98 research outputs found

    Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing

    Get PDF
    Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy

    Elevated urinary excretion of free pyridinoline in Friesian horses suggests a breed-specific increase in collagen degradation

    Get PDF
    Background: Friesian horses are known for their high inbreeding rate resulting in several genetic diseases such as hydrocephaly and dwarfism. This last decade, several studies focused on two other presumed hereditary traits in Friesian horses: megaoesophagus and aortic rupture. The pathogenesis of these diseases remains obscure but an important role of collagen has been hypothesized. The purpose of this study was to examine possible breed-related differences in collagen catabolism. Urinary specimens from Friesian (n = 17, median age 10 years old) and Warmblood horses (n = 17, median age 10 years old) were assessed for mature collagen cross-links, i.e. pyridinoline (PYD) (=hydroxylysylpyridinoline/HP) and deoxypyridinoline (DPD) (lysylpyridinoline /LP). Solid-phase extraction was performed, followed by reversed-phase ion-paired liquid chromatography prior to tandem mass spectrometry (MS/MS) detection. Results: Mean urinary concentrations of free PYD, expressed as fPYD/creatinine ratio, were significantly higher in Friesian horses compared to Warmblood horses (28.5 ± 5.2 versus 22.2 ± 9.6 nmol/mmol, p = 0.02) while mean fDPD/creatinine ratios were similar in both horse breeds (3.0 ± 0.7 versus 4.6 ± 3.7 nmol/mmol, p = 0.09). Conclusions: Since DPD is considered a specific bone degradation marker and PYD is more widely distributed in connective tissues, the significant elevation in the mean PYD/DPD ratio in Friesian versus Warmblood horses (9.6 ± 1.6 versus 5.7 ± 1.8, p < 0.0001) suggests a soft tissue origin for the increased fPYD levels. Considering that a previous study found no differences in total collagen content between Friesian and Warmblood horses for tendon and aortic tissue, this indicates a higher rate of collagen degradation. The latter might, at least in part, explain the predisposition of Friesians to connective tissue disorders

    Cation exchange HPLC analysis of desmosines in elastin hydrolysates

    Get PDF
    Desmosine crosslinks are responsible for the elastic properties of connective tissues in lungs and cardiovascular system and are often compromised in disease states. We developed a new, fast, and simple cation exchange HPLC assay for the analysis of desmosine and isodesmosine in animal elastin. The method was validated by determining linearity, accuracy, precision, and desmosines stability and was applied to measure levels of desmosines in porcine and murine organs. The detection and quantification limits were 2 and 4 pmol, respectively. The run-time was 8 min. Our cation exchange column does not separate desmosine and isodesmosine, but their level can be quantified from absorbance at different wavelengths. Using this assay, we found that desmosines levels were significantly lower in elastin isolated from various organs of immunodeficient severe combined immunodeficiency mice compared with wild-type animals. We also found that desmosines levels were lower in lung elastin isolated from hyperhomocysteinemic Pcft−/− mice deficient in intestinal folate transport compared with wild-type Pcft+/+ animals

    Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae.

    Get PDF
    © 2013 Badaruddin et al.Editor - Peter N. Dodds, Commonwealth Scientific and Industrial Research Organisation (CSIRO), AustraliaThis work was funded by the Biotechnology and Biological Sciences Research Council and a European Research Council Advanced Investigator Award to NJT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae.Biotechnology and Biological Sciences Research Council (BBSRC)European Research Council (ERC

    Technical and Comparative Aspects of Brain Glycogen Metabolism.

    Get PDF
    It has been known for over 50 years that brain has significant glycogen stores, but the physiological function of this energy reserve remains uncertain. This uncertainty stems in part from several technical challenges inherent in the study of brain glycogen metabolism, and may also stem from some conceptual limitations. Factors presenting technical challenges include low glycogen content in brain, non-homogenous labeling of glycogen by radiotracers, rapid glycogenolysis during postmortem tissue handling, and effects of the stress response on brain glycogen turnover. Here, we briefly review aspects of glycogen structure and metabolism that bear on these technical challenges, and discuss ways these can be overcome. We also highlight physiological aspects of glycogen metabolism that limit the conditions under which glycogen metabolism can be useful or advantageous over glucose metabolism. Comparisons with glycogen metabolism in skeletal muscle provide an additional perspective on potential functions of glycogen in brain
    • …
    corecore