988 research outputs found

    Time Changes Everything: Examining Socioemotional Selectivity’s Effects on Entrepreneurial Intentions and Attitudes

    Get PDF
    Entrepreneurship is still regarded as a popular career choice across generations, however, the Millennial generation has seen the lowest rates of entrepreneurship among past generations. The purpose of this study is to identify psychological mechanisms that could explain this drop in entrepreneurship, discerning whether or not time perspective has a significant effect on an individual’s entrepreneurial intentions and attitudes. Two studies were conducted: (1) a 2x2 experiment that manipulated time perspective (open time vs limited time) and perceived certainty (perceived certainty vs. perceived uncertainty) to see what effects these variables had on entrepreneurial intentions and emotion regulation regarding entrepreneurial goals. The results suggest that open time perspective has a decreased effect on entrepreneurial attitudes or intentions if the individual is certain about the business opportunity they are considering. Furthermore, open time perspective may lead to a decrease in entrepreneurial intentions, initially at least, as the individuals may deem it safer to improve their knowledge and experience before pursuing entrepreneurship as they have perceived open time ahead of them. In contrast, counterintuitive to what most millennials generally think, those that are certain and have a limited time perspective have higher entrepreneurial intentions and positive emotions. This thesis accordingly offers important implications for entrepreneurial theory and practice

    Detailed X-ray spectroscopy of the magnetar 1E 2259+586

    Get PDF
    Magnetic field geometry is expected to play a fundamental role in magnetar activity. The discovery of a phase-variable absorption feature in the X-ray spectrum of SGR 0418+5729, interpreted as cyclotron resonant scattering, suggests the presence of very strong non-dipolar components in the magnetic fields of magnetars. We performed a deep XMM-Newton observation of pulsar 1E 2259+586, to search for spectral features due to intense local magnetic fields. In the phase-averaged X-ray spectrum, we found evidence for a broad absorption feature at very low energy (0.7 keV). If the feature is intrinsic to the source, it might be due to resonant scattering/absorption by protons close to star surface. The line energy implies a magnetic field of ~ 10^14 G, roughly similar to the spin-down measure, ~ 6x10^13 G. Examination of the X-ray phase-energy diagram shows evidence for a further absorption feature, the energy of which strongly depends on the rotational phase (E >~ 1 keV ). Unlike similar features detected in other magnetar sources, notably SGR 0418+5729, it is too shallow and limited to a small phase interval to be modeled with a narrow phase-variable cyclotron absorption line. A detailed phase-resolved spectral analysis reveals significant phase-dependent variability in the continuum, especially above 2 keV. We conclude that all the variability with phase in 1E 2259+586 can be attributed to changes in the continuum properties which appear consistent with the predictions of the Resonant Compton Scattering model

    The birthplace and age of the isolated neutron star RX J1856.5-3754

    Full text link
    X-ray observations unveiled various types of radio-silent Isolated Neutron Stars (INSs), phenomenologically very diverse, e.g. the Myr old X-ray Dim INS (XDINSs) and the kyr old magnetars. Although their phenomenology is much diverse, the similar periods (P=2--10 s) and magnetic fields (~10^{14} G) suggest that XDINSs are evolved magnetars, possibly born from similar populations of supermassive stars. One way to test this hypothesis is to identify their parental star clusters by extrapolating backward the neutron star velocity vector in the Galactic potential. By using the information on the age and space velocity of the XDINS RX J1856.5-3754, we computed backwards its orbit in the Galactic potential and searched for its parental stellar cluster by means of a closest approach criterion. We found a very likely association with the Upper Scorpius OB association, for a neutron star age of 0.42+/-0.08 Myr, a radial velocity V_r^NS =67+/- 13$ km s^{-1}, and a present-time parallactic distance d_\pi^NS = 123^{+11}_{-15} pc. Our result confirms that the "true" neutron star age is much lower than the spin-down age (tau_{sd}=3.8 Myrs), and is in good agreement with the cooling age, as computed within standard cooling scenarios. The mismatch between the spin-down and the dynamical/cooling age would require either an anomalously large breaking index (n~20) or a decaying magnetic field with initial value B_0 ~ 10^{14} G. Unfortunately, owing to the uncertainty on the age of the Upper Scorpius OB association and the masses of its members we cannot yet draw firm conclusions on the estimated mass of the RX J1856.5-3754 progenitor.Comment: 6 pages, accepted for publication on Monthly Notices of the Royal Astronomical Societ

    Patients’ reports about medical doctors’ inquiries on their mental health: Do generational status, ethnicity and mental health/substance use disorders matter?

    Get PDF
    Immigrants are less likely than others to use mental health (MH) services. Physicians\u27 limited time often precludes inquiry about MH. This study investigated the influence of generational status, ethnicity, and mental/substance use disorders on physicians\u27 inquiries about Asian American (AA) MH. Data from the National Latino and Asian American Study were analyzed (n=1,853). The outcome was past year physician\u27s inquiry regarding MH. Results revealed that AA with U.S.-born parents had significantly greater odds compared to AA born outside the U.S. to report that their doctors inquired about their MH (OR=218, 95% CI: 1.28, 3.73). Past year mental/substance use disorder increased the odds of AA reporting that their doctors inquired about their MH (OR=8.41; 95% CI: 3.28, 21.66). This increase differed by ethnicity, with Chinese less affected than Vietnamese (OR=0.17; 95% CI: 0.05, 0.59). The reasons for these associations warrant further exploration

    Pterodactyl: The Development and Performance of Guidance Algorithms for a Mechanically Deployed Entry Vehicle

    Get PDF
    Pterodactyl is a NASA Space Technology Mission Directorate (STMD) project focused on developing a design capability for optimal, scalable, Guidance and Control (G&C) solutions that enable precision targeting for Deployable Entry Vehicles (DEVs). This feasibility study is unique in that it focuses on the rapid integration of targeting performance analysis with structural & packaging analysis, which is especially challenging for new vehicle and mission designs. This paper will detail the guidance development and trajectory design process for a lunar return mission, selected to stress the vehicle designs and encourage future scalability. For the five G&C configurations considered, the Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) was selected for configurations requiring bank angle guidance and FNPEG with Uncoupled Range Control (URC) was developed for configurations requiring angle of attack and sideslip angle guidance. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing initiation point, while abiding by trajectory constraints for nominal and dispersed trajectories

    PULXs as Accreting Magnetars: Observational Manifestations

    Get PDF
    Pulsating Ultra Luminous X-ray sources (PULXs) are thought to be X-ray bright, accreting, magnetized neutron stars, and could be the first and only evidence for the existence of magnetars in binary systems. Their apparent soft (< 20 keV) X-ray luminosity can exceed the Eddington luminosity for a neutron star (NS) by a few orders of magnitude. Although several scenarios have been proposed to explain the different components observed in the X-ray spectra and the characteristics of the X-ray lightcurve of these system, detailed quantitative calculations are still missing. In particular, the observed soft X-ray lightcurves are almost sinuosidal and show an increase in the pulsed fraction (from 8% up to even 30%) with increasing energy. Here, we present how emission originating from an optically thick envelope, expected to be formed during super-Eddington accretion, can result in pulsed fractions similar to observations

    Accurate X-ray position and multiwavelength observations of the isolated neutron star RBS 1774

    Get PDF
    We report on X-ray, optical, infrared and radio observations of the X-ray dim isolated neutron star (XDINS) 1RXS J214303.7+065419 (also known as RBS 1774). The X-ray observation was performed with the High Resolution Camera on board of the Chandra X-ray Observatory, allowing us to derive the most accurate position for this source (alpha = 21h43m3.38s, delta= +6deg54'17".53; 90% uncertainty of 0."6). Furthermore, we confirmed with a higher spatial accuracy the point-like nature of this X-ray source. Optical and infrared observations were taken in B, V, r', i', J, H and Ks filters using the Keck, VLT, Blanco and Magellan telescopes, while radio observations were obtained from the ATNF Parkes single dish at 2.9GHz and 708MHz. No plausible optical and/or infrared counterpart for RBS 1774 was detected within the refined sub-arsecond Chandra X-ray error circle. Present upper limits to the optical and infrared magnitudes are r'>25.7 and J>22.6 (5 sigma confidence level). Radio observations did not show evidence for radio pulsations down to a luminosity at 1.4 GHz of L < 0.02 mJy kpc^2, the deepest limit up to date for any XDINS, and lower than what expected for the majority of radio pulsars. We can hence conclude that, if RBS 1774 is active as radio pulsar, its non detection is more probably due to a geometrical bias rather than to a luminosity bias. Furthermore, no convincing evidence for RRAT-like radio bursts have been found. Our results on RBS 1774 are discussed and compared with the known properties of other thermally emitting neutron stars and of the radio pulsar population.Comment: 8 pages, 9 figures, accepted for publication on MNRA

    Pterodactyl: Thermal Protection System for Integrated Control Design of a Mechanically Deployed Entry Vehicle

    Get PDF
    The need for precision landing of high mass payloads on Mars and the return of sensitive samples from other planetary bodies to specific locations on Earth is driving the development of an innovative NASA technology referred to as the Deployable Entry Vehicle (DEV). A DEV has the potential to deliver an equivalent science payload with a stowed diameter 3 to 4 times smaller than a traditional rigid capsule configuration. However, the DEV design does not easily lend itself to traditional methods of directional control. The NASA Space Technology Mission Directorate (STMD)s Pterodactyl project is currently investigating the effectiveness of three different Guidance and Control (G&C) systems actuated flaps, Center of Gravity (CG) or mass movement, and Reaction Control System (RCS) for use with a DEV using the Adaptable, Deployable, Entry, and Placement Technology (ADEPT) design. This paper details the Thermal Protection System (TPS) design and associated mass estimation efforts for each of the G&C systems. TPS is needed for the nose cap of the DEV and the flaps of the actuated flap control system. The development of a TPS selection, sizing, and mass estimation method designed to deal with the varying requirements for the G&C options throughout the trajectory is presented. The paper discusses the methods used to i) obtain heating environments throughout the trajectory with respect to the chosen control system and resulting geometry; ii) determine a suitable TPS material; iii) produce TPS thickness estimations; and, iv) determine the final TPS mass estimation based on TPS thickness, vehicle control system, vehicle structure, and vehicle payload

    Neural Encoding of Odors during Active Sampling and in Turbulent Plumes

    Get PDF
    Sensory inputs are often fluctuating and intermittent, yet animals reliably utilize them to direct behavior. Here we ask how natural stimulus fluctuations influence the dynamic neural encoding of odors. Using the locust olfactory system, we isolated two main causes of odor intermittency: chaotic odor plumes and active sampling behaviors. Despite their irregularity, chaotic odor plumes still drove dynamic neural response features including the synchronization, temporal patterning, and short-term plasticity of spiking in projection neurons, enabling classifier-based stimulus identification and activating downstream decoders (Kenyon cells). Locusts can also impose odor intermittency through active sampling movements with their unrestrained antennae. Odors triggered immediate, spatially targeted antennal scanning that, paradoxically, weakened individual neural responses. However, these frequent but weaker responses were highly informative about stimulus location. Thus, not only are odor-elicited dynamic neural responses compatible with natural stimulus fluctuations and important for stimulus identification, but locusts actively increase intermittency, possibly to improve stimulus localization

    The first Suzaku observation of SGR 1806-20

    Full text link
    The soft gamma-ray repeater SGR 1806-20 has been attracting a lot of attention owing to the fact that in December 2004 it emitted the most powerful giant flare ever observed. Here we present the results of the first Suzaku observation of SGR 1806-20, that seems to have reached a state characterized by a flux close to the pre-flare level and by a relatively soft spectrum. Despite this, the source remained quite active, as testified by several short bursts observed by Suzaku. We discuss the broadband spectral properties of SGR 1806-20 in the context of the magnetar model, considering its recent theoretical developments.Comment: 3 pages, 1 figure. Proceedings of the conference "40 Years of Pulsars, Millisecond Pulsars, Magnetars and More", Montreal, August 12-17 2007. AIP, in pres
    • …
    corecore