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We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect in a realistically-
modeled CoPt|MgO|Pt tunnel junction using coherent transport calculations. For comparison we
study the tunneling magneto-Seebeck effect in CoPt|MgO|CoPt as well. We find that the magneto-
Seebeck ratio of CoPt|MgO|Pt exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reach-
ing 175% at room temperature. This result provides a sharp contrast to the magnetoresistance,
which behaves oppositely for all barrier thicknesses and differs by one order of magnitude between
devices. Here the magnetoresistance results from differences in transmission brought upon by chang-
ing the tunnel junction’s magnetization configuration. The magneto-Seebeck effect results from vari-
ations in asymmetry of the energy-dependent transmission instead. We report that this difference
in origin allows for CoPt|MgO|Pt to possess strong thermal magnetic-transport anisotropy.

Due to their presence in hard-disk drives and growing
potential as commercially viable memory bits, magnetic
tunnel junctions (MTJs) continue to provide impetus for
scientific study. The demand for smaller devices and effi-
cient energy consumption mandates further investigation
of their thermal properties. Such considerations recently
prompted a renewed interest in the long-known Seebeck
effect, in which a temperature gradient spanning a ma-
terial induces a voltage. The discovery of correspond-
ing thermal effects in spin-polarized systems heralded a
new field of research known as Spin Caloritronics [1]. In
one such effect the (charge) Seebeck Coefficient changes
as a function of a device’s magnetization configuration
- known as the magneto-Seebeck effect or magnetother-
mopower - in analogy with the magnetoresistance. Re-
cently observed experimentally [2, 3, 8, 10, 11, 15, 17] and
studied theoretically [6, 7, 9], the magneto-Seebeck effect
enables one to tune the thermal properties of an MTJ via
magnetic field, potentially enabling thermal spin-logic or
assisting in the recycling of wasted heat. We numeri-
cally study two devices: CoPt|MgO|Pt (which we call
an anisotropic MTJ) and CoPt|MgO|CoPt (a normal
MTJ). Although the magnetoresistance ratios of both
devices differ by one order of magnitude, we find that
their magneto-Seebeck ratios are comparable. Further-
more, the anisotropic MTJ (or AMTJ for short) produces
magneto-Seebeck ratios exceeding those of the normal
MTJ at small barrier widths (shown in Figs. 1 and 6),
peaking at values of 68% at 0K and 175% at 300K.

Throughout this work we use the following ratios

Magnetoresistance (MR) Ratio = ∆G/|G|max (1)

Magneto-Seebeck (MS) Ratio = ∆S/|S|max (2)

FIG. 1. (a) The anisotropic MTJ (CoPt|MgO|Pt). A tem-
perature gradient induces an open-circuit voltage across the
contacts, known as the Seebeck effect. Rotating the magne-
tization of CoPt produces varying Seebeck coefficients, also
called the Tunneling Anisotropic Magneto-Seebeck (TAMS)
effect. (b) The normal MTJ (CoPt|MgO|CoPt), which ex-
hibits the Tunneling Magneto-Seebeck (TMS) effect. (c) The
TAMS and TMS ratios plotted versus temperature and bar-
rier thickness. The TAMS ratio (blue/red) surpasses the TMS
ratio (cyan/orange) at small barrier thicknesses at all temper-
atures. This provides a contrast to the behavior of the TMR
and TAMR ratios (discussed in Fig. 5).

to quantify the strengths of the aforementioned effects
in both devices. The numerators denote the greatest
difference in conductance (G) or Seebeck coefficient (S)
between any two magnetization directions. The denom-
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FIG. 2. (a) Atomistic schematic of the CoPt|MgO|Pt tunnel
junction at the interfaces. (b) Schematic depicting the sim-
plest geometry pertinent to the Landauer-Büttiker formalism.
Reflectionless contacts (depicted in gray) behave as thermal
reservoirs, populated with carriers at a given Fermi Level µ
and temperature T . Carriers supplied from each contact pro-
ceed towards or away from the scattering region (S) via the
left (L) and right (R) semi-infinite leads.

inators represent the maximum absolute value of either
quantity, yielding the so-called pessimistic ratio. We use
these ratios to provide a consistent comparison between
effects, and to avoid artificially high magneto-Seebeck ra-
tios brought upon by vanishing Seebeck coefficients.

In regards to CoPt|MgO|CoPt, which exhibits the
Tunneling Magnetoresistance (TMR) effect, we study
the perpendicular-to-plane [001] parallel and antiparal-
lel magnetization configurations. On the other hand,
CoPt|MgO|Pt exhibits the Tunneling Anisotropic Mag-
netoresistance (TAMR) effect; for this system we ro-
tate the free layer’s magnetization from perpendicular-
to-plane [001] to in-plane [100] over seven steps. In
analogy with the TMR and TAMR effects, the normal
MTJ exhibits the Tunneling Magneto-Seebeck (TMS) ef-
fect while the anisotropic MTJ exhibits the Tunneling
Anisotropic Magneto-Seebeck (TAMS) effect.

We model each material system as a two-terminal de-
vice, consisting of a scattering center (MgO) and two
semi-infinite leads (CoPt or Pt). Our CoPt electrode
consist of alternating monolayers of Co and Pt, end-
ing with a Pt monolayer at the interface (Fig. 2a). We
subdivide the leads into principal layers, each consist-
ing of two monolayers, so that our Hamiltonian retains
a block-tridiagonal structure in the presence of next-
nearest neighbor interactions. The unit cell of each prin-
cipal layer repeats periodically in-plane (perpendicular
to transport), establishing a two-dimensional Brillouin
Zone (2DBZ) per layer. We assume that the correspond-
ing wavevectors k|| furnish good quantum numbers across
the interfaces, enabling a common 2DBZ across each de-

FIG. 3. Various transport quantities plotted over the
2DBZ at the Fermi energy. (a) The number of Bloch states
(NOBS) traveling towards the scattering region in the CoPt
lead (φ = 0◦). (b) The NOBS pertaining to the Pt lead.
(c) The unitless transmission (T ) of the AMTJ, containing
five MgO monolayers (φ = 0◦). Sharp peaks known as “hot
spots” result from unrealistically clean interfaces. (d) The
same transmission rescaled with hot-spots removed (T ∗).

vice. To simulate a finite cross-sectional area, we enforce
phase-repeating boundary conditions over some area in
real space, constraining the available states in k||-space
to a minimum separation.

Our transport calculations utilize the Landauer-
Büttiker formalism [5, 12], in which transmission is com-
puted via Green’s Functions [16]. We obtain all mate-
rial Hamiltonians using the Slater-Koster tight-binding
method [13], with parameters fitted to reproduce ab-
initio electronic structure calculations [14, 18]. Within
the ferromagnetic leads we use Stoner parameters to sim-
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FIG. 4. Visual representation of the magnetoresistance and magneto-Seebeck effects at 300K for a four monolayer barrier
thickness. Both T (Eq. 5) and G (Eq. 8) are plotted versus energy for both devices. The lighter curves correspond to T
(unitless) while the darker curves represent G (Ry−1). Only the magnetization directions yielding the high/low (blue/red)
magnetoresistance states are shown. The energy-integral of G (the area under a darker curve) gives the conductance up to a
factor of e2/h (Eq. 6). The weighted center of G (a vertical dashed line) gives the Seebeck coefficient up to a factor of e/hTG
(Eq. 7). The zoomed panel pertains to CoPt|MgO|Pt. The actual difference in Seebeck coefficients pertaining to the blue and
red dashed lines, as well as the corresponding magneto-Seebeck ratios, are shown for comparison.

ulate the magnetization of the Co and Pt monolayers,
the latter of which are slightly magnetized by proxim-
ity to Co. We include spin-orbit coupling in all atoms
to fully capture the magnetic transport-anisotropy. Fur-
thermore, we simulate interfacial strain between the leads
and the sample via perturbations of hopping parameters.

The Landauer-Büttiker formalism expresses transport
in terms of transmission probabilities obtained from a
multi-dimensional scattering problem [5, 12]. The scat-
tering modes are eigenstates parameterized by the com-
plex band structure of each lead. For a given tunnel-
ing energy (E), transverse crystal momentum (k||), and
out-of-plane magnetization direction (φ) in the free CoPt
lead, the transmission function is given by

T (φ,E,k||) = Tr[ΓLG
+ΓRG

−], (3)

ΓL(R) = i
(
Σ+

L(R) − Σ−L(R)

)
, (4)

where G represents the Green’s function of the sample
and Σ gives the self-energy connecting a particular lead to
the sample. The subscripts (L/R) denote the (left/right)
leads, while the superscripts (+/−) label the kind of
Green’s function (retarded/advanced) used to calculate
that particular quantity.

Figure 3c shows the transmission T (k||) plotted over
the 2DBZ for CoPt|MgO|Pt with a five monolayer bar-
rier thickness. Sharp peaks known as “hot spots” occur
across the k||-dependent transmission. Theoretical stud-
ies of Fe-based MTJ’s with crystalline MgO tunnel barri-
ers show that these hot spots contribute negligibly to the
calculated magnetoresistance ratios [4]. In these cases,
majority carriers belonging to the so-called ∆1 state dom-
inate transport, overwhelming the contributions of hot
spots found throughout the rest of the transmission.

Enforcing phase-repeating boundary conditions con-
strains one to a maximum number of k|| points (due
to their minimum-allowed separation). Our 2DBZ has
an edge length of 1.2358 inverse Bohr radii; this implies
that a cross-sectional area of 50 nm × 50 nm allows for
34, 225 k|| points while 200 nm × 200 nm admits 552,049
k|| points. Between 66,049 and 263,169 k|| points we find
a compromise. In this regime, T converges better than
2% for both device structures and all magnetization di-
rections, energies, and barrier widths – if all hot spots are
removed. Following [19], we remove hot spots in regions
that would only converge well past a cutoff in the num-
ber of k|| points (which we establish through finite-size
considerations).

The sum of transmission probabilities over the 2DBZ
gives the energy-dependent transmission T:

T(φ,E) =
∑
k||

T (φ,E,k||). (5)

To incorporate the effects of temperature, we populate
available states with non-interacting electrons that obey
Fermi-Dirac statistics, and neglect the contributions of
inelastic phonons. We assume that differences in tem-
perature and electrochemical potential between the leads
produce first-order variations in the Fermi-Dirac distri-
bution with respect to energy, and no deviations in the
transmission function (the linear-response limit). In this
approximation, we may express the conductance and See-
beck coefficient as

G(φ, T ) =
e2

h

∫
G(φ,E, T )dE (6)

S(φ, T ) =
e

hTG(φ, T )

∫
(E − Ef )G(φ,E, T )dE (7)
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respectively, where

G(φ,E, T ) = T(φ,E)

(
− ∂f

∂E
(E,Ef , T )

)
(8)

is the energy-dependent transmission weighted by the
derivative of the Fermi-Dirac distribution. Note that all
temperature-dependent quantities explicitly depend on
the chosen Fermi level Ef .

Eqs. 6 and 7 provide a simple theoretical explanation
for the origins of the magnetoresistance and magneto-
Seebeck effects. Whereas the conductance corresponds
to the energy integral of G, the Seebeck coefficient corre-
sponds to the geometric center of G with respect to the
Fermi level. Thus, strong differences in the overall trans-
mission, brought upon by rotating magnetization, lead to
an appreciable magnetoresistance. However, variations
in the asymmetry of the energy-dependent transmission
yield the magneto-Seebeck effect.

We now discuss our results, beginning with the magne-
toresistance effect. Panel 5a displays normalized TAMR
curves for various barrier thicknesses. For barrier thick-
nesses greater than five MgO monolayers, the percentage
difference between the high and low conductance states
diminishes. Panels 5b and 5c plot the simulated magne-
toresistance ratios for various temperatures as a function
of barrier thickness. In accordance with panel 5a, the
TAMR ratio peaks at five MgO monlayers (17.2%) but
decreases afterwards; however the TMR ratio saturates
as barrier thickness increases (88.8% at ten MgO mono-
layers). In general the two devices produce magnetore-
sistance ratios roughly one order of magnitude apart.

Moving now to the magneto-Seebeck effect, which en-
capsulates the main result of this letter, we direct the
reader to Fig. 6. Panel 6a shows the Seebeck coeffi-
cients plotted versus temperature for both devices (four
MgO monolayers) and all magnetizations. Here the nor-
mal and anisotropic MTJs yield Seebeck coefficients of
similar strength. Beyond four MgO monolayers, both
devices produce comparable differences in Seebeck co-
efficient (panel 6b) and magneto-Seebeck ratios (panel
6c). Furthermore, the magneto-Seebeck ratios of the
anisotropic device surpass those of the normal device for
lower barrier thicknesses, peaking at absolute values of
68% at 0K and 175% at 300K.

Unlike the conductance, the Seebeck coefficient may
vanish, potentially causing the magneto-Seebeck ratio
to diverge. In general, small absolute values of |S|max

produce artificially high magneto-Seebeck ratios; thus
both the difference in Seebeck coefficient (∆S) and
the magneto-Seebeck ratio factor into a device’s perfor-
mance. In our case, although the Seebeck coefficients of
some magnetization configurations vanish, |S|max (cor-
responding to φ = 90◦ for the AMTJ and φ = 180◦ for
the MTJ) never does.

In CoPt|MgO|Pt, spin-polarized electrons leaving the
ferromagnetic layer tunnel into a region with no spin pref-

FIG. 5. Normalized TAMR curves shown for various num-
bers of MgO monolayers (ML) in the barrier (top panel).
TAMR (middle panel) and TMR (bottom panel) ratio ver-
sus barrier thickness, plotted for various temperatures and
included numbers of k|| points. While the TAMR curve peaks
at five MgO monolayers, the TMR curve saturates as barrier
thickness increases. The TMR ratios exceed the TAMR ratios
by one order of magnitude.

erence; thus the single ferromagnetic layer alone controls
the magnetic transport anisotropy (through spin-orbit
coupling). However, in CoPt|MgO|CoPt, spins polar-
ized by the first layer tunnel into a receiving layer with
either strong (parallel configuration) or weak (antipar-
allel configuration) preference for their spin, providing
a stronger spin-filter irrespective of spin-orbit coupling.
Thus, anisotropic MTJs often yield lower magnetoresis-
tance ratios than normal MTJs. Thermally-induced volt-
ages appear to behave differently. The magneto-Seebeck
effect stems from changes in the asymmetry of T(E)
brought upon by rotating magnetization. In principle,
such variations in asymmetry need not be connected to
variations in the overall transmission. In agreement with
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FIG. 6. (a) The Seebeck coefficient versus temperature,
plotted for both devices and all magnetization directions (four
MgO monolayers). Both devices produce Seebeck coefficients
of similar strength. In addition, both devices produce com-
parable differences in Seebeck coefficient (b) and magneto-
Seebeck ratios (c) for all barrier thicknesses simulated. Fur-
thermore, the TAMS ratio surpasses the TMS ratio for small
barrier thicknesses, in contrast to the magnetoresistance ra-
tios (Figs. 5b and 5c), which behave oppositely for all barrier
thicknessess.

this assumption, our results indicate that CoPt|MgO|Pt
possesses thermal transport anisotropy similar or better
than CoPt|MgO|CoPt.

To conclude, we have demonstrated that magnetic tun-
nel junctions possessing a single ferromagnetic layer can
produce magneto-Seebeck ratios exceeding those of nor-
mal MTJs. This behavior provides a sharp contrast to
that of the magnetoresistance. We performed coher-
ent transport calculations simulating the magnetoresis-
tance and magneto-Seebeck effects in CoPt|MgO|CoPt
and CoPt|MgO|Pt magnetic tunnel junctions. The
anisotropic MTJ yields magneto-Seebeck ratios compa-
rable or better to those of the normal MTJ, reaching ab-
solute values of 175% at room temperature. Thus we find
that exploiting spin-orbit coupling in MTJs with a single
ferromagnetic contact can lead to enhanced magnetic-
transport anisotropies.
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and T. Jungwirth. Journal of Magnetism and Magnetic
Materials, 356(0):87 – 94, 2014.

[19] X.-G. Zhang and W. H. Butler. Phys. Rev. B, 70:172407,
Nov 2004.


	Large Tunneling Anisotropic Magneto-Seebeck Effect in a CoPt�MgO�Pt Tunnel Junction
	Abstract
	 Acknowledgments
	 References


