6,710 research outputs found

    Quantum Bit Commitment with a Composite Evidence

    Full text link
    Entanglement-based attacks, which are subtle and powerful, are usually believed to render quantum bit commitment insecure. We point out that the no-go argument leading to this view implicitly assumes the evidence-of-commitment to be a monolithic quantum system. We argue that more general evidence structures, allowing for a composite, hybrid (classical-quantum) evidence, conduce to improved security. In particular, we present and prove the security of the following protocol: Bob sends Alice an anonymous state. She inscribes her commitment bb by measuring part of it in the + (for b=0b = 0) or ×\times (for b=1b=1) basis. She then communicates to him the (classical) measurement outcome RxR_x and the part-measured anonymous state interpolated into other, randomly prepared qubits as her evidence-of-commitment.Comment: 6 pages, minor changes, journal reference adde

    Classical capacity of the lossy bosonic channel: the exact solution

    Full text link
    The classical capacity of the lossy bosonic channel is calculated exactly. It is shown that its Holevo information is not superadditive, and that a coherent-state encoding achieves capacity. The capacity of far-field, free-space optical communications is given as an example.Comment: 4 pages, 2 figures (revised version

    Performance of concatenated Reed-Solomon/Viterbi channel coding

    Get PDF
    The concatenated Reed-Solomon (RS)/Viterbi coding system is reviewed. The performance of the system is analyzed and results are derived with a new simple approach. A functional model for the input RS symbol error probability is presented. Based on this new functional model, we compute the performance of a concatenated system in terms of RS word error probability, output RS symbol error probability, bit error probability due to decoding failure, and bit error probability due to decoding error. Finally we analyze the effects of the noisy carrier reference and the slow fading on the system performance

    Spacecraft telecommunications system mass estimates

    Get PDF
    Mass is the most important limiting parameter for present-day planetary spacecraft design, In fact, the entire design can be characterized by mass. The more efficient the design of the spacecraft, the less mass will be required. The communications system is an essential and integral part of planetary spacecraft. A study is presented of the mass attributable to the communications system for spacecraft designs used in recent missions in an attempt to help guide future design considerations and research and development efforts. The basic approach is to examine the spacecraft by subsystem and allocate a portion of each subsystem to telecommunications. Conceptually, this is to divide the spacecraft into two parts, telecommunications and nontelecommunications. In this way, it is clear what the mass attributable to the communications system is. The percentage of mass is calculated using the actual masses of the spacecraft parts, except in the case of CRAF. In that case, estimated masses are used since the spacecraft was not yet built. The results show that the portion of the spacecraft attributable to telecommunications is substantial. The mass fraction for Voyager, Galileo, and CRAF (Mariner Mark 2) is 34, 19, and 18 percent, respectively. The large reduction of telecommunications mass from Voyager to Galileo is mainly due to the use of a deployable antenna instead of the solid antenna on Voyager

    Analytical Blowup Solutions to the Pressureless Navier-Stokes-Poisson Equations with Density-dependent Viscosity in R^N

    Full text link
    We study the N-dimensional pressureless Navier--Stokes-Poisson equations with density-dependent viscosity. With the extension of the blowup solutions for the Euler-Poisson equations, the analytical blowup solutions,in radial symmetry, in R^N are constructed.Comment: 12 Pages, more detail in the introduction to explain the validity of the mode

    The use of interleaving for reducing radio loss in convolutionally coded systems

    Get PDF
    The use of interleaving after convolutional coding and deinterleaving before Viterbi decoding is proposed. This effectively reduces radio loss at low-loop Signal to Noise Ratios (SNRs) by several decibels and at high-loop SNRs by a few tenths of a decibel. Performance of the coded system can further be enhanced if the modulation index is optimized for this system. This will correspond to a reduction of bit SNR at a certain bit error rate for the overall system. The introduction of interleaving/deinterleaving into communication systems designed for future deep space missions does not substantially complicate their hardware design or increase their system cost

    Optimal phase measurements with pure Gaussian states

    Full text link
    We analyze the Heisenberg limit on phase estimation for Gaussian states. In the analysis, no reference to a phase operator is made. We prove that the squeezed vacuum state is the most sensitive for a given average photon number. We provide two adaptive local measurement schemes that attain the Heisenberg limit asymptotically. One of them is described by a positive operator-valued measure and its efficiency is exhaustively explored. We also study Gaussian measurement schemes based on phase quadrature measurements. We show that homodyne tomography of the appropriate quadrature attains the Heisenberg limit for large samples. This proves that this limit can be attained with local projective Von Neuman measurements.Comment: 9 pages. Revised version: two new sections added, revised conclusions. Corrected prose. Corrected reference
    corecore