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We model changes of magnetic ordering in Mn-antiperovskite nitrides driven by biaxial lattice
strain at zero and at finite temperature. We employ a non-collinear spin-polarised density functional
theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal
symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd,
Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we
focus on Mn3GaN and extend our study to finite temperature using the disordered local moment
(DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn
magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic
phase diagram with two previously unreported phases stabilised by strains larger than 0.75% and
with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling
cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal
entropy change (due to the first order transition) and a large adiabatic temperature change (due to
the second order transition).

I. INTRODUCTION

Large magnetocaloric effects (MCE) are avail-
able in materials with strong electronic correla-
tions such as Gd5Si2Ge2,1 LaFe13−xSix-based alloys,2

MnFeP0.45As0.55
3 or Ni-Mn-Sn alloys.4 The reliance on

rare earth based permanent magnets to drive magnetic
phase transitions in materials listed above limits the po-
tential of magnetocaloric cooling to replace the current
technology based on vapour compression. Therefore, us-
ing lattice strains to induce a large entropy change at
room temperature promises to open new pathways to en-
ergy efficient solid state cooling. Large mechanocaloric
effects have been demonstrated in shape memory alloys,
e.g., elastocaloric effect (eCE) in Ni-Ti5,6 or Cu-Zn-Al,7

and barocaloric effect (BCE) in Ni-Mn-In8. A broaden-
ing of the usable temperature range by strain has been
proposed in Ni-Mn-Ga-Co films.9

Magnetic transitions driven by lattice strains have
been reported in several perovskite oxides. Ferromag-
netic (FM) and G-type antiferromagnetic (AFM) phases
have been observed in SrCoO3−δ films subject to low
(SrTiO3 substrate) and large (DyScO3 substrate) tensile
epitaxial strains, respectively10. An increase (decrease)
of Néel temperature due to compressive (tensile) biax-
ial strain was predicted in AFM SrTcO3 films11 A very
strong dependence of TN on biaxial strain (≈ 50 K per
1%) has been predicted12 and subsequently confirmed
experimentally13 for G-type AFM phase of SrMnO3. The
ability to drive a magnetic phase transition with a large
entropy change, ∆S = 9 J/kgK, by means of biax-

ial strain was demonstrated in La0.7Ca0.3MnO3 film on
BaTiO3 substrate.14 Ferrielectric ammonium sulphate15

and spin crossover (SCO) materials16 have also been
proposed as new classes of mechanocaloric materials re-
cently.

Here we study elastocaloric properties of Mn-based an-
tiperovskite nitrides with frustrated non-collinear mag-
netic structure. This family of materials was first exam-
ined in 1970s.17,18 The last 10 years have seen renewed
interest in these metallic compounds fuelled by a demon-
stration of large negative thermal expansion (NTE) in
Mn3AN (A = Ga, Zn, Cu)19 at the first order phase
transition to a paramagnetic (PM) state. More recently
NTE was studied also in Mn3NiN (stoichiometric20 and
doped.21) The related magnetovolume effect22 was mea-
sured systematically in a range of Mn3AN. The peak val-
ues were observed in Mn3ZnN and Mn3GaN which is con-
sistent with the large BCE measured in Mn3GaN at TN
= 288 K.23 Our study is further motivated by a success-
ful epitaxial growth of Mn3GaN thin film on ferroelectric
perovskite substrates.24

We start by exploring piezomagnetic effects (PME)
across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn,
Ga, In, Sn) using spin density functional theory (SDFT)
at zero temperature, building on our earlier study.25 The
PME is characterized by a linear dependence of the in-
duced net magnetic moment, Mnet, on strain,25,26 which
distinguishes it from the quadratic magnetoelastic ef-
fect. In Mn3AN the PME originates from geometri-
cally frustrated exchange interactions between three Mn
atoms in the unit cell which lead to a strong spin-lattice
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coupling.26,27 This is in contrast with magnetostriction,
widely used in spintronic devices, which is driven by the
more subtle relativistic spin-orbit coupling. It is worth
highlighting in this context that spintronics and solid
state cooling have traditionally focused on FM materials.
However, AFMs have received much attention in both
fields recently fuelled by significant experimental progress
including: the demonstration of a giant barocaloric effect
in Mn3GaN mentioned above;23 the observation of a large
room temperature anomalous Hall effect in Mn3Sn (with
triangular AFM structure as in the Mn-antiperovskite
family);28 the switching between two stable collinear
AFM states in FeRh;29 the detection of an AFM state
using tunnelling anisotropic magnetoresistance (TAMR)
in Pt/MgO/IrMn tunnel junction;30 and even all-electric
room-temperature switching and detection of staggered
AFM moment direction in a CuMnAs-based memory.31

After exploring PME at zero temperature, we con-
tinue by developing a SDFT-based disordered local mo-
ment (DLM) theory for the study of finite temperature
effects on the magnetic ordering. We show that the spin-
lattice coupling also renders the TN and the magnetic
entropy in Mn3GaN highly sensitive to tetragonal lat-
tice distortions. We construct the temperature-strain
magnetic phase diagram and associated entropy changes
in Mn3GaN where a giant BCE at a AFM-PM transi-
tion has been observed recently.23 We also discover a
collinear AFM and a collinear ferrimagnetic (FIM) phase
stabilised by tensile and compressive strain, respectively.
Both phases are separated by first and second-order tran-
sitions from the triangular AFM and PM states. This
exceptional phase diagram allows us to design an elas-
tocaloric cooling cycle combining a large isothermal en-
tropy change (due to the abrupt phase transition) and
a large adiabatic temperature change (due to the grad-
ual phase transition at a critical temperature strongly
dependent on the stimulus32 - the biaxial strain). This
mechanism contrasts with the elastocaloric cycles based
on a single phase transition in La0.7Ca0.3MnO3

14 or in
shape memory alloys.6,7 Moreover, the transition tem-
peratures in Mn3GaN are in the room temperature range
and can be further tuned by partially substituting atom
A by an element with a different number of valence s-
and p-electrons.18,22

A. Magnetic structure

Fig. 1 shows the distorted unit cell of Mn3GaN as
an example of the non-collinear magnetic structure of
Mn3AN. In the ground state (with cubic lattice) the
fully compensated AFM magnetic structure corresponds
to the Γ5g representation18,33 indicated by silver arrows.
The antiferromagnetic exchange coupling between the
neighbouring Mn atoms leads to the frustration (in the
triangular lattice of (111) plane, orange online). The
three equal-sized local magnetic moments on the Mn sites
have an angle of 2π/3 between their directions. Another

FIG. 1. (Color online) The strained Mn-antiperovskite struc-
ture including the local magnetic moments on Mn sites - silver
arrows show the triangular AFM state for a lattice with cu-
bic symmetry; magenta arrows represent the piezomagnetic
response of Mn3GaN to compressive (a,c) and tensile (b,d)
strain at zero (c,d)25 and finite (a,b) temperature, canting and
changes of size are not to scale: (a) Collinear ferrimagnetic,
Mnet ‖ [110]; (b) Collinear AFM phase, Mnet = 0; (c) Canted
triangular phase, Mnet ‖ [1̄1̄0]; (d) Canted triangular phase,
Mnet ‖ [110] axis;

type of AFM ordering (Γ4g representation) occurring in
Mn3AN (e.g. Mn3SnN) is obtained after a simultane-
ous rotation of all three local magnetic moments by π/2
within the (111) plane. The chirality is the same as in
case of Γ5g but the local moments all point inside (out-
side) the triangle of (111) plane.17 The energy difference
between Γ4g and Γ5g ordering is purely due to the spin-
orbit coupling whereas the non-collinearity and magneto-
structural coupling is due to the exchange interaction.

An applied biaxial strain exx = eyy = (a−a0)/a0 6= ezz
(where a0 is a lattice parameter of the relaxed structure)
relieves the frustration which leads to canting and rela-
tive change of size of local moments. The ”canted trian-
gular” state is represented by magenta arrows in Fig. 1
(c,d). Both effects contribute to an induced net moment,

Mnet ≡ 2M1 cos(2π/3 + θ1) +M3, (1)

which in case of Mn3GaN is (anti)parallel to the [110]
axis for (compressive) tensile strain. M1 = M2 6= M3

are the magnitudes of the local magnetic moments and
θ1 = −θ2 are canted angles with respect to the ground
state triangular order. The Mn moment at the bottom
of the unit cell, M3, is parallel to the [110] crystal axis
and does not cant (θ3 = 0).
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FIG. 2. (Color online) Comparison of the piezomagnetic effect
in nine Mn3AN materials (A labels the x-axis): Contributions
to M tot

net (denoted as Mnet in the text) from Mn local moment
canting and resizing induced by tensile stain, εxx = 1% are
shown. (We have reported the total moment, Mnet, earlier.25)

II. PIEZOMAGNETIC EFFECT

We model the piezomagnetic effect across a range of
Mn3AN materials at zero temperature using SDFT. We
employ the projector augmented-wave (PAW) method
implemented in VASP code34 within the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation.35

This code allows for relaxation of fully unconstrained
noncollinear magnetic structures.36 We use a 12x12x12
k-point sampling in the self-consistent cycle. The cut-
off energy is 400 eV. The Mn local magnetic moments
are evaluated in atomic spheres with the default Wigner
Seitz radius.25

Fig. 2 shows the two contributions to the PME sepa-
rately for the nine Mn3AN’s with tensile strain εxx = 1%:

Mrsz
net ≡ 2M1 cos(2π/3) +M3 = M3 −M1, (2)

M cnt
net ≡ 2M0 cos(2π/3 + θ1) +M0, (3)

where Mrsz
net is the net moment due to the change of size

of the local magnetic moments, M cnt
net is the net moment

due to their canting, and M0 is the moment common to
all Mn atoms at zero strain. Mrsz

net is negative for all
systems which reveals the universal effect of increasing
Mn moment size with increasing distance to the near-
est nitrogen. (Results in Fig. 2 assume unit cell volume
conservation when Mn3 is closer to nitrogen than Mn1

for tensile strain.) On the other hand, M cnt
net is negative

(positive canting, θ1 > 0) when atom A is a transition
metal, except Ag and Zn, and positive (negative cant-
ing, θ1 < 0) for the rest. Both Ag and Zn have a fully
filled 3d-band well below the Fermi energy (EF ) so their
hybridization with Mn 3d-states forming a wider band
around EF is similar to Ga or In which explains its posi-
tive M cnt

net . Therefore we conclude that when atom A has
only s or p-states relatively close to EF (within 4 eV)

then the canted angle is negative, θ1 < 0. In case of
smaller energy separations of d-states of atom A from
Mn d-states the canted angle is positive, θ1 > 0.

It is remarkable that Mn3ZnN has one of the largest
M cnt
net due to moment resizing which gets almost com-

pletely compensated by the canting. In other words, its
magnetic system is very sensitive to the tetragonal dis-
tortion but a measurement of Mnet would not reveal that.
The canting in case of Ag is very weak and hard to re-
solve numerically. At the same time, Mn3SnN combines a
very large PME with TN = 475 K37 so it has a potential
for spintronic applications including magnetic memory,
magnetic sensors, and actuators.25

A table summarizing the equilibrium lattice param-
eters, the size of the Mn local moments, or the Pois-
son’s ratios obtained by SDFT calculations (VASP) can
be found in our previous work on PME.25 It should be
noted that we explore the response of the magnetic or-
der to strain only in small surroundings of the unstrained
ground state. We use PME as a measure of the frustra-
tion of the exchange interaction across the material series.
We exploit the fact that the triangular AFM structure is
predicted to be a local energy minimum in our SDFT
model even though it has not been confirmed experimen-
tally in Mn3AN (A = Ag, Co, Pr, Rh).

III. AB-INITIO THEORY OF
GEOMETRICALLY FRUSTRATED MAGNETIC
TRANSITIONS AND CALORIC RESPONSES

Having established the robustness of the piezomagnetic
effect across a range of Mn3AN systems and its depen-
dence on the valence states of atom A, we proceed to
investigate the non-collinear magnetism and the caloric
properties of these systems at finite temperatures. We fo-
cus on strain-induced caloric responses which arise from
distortions of the magnetic structure. To achieve this we
have extended the SDFT-based DLM theory which de-
scribes self-consistently the interplay between disordered
local moments (DLMs) and itinerant electrons in mag-
netic metals at finite temperature.38

A. Disordered local moment modelling and the
free energy

Our modelling of a magnetic system subject to a strain
ε ≡ εαβ is analogous to earlier studies of magnetic
phase transitions and associated magnetic field-induced
entropy changes in FeRh,39 some relevant Gadolinium
intermetalics,40 and the heavy rare earth elements.41

The model assumes a time-scale separation between the
slowly varying orientations of the local moments of Mn
atoms, and the remaining faster electronic degrees of free-
dom. We label the local moment orientations by local
spin polarization axes {êi} fixed to each Mn atom. Un-
der these circumstances we can evaluate a generalized
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electronic grand potential Ω({êi}, ε) using SDFT,38 with
the spin density constrained to the local moment config-
uration {êi}. The probability of each configuration {êi}
is then calculated as:

P ({êi}) = exp[−βΩ({êi}, ε)]/Z =
∏
i

Pi(êi), (4)

where Z is the constrained partition function, 1/β = kBT
(kB being the Boltzmann constant), and the single site
probabilities Pi(êi) are calculated within a mean field
approach in terms of the Weiss fields {hi},

Pi(êi) =
exp [βhi · êi]∫

dêi exp [βhi · êi]
. (5)

An ensemble average over non-collinear local moment
configurations is carried out within the coherent potential
approximation (CPA)42–44 framework to find a specific
magnetic state of the system. This state is specified by
magnetic order parameters:{

mi =

∫
êiPi(êi)dêi =

[
−1

βhi
+ coth(βhi)

]
ĥi

}
, (6)

where hi = |hi| and hi = hiĥi. The magnitudes
mi = |mi| describe the magnetic disorder of the DLMs
associated to each magnetic moment at each Mn atom.
They range from 0 for the high-temperature fully disor-
dered PM state to 1 for the fully ordered magnetic struc-
tures (including triangular AFM) at T = 0 K. The local
moments Mi = µimi on Mn sites are related to the order
parameters via a set of local moment sizes µi determined
by the generalised SDFT.38

The free energy can be written as a function of these
magnetic order parameters, lattice strain, and tempera-
ture

F({mi}, ε, T ) = Ω̄({mi}, ε)− T S̄mag, (7)

where Ω̄ = 〈Ω({êi}, ε)〉{mi} is the SDFT-based internal
energy averaged over orientations of the DLMs and con-
sistent with the constrained system described by {mi},
and S̄mag is the magnetic entropy contribution to the
total entropy Stot. S̄mag can be easily calculated by per-
forming the integral

S̄mag = −kBT
∑
i

∫
Pi(êi)lnPi(êi)dêi, (8)

such that it only depends on the quantities {βhi} (or
{mi}). The electronic entropy contribution S̄el is con-
tained in Ω̄.39,45 We calculate S̄el from the Sommerfeld

expansion, S̄el ≈ π2

3 k
2
BT n̄(EF ), where n̄(EF ) is the elec-

tronic density of states at Fermi energy available from the
SDFT and averaged over all local moment orientations.39

B. Magnetic phase diagram

Minimization of the free energy of eq. (7) with respect
to the order parameters {mi} in the absence of external

magnetic field leads to an expression for the Weiss field
at the atomic site i38

hi = −∇miΩ̄({mi}, ε). (9)

We can see from Eq. (6) that the Weiss fields divided by
temperature, {βhi}, in turn determine the order param-
eters {mi}. This provides a basis for a self-consistent
calculation of a stable magnetic order {mi} for a given
temperature and lattice parameters (strain).39,41 In gen-

eral, several solutions, {m(1)
i }, {m

(2)
i }, . . . may be found

at different local minima of the free energy. These
competing local minima can be tracked across a range
of temperatures and strains and a transition tempera-
ture is defined by a switching of the global minimum

from, e.g., F({m(1)
i }, ε, T ) to a new global minimum

F({m(2)
i }, ε, T ).

In order to find stable magnetic states on a dense
temperature-strain grid and to compare the correspond-
ing free energies we write our internal energy Ω̄({mi}, ε)
as an expansion in powers of temperature-dependent pa-
rameters {mi} with strain-dependent coefficients (exam-
ples are given in Sec. IV). We obtain an analytical expres-
sion for ∇mi

Ω̄ of Eq. (9) which can be calculated explic-
itly within our SDFT-DLM theory.38 Then the required
temperature-independent expansion coefficients can be
calculated ab-initio in the following way: (i) We start by
the direct calculation of ∇miΩ̄ for a sufficiently large set
of magnetic configurations {mi}; (ii) The coefficients are
extracted by fitting these values to the analytical expres-
sion for ∇miΩ̄ for a given value of strain. (iii) This is
repeated for different lattice parameters in order to de-
termine the dependence of the expansion coefficients on
strain (e.g., in case of Mn3GaN we find that the quadratic
coefficients can be fitted to a linear strain-dependence.)
Once the coefficients including the strain-dependence are
obtained the self-consistent calculation of the stable mag-
netic states at each point of the temperature-strain phase
diagram can ensue without the computationally expen-
sive evaluation of∇mi

Ω̄ from SDFT-DLM. Moreover, the
free energy can be evaluated from the same expansion co-
efficients in order to identify the global energy minima at
each point of the phase diagram.

It should be noted that the choice of configurations
{mi} used to initialize the self-consistent cycle of Eqs. (6)
and (9) is guided by instabilities of the high tempera-
ture PM state identified by the application of DLM lin-
ear response theory38,46 (see appendix B for details). In
the case of Mn3GaN we found that the triangular and
collinear magnetic perturbations lead to the strongest re-
sponse just below the Néel temperature at zero and at
high enough biaxial strain, respectively. The stability
of the corresponding magnetic phases (shown in Fig. 1)
well below the transition temperature was confirmed by
the rapidly converging self-consistent calculation (≈ 20
iterations).
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C. Calculation of caloric responses

The cooling capacity and the temperature span are the
key characteristics of refrigerants and pertinent cooling
cycles. The adiabatic temperature change (∆Tad) and
the isothermal entropy change (∆Siso) induced by the ap-
plication and/or removal of an external field are directly
related to these characteristics and are typically used to
compare refrigerants.32,47,48 In principle the lattice vi-
brations could be incorporated self-consistently within
our SDFT-DLM49 theory and a direct magneto-phonon
coupling be obtained. However the entropy of lattice vi-
brations cannot be obtained within the SDFT-DLM at
present.49 As we are interested in the calculation of the
adiabatic temperature change ∆Tad the incorporation of
the lattice vibrations acting as a thermal bath (or reser-
voir) is fundamental to avoid unphysical results.50 We
have consequently implemented a standard simple Debye
model for the vibrational entropy51

Svib = kB

[
−3 ln

(
1− e−

T
θD

)
+12

(
T

θD

)3 ∫ θD
T

0

x3

ex − 1
dx

]
,

(10)
where θD is the Debye temperature (see Appendix A for
further details). Note that the resulting vibrational en-
tropy does not depend on strain or volume of the unit
cell.

Here we are interested in evaluating ∆Siso and ∆Tad
when they are induced by biaxial strain application. For
a finite change of the strain (ε0 → ε1) we can calculate
∆Siso(T, ε0 → ε1) at temperature T as

∆Siso(T, ε0 → ε1) = Stot(ε1, T )− Stot(ε0, T ), (11)

while ∆Tad(T, ε0 → ε1) can be estimated from

Stot(T, ε0) = Stot(T + ∆Tad, ε1), (12)

where the total entropy is Stot = S̄mag + Svib + S̄el.
We note that the entropy changes originate from the
change of the geometrically frustrated magnetic order-
ing induced by the application of mechanical stress on
the lattice system and therefore a strong spin-lattice cou-
pling is necessary.

IV. THE ELASTOCALORIC EFFECT

In this section we implement our SDFT-based DLM
theory to explore the geometrically frustrated non-
collinear magnetism in strained Mn3GaN at finite tem-
perature. This is motivated by the recent observation of
a large barocaloric effect23 as well as our SDFT simula-
tions at zero temperature in Sec. II. Our DLM method
is well suited for metallic Mn3GaN where the local mag-
netic moments are relatively well localized52 while their
interaction with the delocalized gallium p-states deter-
mines the size25 and direction of the strain-induced Mnet

as shown in Fig. 2. We start by comparing our results
with available experimental data for the unstrained cubic
system. Then we apply our theory to biaxial strain and
study the elastocaloric effect.

Note that in the following we provide analytical ex-
pressions for Ω̄({m}i, ε) that capture satisfactorily our
SDFT-DLM results for {hi = −∇mi

Ω̄} and extract the
coefficients involved. The minimization of the free en-
ergy, the calculation of the stable magnetic configura-
tions and caloric responses, and the construction of the
magnetic phase diagrams are performed as described in
Sec. III.

A. Unstrained cubic system

Our DLM model predicts the triangular AFM order
of Fig. 1 as the most stable structure in agreement with
early neutron diffraction studies17,18,33 and with our zero-
temperature simulations of sec. II. In the case of Mn3GaN
with an unstrained lattice (cubic symmetry) all 3 Mn
atoms can be described by a single order parameter m
even though the angle between the spin polarization axes
êi is 2π/3 between each pair. Thus m is the common
length of the three order parameters. We find that our
SDFT-DLM internal energy can be approximated satis-
factorily by a two term expansion:

Ω̄({mi}, ε) = am2 + bm4, (13)

where the coefficients a = −31.47 meV and b =
−33.11 meV have been obtained by fitting for relaxed
Mn3GaN.

At the Néel temperature the negative quartic coeffi-
cient b is larger than its positive counterpart in the ex-
pansion of magnetic entropy in powers of the order pa-
rameter (see eq. (7)) which indicates a first-order phase
transition between the triangular AFM and PM state in
agreement with experiment.23 We find a transition tem-
perature TN = 304 K which is very close to reported
experimental values TN = 288 K22 and 290 K.23 When
we repeat our simulation for a slightly larger lattice pa-
rameter (preserving the cubic symmetry and the form
of eq. (7)), we find an increase of TN with increasing
unit cell volume in agreement with experiment.23 Mat-
sunami et al. have recently measured a very large isother-
mal entropy change ∆S = 22.3 J/kgK at the AFM-PM
transition in Mn3GaN23 which correlates with the large
magnetovolume effect22 driven by the geometric frustra-
tion and the abrupt change of effective amplitudes of
Mn magnetic moments. Our DLM theory for unstrained
cubic Mn3GaN finds a significantly larger BCE (Fig. 2
of Ref.23) as the calculated magnetic entropy change at
TN is S̄mag(TN + δT ) − S̄mag(TN − δT ) = ∆S̄mag =
103.2 J/kgK, accompanied by a large change of the mag-
netic order parameter ∆m = 0.74. The electronic en-
tropy change is very low, ∆S̄el = 0.035 J/kgK, and our
∆Svib (we have assumed a Debye temperature of 429.2 K,



6

which becomes θD = 452.2 K after rescaling to our transi-
tion temperature22) also cannot compensate the discrep-
ancy between ∆S̄mag and the measured ∆Stot.

23 How-
ever, it should be noted that our ∆S̄mag falls well below
the theoretical upper limit proportional to kB ln(2J + 1)
which is 161.52 J/kgK for Mn3GaN, where J is the total
angular momentum of the magnetic atom. At the same
time, strong dependence of magnetic transitions on com-
positional disorder has been shown in Mn3AN19,22 and
FeRh.39 Owing to its ties to the geometric frustration,
∆S̄mag is likely to be sensitive also to any symmetry
lowering due to structural defects in sintered polycrys-
talline samples. Therefore, ∆S̄mag calculated in a system
with perfect stoichiometry and lattice symmetry, hence
with a very sharp phase transition, should be regarded
as an upper estimate of the entropy change measured at
a smoother phase transition in a real sample. This is
consistent with our overestimate of ∆S̄mag and indicates
that the simulated material has a sharper phase transi-
tion than the available sample.

B. Biaxial strain

Having compared the results of our DLM modelling to
available experimental data for Mn3GaN, we now focus
on the effect of biaxial strain. We assume only volume-
conserving strains, i.e., Poisson’s ratio = 0.5. Due to
the lower symmetry we have to define three independent
order parameters {m1,m2,m3} corresponding to each
magnetic moment in Mn within the unit cell. This results
in a more complicated expansion of the SDFT- internal
energy:

Ω̄({mi}, ε) =

−a1(m2
1 +m2

2)− a2m2
3 − α1m3 · (m1 + m2)

−α2m1 ·m2 − b1(m4
1 +m4

2)− b2m4
3

−β1[(m3 ·m1)m2
2 + (m3 ·m2)m2

1] (14)

−β2[(m3 ·m1) + (m3 ·m2)](m1 ·m2)

−β3(m1 ·m2)m2
3 − β4(m3 ·m1)(m3 ·m2).

Including only quadratic and quartic terms in Eq. (14)
is enough to fit satisfactorily our SDFT-DLM data and
capture the relevant physics across the explored range of
strain. In order to construct the phase diagrams shown
in Figs. 3, 4 and 6 we have fitted the coefficients of Eq.
(14) for 7 different values of εxx ∈ 〈−1, 1〉% and found
a nearly linear dependence of all 10 constants on strain.
To cover the relevant range of strain εxx ∈ 〈−2.5, 3〉%
we then performed a linear fit across to values of each
constant for the 7 available strains. Note that we also
extract a linear dependence of the Mn magnetic mo-
ments on strain: M1 = M2 = (3.102 − 0.0361εxx)µB,
M3 = (3.102 + 0.0438εxx)µB for compressive strain and
M1 = M2 = (3.102 − 0.0265εxx)µB, M3 = (3.102 +
0.0444εxx)µB for tensile strain. The phase diagram of
Fig. 3 has been constructed by tracking the free energy
of competing magnetic phases across the range of strain

FIG. 3. (Color online) Magnetic phase diagram for Mn3GaN;
colors encodes the size and orientation of the induced moment,
Mnet > 0 is along the [110] axis; thick black lines mark the
first-order (solid) and second-order (dashed) magnetic phase
transitions; letters in brackets link to panels of Fig. 1.

and temperature with a sufficiently small step allowed by
the fitting described above.

We obtained a strong dependence of the quadratic co-
efficients on the biaxial strain. However, similar changes
of the quartic coefficients have negligible impact on the
magnetic phase diagram (see appendix B). We there-
fore concluded that all features of the temperature-strain
magnetic phase diagram are determined mainly to two
factors: (i) the presence of large quartic coefficients re-
sulting in the first-order nature of the PM-AFM transi-
tion at zero strain and (ii) a strong dependence of the
quadratic coefficients on εxx.

At higher temperatures, we predict two novel strain-
induced magnetic phases: a collinear (ferrimagnetic) FIM
phase for compressive strain εxx < −0.75% shown in
Fig. 1(a) and a collinear AFM phase for tensile strain
εxx > 0.75% shown in Fig. 1(b). Notably, we also deter-
mine the order of the phase transitions. Solid (dashed)
black lines in Fig. 3 indicate first (second)-order transi-
tions. The collinear FIM and AFM emerge from the large
change of the quadratic coefficients with εxx. This is the
most conspicuous feature of Fig. 3 leading to a strong de-
pendence of the second-order transition temperature on
strain between these collinear magnetic structures and
the PM state. The transition between canted triangular
and collinear AFM states changes from first- to second-
order for large tensile strain. There is a tricritical point
as a consequence. The color-coding shows Mnet: The
collinear AFM state does not possess any net magnetiza-
tion, whereas the tensile-strained canted triangular and
collinear FIM states develop Mnet ‖ [110] (positive, red)
and Mnet antiparallel to [110] in the compressive-strained
canted triangular state (negative, blue). The correspond-
ing induced magnetic field reaches 200 Oe at 1% strain
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FIG. 4. (Color online) Total entropy of Mn3GaN; Red contour
lines mark adiabatic application of strain at Stot = 170 and
270 J/kgK; Black lines mark iso-strain cooling (εxx = 1.18%)
and heating (εxx = −0.73%); Blue isotherm marks the refer-
ence temperature of 308 K; Orange numbers mark the pro-
posed cooling cycle.

at room temperature so the strained material has a po-
tential for multicaloric effects (MCE & eCE).

C. Cooling cycles

Fig. 4 presents our magnetic phase diagram from
the perspective of total entropy. We note that we
have ignored the electronic contribution Sel because we
have found it to be negligible compared to S̄mag and
Svib. Fig. 4 shows the abrupt entropy change ∆Stot ≈
100 J/kgK at the first-order transition to the PM state at
zero strain. The transition gradually becomes less first-
order-like as the strain increases and becomes smooth
around εxx = 2.5% due to the presence of the tricritical
point. Notably, both the collinear FIM and AFM states
at higher temperature show a very strong dependence of
S̄mag on strain.

We now propose an elastocaloric cooling cycle utilis-
ing the complex pattern of magnetic phase transitions
of Fig. 4 instead of structural phase transitions of shape
memory alloys. The cycle starts by adiabatic application
of strain: red line from point (1) to (2), S̄mag decreases
at the second-order transition from PM to collinear AFM
state which is compensated by an increase in Svib accom-
panied by a warming of ≈ 25 K. In the second step, the
system is then cooled to its original temperature at con-
stant strain: black line from point (2) to (3), S̄mag further
decreases through the first-order transition to the canted
triangular state and heat is expelled to the environment.
In the third step, a strain is applied adiabatically again:
red line from point (3) to (4), S̄mag increases continu-
ously and temperature decreases by ≈ 5 K. Finally, the
refrigerant is warmed up at constant strain: black line

FIG. 5. (Color online) The total entropy for selected values of
strain in Mn3GaN; Black lines correspond to black iso-strain
lines in Fig. 4; Blue dashed line crosses only the first-order
phase transition (small ∆Tmax

ad1
); All dash-dotted lines cross

both the first and second-order transitions and allow for larger
∆Tmax

ad2
.

from point (4) back to (1), S̄mag increases sharply at the
first-order transition from the canted triangular state to
PM state and heat is absorbed from the load.

Fig. 5 shows the dependence of Stot on tempera-
ture for five strains which determine ∆Smaxiso and dif-
ferent values of ∆Tmaxad . We recall that in case of a
cooling cycle with a single first-order phase transition
driven by external magnetic field, Hmax, using a mate-
rial with a weak dependence of the Curie temperature
on field, ∂TC/∂H <

√
T/CpMsatHmax,32,53 its ∆Tmaxad

cannot reach the highest value allowed by the entropy
change, ∆Tmaxad = ∆Smaxiso T/Cp (Msat is the satura-
tion magnetisation and Cp is the heat capacity). In our
case, the rate of change of TN with strain is relatively
small compared to the large ∆Smaxiso in Mn3GaN which
would limit ∆Tmaxad1

if the elastocaloric-based cooling cy-
cle was restricted to strains below 0.75%, as indicated
in Fig. 5. However, at larger strains the cooling cy-
cle benefits from the additional second-order transition
between the collinear magnetic structures and the PM
state with high ∂Tr/∂εxx. This causes a previously un-
reported qualitative change of the temperature depen-
dence of Stot(ε, T ). For large enough values of εxx the
collinear structures are stabilized and two phase transi-
tions are triggered with increasing temperature, namely
first-order canted triangular-to-collinear FIM(or AFM)
and second-order collinear FIM(or AFM)-to-PM. As a
result the adiabatic temperature change is substantially
increased from ∆Tmaxad1

to ∆Tmaxad2
(see Fig. 5). Hence,

our elastocaloric cycle offers simultaneously both large
∆Smaxiso ≈ 100 J/kgK and ∆Tmaxad2

≈ 30 K in the room
temperature range. Even if the corresponding experi-
mental ∆Smaxiso was a factor of 5 lower (as suggested
by the observed barocaloric effect23) the proposed cy-
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FIG. 6. (Color online) 2D presentation of the total entropy
profile Stot(εxx, T ) of Fig. 4; Black lines mark the first (solid)
and second (dashed) order transitions; Numbers mark the
stages of an alternative elastocaloric cooling cycle.

cle would still be highly competitive with the available
magnetocaloric and mechanocaloric counterparts.32,48

We conclude that the combination of the first-order
and second-order transitions improves substantially the
cooling capacity of the elastocaloric cycle. We stress
that both the stability of the collinear magnetic struc-
tures and the existence of the first-order transition are
underpinned by the strong spin-lattice coupling due to
frustrated exchange interactions. In addition, the avail-
ability of phase transitions between two ordered states is
relevant for elastocaloric-based cooling applications as it
can reduce losses due to spin fluctuations and short-range
order of a PM state.1

We note that our cooling cycle relies on large strain-
change, ∆εxx ≈ 1%. We envisage a device based on
a Mn3AN film deposited epitaxially on a piezoelectric
perovskite substratesuch as Pb(Mg1/3Nb2/3)O3-PbTiO3

which can induce the required strain.54

Finally, we discuss the challenges of losses due to ther-
momagnetic hysteresis associated with a first-order phase
transition. A quantitative analysis would require non-
equilibrium thermodynamic modelling55 which is beyond
the scope of this work. Experimentally, hysteresis losses
have been addressed by tuning phase transitions using
field or chemical composition to a crossover between first
and second-order behaviour (tricriticallity).32,56–59 Our
phase diagram in Fig. (3) offers a tricritical point at
εxx ≈ 2.5% (with a reduced entropy change). More-
over, the complex entropy profile of Fig. 4 allows for
construction of cooling cycles not crossing the first-order
phase transition. Fig. 6 shows such an example which
utilizes the strong dependence of entropy on strain in
the collinear FIM state. In doing so, it solves the both
problem of large magnetothermal hysteresis and the wide
required strain span encountered in the cycle of Fig. 4.
Furthermore, the equivalent of the maximum adiabatic

FIG. 7. (Color online) Total entropy against temperature for
three fixed values of strain; The same plot as in Fig. 5 of the
manuscript but focusing on strains relevant for the alternative
cooling cycle. No phase transitions are crossed within the
cycle.

temperature change (defined for first-order transitions)
is not compromised, ∆Tmax∗ad ≈ 30 K as shown in Fig. 7.
However, the maximum entropy change comes down to
∆Smax∗iso ≈ 20 J/kgK as expected for a continuous change
of magnetic ordering. Alternatively, a ”multicaloric” cy-
cle using a combination of strain and magnetic field could
harness the sizeable strain-induced moment in Mn3AN to
facilitate a transfer of hysteresis losses between magnetic
and elastic energy, following a recent example of FeRh.60

We hope that these predictions will motivate further ex-
perimental study.

V. CONCLUSIONS

In summary we have modelled the geometrically frus-
trated magnetic structure of non-collinear and collinear
magnetic structures in Mn-antiperovskite nitrides with
relaxed and biaxially strained lattice at zero and at finite
temperatures. Firstly, by performing extensive SDFT
simulations at zero temperature, we have systematically
investigated the piezomagnetic effect. Remarkably, we
have linked the sign of the canted angle to a simple fea-
ture of the band structure: the relative energy separation
between the d-states of atom A and Mn.

Secondly, we have developed a SDFT-based disordered
local moment theory to study the impact of finite temper-
ature on the magnetic ordering and to evaluate the elas-
tocaloric effect. We have applied the theory to relaxed
Mn3GaN and found the stability of the triangular AFM
phase at low temperature and a first-order transition to
PM phase at the Néel temperature all in good agreement
with available experimental data. The theory is able
to provide the relevant thermodynamic quantities and
to describe the stability of competing magnetic phases
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which allowed us to construct a strain-temperature mag-
netic phase diagram. We predict two novel magnetic
phases, namely collinear ferrimagnetic at εxx < 0.75%
and collinear antiferromagnetic at εxx > 0.75%. These
collinear structures are stable at high temperatures and
show a second-order transition to the PM state which
strongly depends on biaxial strain. The combination of
both second-order and first-order transitions enabled us
to propose an elastocaloric cooling cycle which exhibits
large isothermal entropy change and adiabatic temper-
ature change simultaneously. This rich phenomenology
is available due to the strong spin-lattice coupling linked
fundamentally to the magnetic frustration.

We conclude that the Mn3AN family of frustrated non-
collinear AFMs with complex phase diagrams represent
ample opportunity to tune the chemical composition and
control the critical stimuli to achieve similar or better
cooling characteristics than shown here while still uti-
lizing relatively abundant chemical elements. We thus
suggest Mn3AN as a new class of elastocaloric materials.
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Appendix A: Supercell-based ab initio calculation

Performing supercell-based ab initio phonon calcula-
tions for the full range of required temperatures and
strains would be computationally too demanding. To
gauge the model size of the lattice entropy change and the
adiabatic temperature change of the Debye lattice vibra-
tions we performed only one such calculation for canted
triangular state to compare the lattice entropy of the cu-
bic, -1% compressive, and 1% tensile-strained system us-
ing VASP and Phonopy.61 We used a 2x2x2 superlattice
formed of magnetic unit cells with 5 atoms (40 atoms
in total). Calculations for forces on atoms were per-
formed in the non-collinear regime including spin-orbit
coupling. We obtained the phonon dispersion relations
and densities of states using Phonopy (finite displace-
ment method). The resulting Sph is plotted in Fig. 8
as a function of temperature. We obtain an isother-
mal entropy change Sph(εxx = −1%) − Sph(εxx = 0) ≈
Sph(εxx = 1%)− Sph(εxx = 0) ≈ 10 J/kgK at 300 K and
above. Although this value is large, it is relatively small
compared to the ∆Smaxmag=103.2 J/kgK obtained at the
first-order transition at zero strain. We therefore con-
clude that Stot is dominated by S̄mag.

FIG. 8. (Color online) Lattice vibrational entropy of Mn3GaN
with canted triangular magnetic order vs temperature for the
cubic and two tetragonal cases; The inset shows Sph(εxx =
0, T )− Sph(εxx = ±1%, T ).

Appendix B: DLM linear response theory

Our approach is based on magnetic susceptibility
which quantifies the response of the magnetic system to
an infinitesimally small site-dependent magnetic field. In
the PM state we can make use of the high symmetry of
the system to write:∑

j

[
3kBTδi,j − S(2)

i,j (q)
]
χj,k(q, T ) = µ2δi,k (B1)

where S
(2)
i,j (q) is the lattice Fourier transform of the spin-

spin correlation function in direct space, µ is the size of
the local moments in the fully disordered state, and the
indices i, j, k run through the sites with local magnetic

moments. The eigenvectors of matrix [3kBTδi,j−S(2)
i,j (q)]

and the q-vector for the largest eigenvalue give full in-
formation about the favoured magnetic instability.38,62

We use the KKR multiple scattering theory to evaluate

S
(2)
i,j (q) without assuming a particular type or periodicity

of the antiferromagnetic order.

Appendix C: Computational details of SDFT-based
DLM theory

We used a multiple scattering Korringa-Kohn-
Rostoker (KKR) theory based on green’s function
formalism.42–44,63 As mentioned in the manuscript the
average over the local moment orientations was carried
out via the coherent potential approximation.42,44 For
the treatment of the SDFT potentials we used the muffin-
tin approximation and the maximum value of the angu-
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FIG. 9. (Color online) Total energy calculated at T = 0K
from the SDFT code against different values of the lattice
parameter for the cubic lattice in Mn3GaN. The energies are
given with respect to the total energy we obtain for the ex-
perimental lattice system.

lar momentum used to describe the scattering of the ra-
dial problem was set to lmax=3. The Weiss field SDFT-
DLM data generated to fit the expansion coefficients of
the internal magnetic energy was obtained from the self-
consistent calculation of charge and magnetization den-
sities for the paramagnetic state. In case of Eq. (13)
there is only one order parameter m and two coefficients.
We found that seventeen different values of the quantity
βh = −β∇mΩ̄ (describing the triangular state), ranging
from 0.05 to 10, were enough to fit the constants a and b.
These values correspond to the order parameter m vary-
ing from 0.02 to 0.9. In case of the more complicated
Eq. (14) the ten expansion coefficients were extracted
from more than two hundred independent calculations
of the quantities {βhi}, comprising different triangular
AFM, distorted triangular AFM, and collinear FIM and
AFM magnetic structures. The error for both fits was
within ≈ 1%.

Prior to exploring the strained systems, we identified
the lattice parameter of the cubic unit cell that minimizes
our KKR-based total energy. Fig. 9 shows the total en-
ergy against the lattice parameter of the cubic lattice in
Mn3GaN at zero temperature. The total energy mini-

mizes at 4.14
◦
A, which is roughly 6% higher compared to

the experimental value of 3.898
◦
A.22 The magnetic mo-

ments µ ≈ 3.1µB localised at each Mn site in the un-
strained system are slightly larger than the corresponding
value µ ≈ 2.43µB obtained by VASP with the equilibrium

lattice parameter of 3.86
◦
A. The fast increase of the local

moment size with increasing unit cell volume is another
consequence of the geometric frustration of the exchange
interactions.

Fig. 10 shows the linear dependence of the quadratic
coefficients {a1, a2, α1, α2} on biaxial strain εxx. The
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FIG. 10. (Color online) The second order coefficients a1, a2,
α1, and α2 obtained from fitting the SDFT-DLM Weiss field
data for εxx=0%, ±0.25%, ±0.5%, ±1.0%. The change of the
quartic coefficients has been found to have no relevant effect
on our calculations.

change of the quartic coefficients with εxx was found
to have negligible effect on the temperature-strain mag-
netic phase diagram. Their values at zero strain are
b1=b2=2.856 meV, β1=β3=-37.54 meV, β2=β4=43.08
meV.

Finally, at low temperatures our DLM simulations pre-
dict canting and change of size of local moments of the
triangular phase in Fig. 1 (c,d) in good agreement with
our zero-temperature results25 underlying the PME data
presented in Fig. 2. In the case of Mn3GaN we found
∂θ1/∂εxx ≈ −4 deg at 5K, which is in semiquantita-
tive agreement with our VASP simulations, θ1/∂εxx ≈
−2.2 deg.
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