76 research outputs found
Large Tunneling Anisotropic Magneto-Seebeck Effect in a CoPt|MgO|Pt Tunnel Junction
We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect
in a realistically-modeled CoPt|MgO|Pt tunnel junction using coherent transport
calculations. For comparison we study the tunneling magneto-Seebeck effect in
CoPt|MgO|CoPt as well. We find that the magneto-Seebeck ratio of CoPt|MgO|Pt
exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reaching 175% at
room temperature. This result provides a sharp contrast to the
magnetoresistance, which behaves oppositely for all barrier thicknesses and
differs by one order of magnitude between devices. Here the magnetoresistance
results from differences in transmission brought upon by changing the tunnel
junction's magnetization configuration. The magneto-Seebeck effect results from
variations in asymmetry of the energy-dependent transmission instead. We report
that this difference in origin allows for CoPt|MgO|Pt to possess strong thermal
magnetic-transport anisotropy.Comment: 6 pages, 6 figure
Piezomagnetic effect as a counterpart of negative thermal expansion in magnetically frustrated Mn-based antiperovskite nitrides
The interplay of magnetic and elastic properties due to geometrical frustration in antiferromagnetic Mn-aniperovskite nitrides manifests itself in a range of phenomena such as the barocaloric (BCE), piezomagnetic (PME), magnetovolume effect (MVE), and the related negative thermal expansion (NTE). This systematic computational study uses density functional theory across a wide range of cubic antiperovskites MnAN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) in order to account for variations in the magnetic frustration based on features of the electronic structure. It focuses on PME - the linear dependence of magnetisation on applied biaxial strain. The PME in MnSnN predicted here is an order of magnitude larger than PME modelled so far in MnGaN,cite{lukashev2008theory} which opens the way to composite magnetoelectric effect in piezomagnetic/piezoelectric heterostructures. Moreover, the simulated PME as a zero temperature property is shown to be inversely proportional to the measured spontaneous volume expansion at a phase transition from paramagnetic (PM) to antiferromagnetic (AFM) state.cite{takenaka2014magnetovolume} On the fundamental level, such relation implies a significant suppression of spin fluctuations by the strong frustration in these systems. At the same time it can be used as a tool in search for materials with large negative thermal expansion and barocaloric effect
Domain walls in (Ga,Mn)As diluted magnetic semiconductor
We report experimental and theoretical studies of magnetic domain walls in an
in-plane magnetized (Ga,Mn)As dilute moment ferromagnetic semiconductor. Our
high-resolution electron holography technique provides direct images of domain
wall magnetization profiles. The experiments are interpreted based on
microscopic calculations of the micromagnetic parameters and
Landau-Lifshitz-Gilbert simulations. We find that the competition of uniaxial
and biaxial magnetocrystalline anisotropies in the film is directly reflected
in orientation dependent wall widths, ranging from approximately 40 nm to 120
nm. The domain walls are of the N\'eel type and evolve from near-
walls at low-temperatures to large angle [10]-oriented walls and small
angle [110]-oriented walls at higher temperatures.Comment: 5 pages, 4 figure
Voltage control of magnetocrystalline anisotropy in ferromagnetic - semiconductor/piezoelectric hybrid structures
We demonstrate dynamic voltage control of the magnetic anisotropy of a
(Ga,Mn)As device bonded to a piezoelectric transducer. The application of a
uniaxial strain leads to a large reorientation of the magnetic easy axis which
is detected by measuring longitudinal and transverse anisotropic
magnetoresistance coefficients. Calculations based on the mean-field
kinetic-exchange model of (Ga,Mn)As provide microscopic understanding of the
measured effect. Electrically induced magnetization switching and detection of
unconventional crystalline components of the anisotropic magnetoresistance are
presented, illustrating the generic utility of the piezo voltage control to
provide new device functionalities and in the research of micromagnetic and
magnetotransport phenomena in diluted magnetic semiconductors.Comment: Submitted to Physical Review Letters. Updates version 1 to include a
more detailed discussion of the effect of strain on the anisotropic
magnetoresistanc
Frustrated magnetism and caloric effects in Mn-based antiperovskite Nitrides : Ab Initio theory
We model changes of magnetic ordering in Mn-antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a non-collinear spin-polarised density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn3GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilised by strains larger than 0.75\% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first order transition) and a large adiabatic temperature change (due to the second order transition)
Low voltage control of ferromagnetism in a semiconductor p-n junction
The concept of low-voltage depletion and accumulation of electron charge in
semiconductors, utilized in field-effect transistors (FETs), is one of the
cornerstones of current information processing technologies. Spintronics which
is based on manipulating the collective state of electron spins in a
ferromagnet provides complementary technologies for reading magnetic bits or
for the solid-state memories. The integration of these two distinct areas of
microelectronics in one physical element, with a potentially major impact on
the power consumption and scalability of future devices, requires to find
efficient means for controlling magnetization electrically. Current induced
magnetization switching phenomena represent a promising step towards this goal,
however, they relay on relatively large current densities. The direct approach
of controlling the magnetization by low-voltage charge depletion effects is
seemingly unfeasible as the two worlds of semiconductors and metal ferromagnets
are separated by many orders of magnitude in their typical carrier
concentrations. Here we demonstrate that this concept is viable by reporting
persistent magnetization switchings induced by short electrical pulses of a few
volts in an all-semiconductor, ferromagnetic p-n junction.Comment: 11 pages, 4 figure
Spin-orbit torques in locally and globally non-centrosymmetric crystals: antiferromagnets and ferromagnets
One of the main obstacles that prevents practical applications of antiferromagnets is the dfficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný et al., PRL 113, 157201 (2014)], the electrical switching of magnetic moments in an antiferromagnet has been demonstrated [P. Wadley et al., Science 351, 587 (2016)]. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a non-equilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally non-centrosymmetric crystals. We study when the symmetry allows or a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be effcient for manipulating antiferromagnetic moments
- …