596F
mutant is reduced by 571-fold, with a 2.2-fold increase inKm, but
nearly a 240-fold reduction in kcat (figure 3).

Patient 4 has a single nucleotide variation, c.697C>G
(p.L233V), and a copy number loss of KARS at this locus,
which were inherited from each parent respectively. The
Leu233 is located in the anticodon binding domain. This
variant reduced enzyme activity by 13-fold relative to the wild-
type protein and slightly decreased yeast viability in yeast
complementation studies (figures 3 and 4). Thus, the ab-
normal kinetic aspect of this mutation affected the catalytic
behavior of the enzyme and may likely contribute to disease
pathogenesis.

Discussion
KARS mutations have been linked to neurologic disorders
with different clinical manifestations. Compound heterozy-
gous mutations p.L133H and p.Y173Sfs*7 were first identified
in a patient with Charcot-Marie-Tooth disease.28 Two
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Table Summary of key clinical manifestations of affected individuals

Index
number

Age
at
onset Sex

Summary of clinical presentation of affected individuals Molecular study

CNS Brain imaging
Hearing
loss EEG NCV + EMG Other systems Allele 1 Allele 2 Status

1 26 y F Hypotonia/spasticity, mild intellectual
disability, slurred speech, ataxia, and
abnormal movement

Bilateral frontal
white matter

Y Normal Normal N c.1514G>A c.1597C>T Compound
heterozygous

p.R505H p.P533S

2 35 y M Neurocognitive decline, spasticity,
seizures, ataxia, and abnormal
movements

Bilateral
periventricular
white matter

Y Diffuse slow
activity

UN Primary hypothyroidism c.881T>C c.1760C>T Compound
heterozygous

p.I294T p.T587M

3 3 y M Failure to thrive, developmental delay,
developmental regression,
microcephaly, nystagmus, hypotonia,
hypertonia/spasticity, hyperreflexia,
febrile seizures, and dysphagia

Cerebellar nuclei
calcifications

Y UN UN Vision loss, abnormal renal
function, abnormal liver
ultrasound, and progressive
joint contractures

c.1281_
1282insAGA

c.1786C>T Compound
heterozygous

p.E427_
L428insR

p.L596F

4 11 y F Developmental delay, hypotonia/
spasticity, mild intellectual disability,
seizures, bilateral hand tremor and
ataxia, mildly elevated lactate, elevated
CSF total protein, and slurred speech

Bilateral deep
white matter

Y Diffuse slow
activity with
spike activity

Normal N c.697C>G c.697C>G Homozygous

p.L233V p.L233V

BAB56428 UN UN Developmental delay and dysmorphic
features

UN UN UN Neurogenic
damages

Charcot-Marie-Tooth, self-
abusive behavior, and
vestibular schwannoma

c.398T>A c.524_
525insTT

Compound
heterozygous

p.L133H p.Y173Sfs*7

109829 6 m M Hypotonia, global developmental delay,
strabismus, ophthalmoplegia, dystonia,
elevated plasma alanine, and CSF
lactate

N Y N UN Increased mtDNA levels in
muscle and abnormal
brainstem auditory-evoked
potentiala

c.683C>T c.1760C>T Compound
heterozygous

p.P228L p.T587M

4338 V119 UN M N UN Y UN UN Autosomal recessive
nonsyndromic hearing
impairment (ARNSHI)

c.1129G>A c.1129G>A Homozygous

p.D377N p.D377N
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mutations p.D377N and p.Y173H were found in the homo-
zygous state in patients with autosomal recessive non-
syndromic hearing impairment.19 Compound heterozygous
mutations p.P228L and p.T587M were identified in a patient
presenting with development delay, hypotonia, and oph-
thalmoplegia.29 Meanwhile, patients with congenital visual
impairment and progressive microcephaly were reported to
be compound heterozygous for mutations p.R438W and
p.E525K.15 Recently, compound heterozygous mutations
(p.V448D and p.I318T) were identified in a boy with combined
mitochondrial complex deficiencies.30 In this study, we identified
6 novel KARS mutations in patients with leukoencephalopathy.
We also found that the previously reportedmutation p.T587M is
associated with leukoencephalopathy. Each mutation exerts
a loss-of-function effect in at least 1 of the following assays:
aminoacylation assay and yeast complementation assay, sug-
gesting that defective KARS charging function is an important
component of leukoencephalopathy pathogenesis in our
patients. Our results are consistent with the notion that impaired
enzyme function is a common characteristic of disease-
associated ARSs mutations.

In the patients examined here, CNS involvement is the main
clinical presentation. Common clinical features include im-
paired cognitive ability, seizure, hypotonia, and ataxia. Brain
MRI or CT revealed abnormalities in the white matter in all
patients. Our results suggest that leukoencephalopathy in
these patients is caused by KARS defects and that there are
novel clinical features from the previously described KARS-
associated neurologic diseases.

Like other bifunctional ARSs, KARS has cytoplasmic and
mitochondrial isoforms, which result from alternative splicing
of the first 3 exons.36,37 Previously, KARS mutations have
been implicated in peripheral neuropathies and sensorineural
diseases. In this study, we showed that KARS is also involved
in CNS diseases. The mechanisms underlying the tissue
specificity of KARS-associated neurologic disorders are un-
clear. To date, 4 cytoplasmic ARSs (YARS, AARS, HARS, and
MARS), but not their mitochondrial counterparts (YARS2,
AARS2, HARS2, and MARS2), are associated with peripheral
neuropathy, indicating that this disease might be caused by
dysfunctions of cytoplasmic protein translation. Mutations in
KARS and another bifunctional enzyme (GARS) had also
been implicated in peripheral neuropathy. We propose that
the dysfunction of cytoplasmic KARS or GARS, but not of
mitochondrial KARS or GARS, is involved in peripheral
neuropathy. Conversely, most of the mitochondrial ARSs
defects have been found to affect the CNS. A functional CNS
has an extremely high demand for energy. The oxidative
phosphorylation system (OXPHOS) is a key functional unit
in mitochondria, and it is the major source of cellular aden-
osine triphosphate. Defects in mitochondrial ARSs affect
mitochondrial protein synthesis and lead to mitochondrial
OXPHOS dysfunction38 (tables e-1 and e-2, links.lww.com/
NXG/A143 and links.lww.com/NXG/A144). As expected,
CNS involvement as the main or sole clinical presentation hadTa

b
le

Su
m
m
ar
y
o
f
ke

y
cl
in
ic
al

m
an

ife
st
at
io
n
s
o
f
af
fe
ct
ed

in
d
iv
id
u
al
s
(c
on

tin
ue

d)

In
d
e
x

n
u
m
b
e
r

A
ge

a
t

o
n
se

t
Se

x

Su
m
m
a
ry

o
f
cl
in
ic
a
lp

re
se

n
ta

ti
o
n
o
f
a
ff
e
ct
e
d
in
d
iv
id
u
a
ls

M
o
le
cu

la
r
st
u
d
y

C
N
S

B
ra

in
im

a
gi
n
g

H
e
a
ri
n
g

lo
ss

EE
G

N
C
V
+
EM

G
O
th

e
r
sy

st
e
m
s

A
ll
e
le

1
A
ll
e
le

2
St
a
tu

s

B
ro

th
e
r1

5
9
m

M
V
is
u
al

im
p
ai
rm

en
t/
p
en

d
u
la
r

n
ys
ta
gm

u
s,
m
ic
ro
ce

p
h
al
y,
se

iz
u
re
s,
an

d
gl
o
b
al

d
ev

el
o
p
m
en

ta
ld

el
ay

Th
in
n
in
g
o
f
th
e

ce
n
tr
al

ce
re
b
ra
l

w
h
it
e
m
at
te
r
an

d
co

rp
u
s
ca

llo
su

m

N
G
en

er
al
iz
ed

ep
ile

p
ti
fo
rm

d
is
ch

ar
ge

s

U
N

N
c.
13

12
C
>T

c.
15

73
G
>A

C
o
m
p
o
u
n
d

h
et
er
o
zy
go

u
s

p
.R
43

8W
p
.E
52

5K

Si
st
er

1
5

4
m

F
V
is
u
al

im
p
ai
rm

en
t/
p
en

d
u
la
r

n
ys
ta
gm

u
s,
m
ic
ro
ce

p
h
al
y,
se

iz
u
re
s,
an

d
gl
o
b
al

d
ev

el
o
p
m
en

ta
ld

el
ay

Th
in
n
in
g
o
f
th
e

ce
n
tr
al

ce
re
b
ra
l

w
h
it
e
m
at
te
r
an

d
co

rp
u
s
ca

llo
su

m

N
G
en

er
al
iz
ed

ep
ile

p
ti
fo
rm

d
is
ch

ar
ge

s

U
N

N
c.
13

12
C
>T

c.
15

73
G
>A

C
o
m
p
o
u
n
d

h
et
er
o
zy
go

u
s

p
.R
43

8W
p
.E
52

5K

A
b
b
re
vi
at
io
n
s:

M
=
m
al
e;

F
=
fe
m
al
e;

Y
=
ye

s;
N

=
n
o
;U

N
=
u
n
kn

o
w
n
.

a
In

th
e
o
ri
gi
n
al

te
xt

is
“b
ra
in
st
em

au
d
it
o
ry
-e
vo

ke
d
p
o
te
n
ti
al

st
u
d
y
at

10
m
o
n
th
s
w
as

m
ar
ke

d
ly

ab
n
o
rm

al
,s
u
gg

es
ti
n
g
se

ve
re

p
er
ip
h
er
al

co
n
d
u
ct
io
n
d
ef
ec

ts
in

th
e
au

d
it
o
ry

p
at
h
w
ay

s
b
ila

te
ra
lly
.”

6 Neurology: Genetics | Volume 5, Number 2 | April 2019 Neurology.org/NG

http://links.lww.com/NXG/A143
http://links.lww.com/NXG/A143
http://links.lww.com/NXG/A144
http://neurology.org/ng


been reported in most patients with pathogenic mutations in
mitochondrial ARSs, includingDARS2, EARS2,MARS2, FARS2,
RARS2, VARS2, TARS2, NARS2, and CARS2. Meanwhile, the
elevated level of lactate observed in some of our patients is also
consistent with mitochondrial dysfunction. Therefore,

dysfunction of mitochondrial KARS, but not cytoplasmic KARS,
more likely to be contributing to the pathogenesis of leu-
koencephalopathy reported in this study. This work provides
a framework to link the dysfunction of mitochondrial KARS with
leukoencephalopathy associated with disorders of the CNS.

Figure 3 Summary of the mutations identified in KARS and their effects on tRNA charging

The column “ratio to WT” indicates the decrease in tRNA
charging relative to the WT enzyme for each mutant. All
these mutations have a deleterious effect, ranging from 13-
to nearly 107-fold.

Figure 2 Summary of KARS mutations

(A) Schematic representation of the KARS gene and the distribution of published mutations (black, above) and mutations found in our patient cohort (red,
below). (B) Ribbon diagram of the complex structure model of human lysyl-tRNA synthetase (PDB ID: 3BJU) and mapping the missense mutations onto the
structure model. One monomer colored in cyan and the other one in green. The mutation is drawn as a ball-and-stick model and colored in red. (C) Close-up
view of the in silico analysis for mutation p.Arg505His. (D) View for mutation p.Pro533Ser. (E) View for mutation p.Thr587Met. (F) Cross species sequence
alignment of amino acids. The corresponding positions are indicated in red text.
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