2,384 research outputs found
A New Method of Vibration Analysis of Elastic Systems, Based on the Lagrange Equations of the First Kind
 
The Simplest Model of the Turning Movement of a Car with its Possible Sideslip
The simplest model of the turning movement of a car with its possiple sideslip is considered. To this end, a nonholonomic problem with nonretaining constraints is solved. The four possible types of the car motion are studied
Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays
For the first time a proper comparison of the average depth of shower maximum
() published by the Pierre Auger and Telescope Array Observatories
is presented. The distributions measured by the Pierre Auger
Observatory were fit using simulated events initiated by four primaries
(proton, helium, nitrogen and iron). The primary abundances which best describe
the Auger data were simulated through the Telescope Array (TA) Middle Drum (MD)
fluorescence and surface detector array. The simulated events were analyzed by
the TA Collaboration using the same procedure as applied to their data. The
result is a simulated version of the Auger data as it would be observed by TA.
This analysis allows a direct comparison of the evolution of with energy of both data sets. The
measured by TA-MD is consistent with a preliminary simulation of the Auger data
through the TA detector and the average difference between the two data sets
was found to be .Comment: To appear in the Proceedings of the UHECR workshop, Springdale USA,
201
Shape of primary proton spectrum in multi-TeV region from data on vertical muon flux
It is shown, that primary proton spectrum, reconstructed from sea-level and
underground data on muon spectrum with the use of QGSJET 01, QGSJET II, NEXUS
3.97 and SIBYLL 2.1 interaction models, demonstrates not only model-dependent
intensity, but also model-dependent form. For correct reproduction of muon
spectrum shape primary proton flux should have non-constant power index for all
considered models, except SIBYLL 2.1, with break at energies around 10-15 TeV
and value of exponent before break close to that obtained in ATIC-2 experiment.
To validate presence of this break understanding of inclusive spectra behavior
in fragmentation region in p-air collisions should be improved, but we show,
that it is impossible to do on the basis of the existing experimental data on
primary nuclei, atmospheric muon and hadron fluxes.Comment: Submitted to Phys. Rev.
Pathophysiological changes at single and multiple introduction of Ciprofloxacin solution under experimental conditions
The article presents the results of experimental biological modelling of single and subacute introduction of Ciprofloxacin to the rabbits. State of an organism of animals was estimated by biochemical, hematological, hemostatic and morphologic indices. Introduction of preparation samples was intravenous, according to the Instruction of medical use. Main result of the experiments is determination of toxic effects that are typical for fluorinequinolone and developed on the background of multiple introduction of preparation in the doses higher than therapeutic
Ultrathin Tropical Tropopause Clouds (UTTCs) : I. Cloud morphology and occurrence
Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth´s atmosphere. Individual UTTCs may exist for many hours as an only 200--300 m thick cloud layer just a few hundred meters below the tropical cold point tropopause, covering up to 105 km2. With temperatures as low as 181 K these clouds are prime representatives for defining the water mixing ratio of air entering the lower stratosphere
On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements
For the first time a complete set of the most recent direct data on primary
cosmic ray spectra is used as input into calculations of muon flux at sea level
in wide energy range GeV. Computations have been performed
with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained
muon intensity with the data of muon experiments shows, that measurements of
primary nuclei spectra conform to sea level muon data only up to several tens
of GeV and result in essential deficit of muons at higher energies. As it
follows from our examination, uncertainties in muon flux measurements and in
the description of nuclear cascades development are not suitable to explain
this contradiction, and the only remaining factor, leading to this situation,
is underestimation of primary light nuclei fluxes. We have considered
systematic effects, that may distort the results of the primary cosmic ray
measurements with the application of the emulsion chambers. We suggest, that
re-examination of these measurements is required with the employment of
different hadronic interaction models. Also, in our point of view, it is
necessary to perform estimates of possible influence of the fact, that sizable
fraction of events, identified as protons, actually are antiprotons. Study of
these cosmic ray component begins to attract much attention, but today nothing
definite is known for the energies GeV. In any case, to realize whether
the mentioned, or some other reasons are the sources of disagreement of the
data on primaries with the data on muons, the indicated effects should be
thoroughly analyzed
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
We describe the method devised to reconstruct inclined cosmic-ray air showers
with zenith angles greater than detected with the surface array of
the Pierre Auger Observatory. The measured signals at the ground level are
fitted to muon density distributions predicted with atmospheric cascade models
to obtain the relative shower size as an overall normalization parameter. The
method is evaluated using simulated showers to test its performance. The energy
of the cosmic rays is calibrated using a sub-sample of events reconstructed
with both the fluorescence and surface array techniques. The reconstruction
method described here provides the basis of complementary analyses including an
independent measurement of the energy spectrum of ultra-high energy cosmic rays
using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of
Cosmology and Astroparticle Physics (JCAP
- …