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This paper briefly reviews the concatenated Reed-Solomon (RS)/Viterbi coding
system. Then the performance of the system is analyzed and results are derived with a
new simple approach. We present a functional model for the input RS symbol error
probability n. Based on this new functional model, we compute the performance of a
concatenated system in terms of RS word error probability, output RS symbol error
probability, bit error probability due to decoding failure, and bit error probability due to
decoding error. Finally we analyze the effects of the noisy carrier reference and the slow

fading on the system performance.

I. Introduction

The Voyager 2 spacecraft, which was launched in 1977 and
has encountered Jupiter and Saturn systems in 1979 and 1981
respectively, will fly by Uranus in 1986 and Neptune in 1989.
Voyager delivered 115.2 kbps at Jupiter (5 AU from earth),
and 44.4 kbps at Saturn (10 AU from earth), both with 5 X
1073 bit error probability. In order to enhance Voyager’s
communications capability, NASA’s Jet Propulsion Labora-
tory is expected to exercise a planned option by switching on
its Reed-Solomon (RS) encoder on the Voyager spacecraft.
This results in a RS/Viterbi concatenated coded communica-
tion link to increase the achievable data rate. Reed-Solomon
decoders will be installed in NASA’s Deep Space Network
(DSN) ground stations in time for the 1986 Uranus encounter.
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The concatenated RS/Viterbi channel coding and its perfor-
mance has been considered in the past; for example, see Refs.
1-5. This paper gives a brief review of this topic and shows the
derivation of the results with a new simple approach that will
be useful to system design engineers.

In concatenated RS/Viterbi channel coding, the key. param-
eter for evaluating the performances of the system is the input
RS symbol error probability #. Based on previous simulation
and measurement results, we give a simple functional model
for RS decoder input symbol error probability #. Using this
model, we evaluate the RS word error probability, output RS
symbol error probability and bit error probability. Finally we
consider the effects of phase jitter and slow fading channels:
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namely, the effects of Rayleigh, Rician, and log-normal fading
channels on the performance of this concatenated RS/Viterbi
channel. We use the outer code RS (255, 223), convolutional
rate 1/2 and constraint length 7 code to illustrate these results.

ll. System Model

The block diagram of the concatenated coding system is
given in Fig. 1. The Reed-Solomon/Viterbi concatenated code
consists of a Reed-Solomon (RS) outer code and a convolu-
tional inner code which is Viterbi decoded.

The binary input data sequence is divided into J bit
sequences to form symbols over a M = 27.ary alphabet; i.e.,
there are M possible RS symbols. The RS coder then encodes
the symbols such that any combination of ¢ or fewer symbol
errors per RS word (27-1 symbols per word) can be cor-
rected. A very simple block diagram of an RS block coder is
shown in Fig. 2. All coding and decoding operations involve
RS symbols, not individual bits. Here K = M - 1 - 2¢ infor-
mation symbols (or J[M - 1- 2t] information bits) from
some data source enter the RS coder to the left. The result of
coding operations is a codeword of length N=27/-1=M- 1
symbols, of which the first K= M - 1 -2t are the same
symbols as those entering to the left. This makes the code
systematic. The remainder of the codeword is filled in with 2¢
parity symbols; = (N - K)/2 represents the number of cor-
rectable RS symbol errors iri an RS codeword. That is, if ¢ or
less RS symbols are in error in any way, the decoder will be
capable of correcting them. An RS symbol is in error if any of
the J bits making up the symbol are in error. The minimum
distance of RS code is 2¢ + 1 symbols. -

The interleaving buffers are required because the inner
Viterbi decoder errors tend to occur in bursts, which occasion-
ally are as long as several constraint lengths. Without interleav-
ing, Viterbi decoder burst error events would tend to occur
within one RS codeword. Thus over a period of time there
would be a tendency for some codewords to have “too many”
errors to be corrected. The performance of the RS decoder is
severely degraded by highly correlated errors among several
successive symbols. The purpose of interleaving and
de-interleaving is to make the RS symbol errors, at the input
of the RS decoder, independent of each other and disperse the
RS symbol errors, in other words, to break the burst errors out
of the Viterbi decoder among several code words.

The level of interleaving / corresponds to the number of RS
code words involved in the interleaving and de-interleaving
operation. Interleaving and de-interleaving operations over a
Viterbi channel can be explained simply by considering two
I'X 27 - 1 matrices, one at the input of the channel and one at
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the output. For interleaving, put the code words with length
2/ - 1in rows 1,2,---, I of the matrix, then transmit the
symbols of columns 1, 2, - - -, 27 - 1 through the channel. For
de-interleaving, do the reverse operation. For the RS code
(255, 223), simulation results (Ref. 3) have shown that the
interleaving level of /= 16 is sufficient to make the RS symbol
errors independent of each other for the (K=7, r=1/2)
Viterbi channel. Thus we can assume henceforth that the
combination of interleaving, convolutional code, additive
white Gaussian noise (AWGN) channel, Viterbi decoder and
de-interleaving creates an equivalent M-ary discrete memory-
less channel (DMC) with transition error probability #, shown
in Fig. 3.

ill. A Functional Model for the RS Decoder
Input Symbol Error Probability

Based on simulation results of Linkabit for m given in Ref. 3
and then using a least-squares curve fit, we proposed a simple
model for 7 as

where 8, = 4.9551, B, = 52275, T* = max (By/B,, T), T is
Viterbi decoder node synchronization threshold (for E,/N,
< T Viterbi decoder produces random output), and E, /N,
is the bit SNR of the Viterbi channel (inner code). For perfect
node synchronization T* = $,/8, . Figure 4 shows the baseline
symbol error probability n for the (255, 223) RS code vs
E, [N, of the Viterbi channel (inner code), using (1).

IV. Error Events in RS Decoding

Consider an (V, K) Reed-Solomon code. We know that
t-error correcting RS code can decode a code word correctly if
the number of symbol errors are ¢ or less where ¢ = (V - K)/2.
Consider the space of all received vectors y of length N and
spheres of radius ¢ around code words in this V-dimensional
vector space, as is shown in Fig. 5. These spheres do not
overlap because the minimum distance between codewords is
2t + 1. Since we have a linear code, without loss of generality,
we assume the all zero codeword X, is sent. In decoding the
RS code words, depending on what region in the observation
space of Fig. 5 the received vector y falls, three disjoint events
may occur. The first event occurs if there are ¢ or less input RS
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symbol errors in a received codeword. This occurs if the
received vector y falls in the double-shaded sphere around x,,
yeS,. In this case the decoder successfully corrects the errors,
decodes x,, as the codeword and outputs the correct informa-
tion block G, = u,y. Then, the “correct decoding” event
occurs. The second event happens if there are more than ¢
input RS symbol errors in a received codeword and the cor-
rupted codeword is not within a distance of ¢ symbols to any
other codeword. In other words, y does not fall in any sphere
of radius ¢ around the codewords, yeSg. In this case the RS
decoder fails to decode and we say that a “decoding failure”
event occurs. Here, the decoder just outputs the first V- 2t
undecoded Viterbi channel symbols (input RS symbols) that
may contain symbol errors. The third event happens if there
are more than ¢ input RS symbol errors in a received codeword
and the corrupted codeword is within a distance of ¢ symbols
to some other codeword than the correct codeword x. This
happens if y falls in any one of the single-shaded spheres, yeS,.
Here the decoder decodes incorrectly and outputs an incorrect
information block. Then, a “decoding error” event occurs.

V. Error Performance Analysis

In this section we derive expressions for RS codeword, RS
symbol, RS bit, and RS information block error probabilities.

A. RS Codeword Error Probability

Denote the word error probability for an (V, K) RS code
by Py (N, £). An RS codeword is in error when there are more
than ¢ channel symbol errors in a received codeword y; i.e.,
ye{Sgp US;}. Therefore, we should consider all combinations
of k channel symbol errors within the NV symbols, for all k > ¢.
Thus

N

RO = D (’Z)nk(l - v @

k=t+1

where m is the RS decoder input symbol error probability
leaving the Viterbi decoder (groups of J bits).

B. RS Symbol Error Probability

Denote the RS symbol error probability by Pg. This error
may result -when the received codeword is either yeSg or yeS;.
Denote the RS symbol error probabilities when yeSg and yesS;
by Py  and Pg ;, respectively. Since these events are disjoint,
we have

Py = PS,F + PS’ I 3)

1. Derivation of Pgp. Recall that when the RS decoder
fails to decode, yeSg, the decoder simply outputs the first M -
1 - 2t Viterbi channel symbols as the “decoded’ information
block u,. Hence the output RS symbol error pattern is exactly
the same as the first M~ 1 - 2¢ undecoded input symbols to
the RS decoder. An output RS symbol at position say k, k =
1,2,---, M- 1- 2t is in error, when the input RS symbol at
the same position k is in error and there are at least ¢ input RS
symbol errors in the remaining N - 1 symbols of received
codeword (i.e., other than the position k). The probability of
the input RS symbol at position k being in error is #. The
probability that there will be ¢ or more input RS symbol errors
in the remaining positions, i.e., the N - 1 places of the received
codeword, is

. N-1
P,(N-1,t-1) = E(N' ) (1 - ;mNmt “)

m
m=t
Thus

Py, = mP,(N-1,¢-1) (5

2. Derivation of Pg,. As we have seen, a decoding error
occurs if the received codeword y belongs to one of the
spheres in ;. Consider a particular codeword x,, which has
exactly n particular nonzero symbols. This codeword has a
distance n from the all zero codeword x, and hence has
weight n. Let

W.,W,W

1’ 2 33..',w

n
be n independent identically distributed (iid) random variables
corresponding to the n nonzero symbols of x,,, and
2,253,245 2y,
be NV - n iid random variables corresponding to the NV - n zero
symbols of x,. Each of these random variables W; i=-1,
2,--4,n, andZ]-;]'= 1,2,---,N- n,can be either O or 1. Let
us compute the probability that x,, is sent and the decoder
decodes it as x,, i.e., the decoder has made an incorrect
decision. Denote this probability by Pr{x, - x,}. This event
occurs if y falls in a sphere with radius ¢ around the codeword
X,. The probability that a zeéro symbol is sent and a nonzero
symbol of a particular value is received is #/(M ~ 1). But the
probability that a zero symbol is sent and a nonzero symbol of
any value is received is m, since there are M- 1 nonzero
symbols. For computation convenience, without loss of gen-
erality, we can assume the first #n symbols in x, are the
nonzero symbols. Now let y=(y, ---,yy) and x,, =(x, >

Xa.ns " »XN,n) and define
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W, = i=12---,n (6)

then given X, is sent

Priw, = 0} = ;75
(7
m
A e
Similarly, if we define
0; yn+i = xn+i,n
z, = i=12---,N-n (8
1S Vi # Xpain
then given x,, is sent
PriZ =0} =1-n
%)

I
—
—’

I]

=

Pr {Z,.
Let

n N-n
W=>3 WadZ=) Z
i=1 i=1

Then denoting the weight between two vectors by w(-,*) we
have

Prix,~>x,}= Pr{w(x,,y) <tlx}

(10)
= Pr{W+Z<1t)}
But
t
PriWw+Z <t} = 3~ Pr{Ww=i}Pr{Z<t-i}
=0
@amn
t min(t-{N-n)
=3 pPw=i} 3 P{Z=j}
i=0 j=0
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where
PriW=i}= (:’) (1 - Aﬁ)i(M’_TI)H (12)
and |
PrZ=j}= (N].'”) (1 - mpv (13)
Therefore
Prix,>x } = f: mm(f'iN_")H{W=i}Rr{Z=f} (14)

i=0 j=0

This is an exact analytic result. An upper bound using the
Chernhoff bound technique (Ref. 6) is derived in Appendix A.
This gives a simpler expression than the exact result in (14).

Let q(n) denote the number of codewords of distance n
from x,; then the symbol error probability Pg | due to decod-
ing error is

N
PS,I = Z % q(n) Prix, >x,} (15)

n=2t+1

RS code is a maximum distance separable (MDS) code.
Therefore we have (Ref. 7)

n-2¢-1

an) = (- 1) (1,‘,’ )Z (”,; 1)(—1)'" ML (16)

m=0

C. RS Bit Error Probability

Denote the RS bit error probability by P (RS). This bit
error is either due to decoding failure or decoding error.
Denote the RS bit error probability when yeSg and yeS; by
P, p(RS) and P, ;(RS), respectively. Since these events are
disjoint, we have

Py(RS) = P, p(RS) + Py, (RS) @17
1. Derivation of P, p(RS). Recall that when the RS

decoder fails to decode, it outputs the first M- 1 - 2¢ input
RS symbols as “decoded” information block u,. A bit at
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position say m, m=1, 2, - . -, J within the RS output symbol
at position say k; k=1,2,---,M- 1- 2t of a codeword is in
error if the bit at position m within the input RS symbol at
position k of an undecoded codeword is in error and there are
t or more RS symbol errors in the received codeword out of
the Viterbi decoder in other positions than position k. But the
probability that a bit would be in error in an undecoded RS
codeword is the bit error rate of the Viterbi decoder denoted
by P, (Viterbi). The probability that there are # or more RS
symbol errors in an undecoded codeword in positions other
than position k is given by (4). Thus the RS bit error rate

Py r (RS) is

pb,F(RS) =P, (Viterbi) -PW(N- L,t-1) (18)

2. Derivation of P, ;(RS).-We have derived the symbol
error probability Pg, in (15). Now the bit error probability
P, s

b1

M
PbI(RS) TaM- 1) ITS',I (19)

Based on our functional model for w, P, ;(RS) is shown in
Fig. 6 for (255, 223) RS code using (19) with (14) and (15).
In Fig. 7 we have shown P, r(RS), Pg ¢ and P, for concate-
nated coding with (255, 223) RS code and (7, 1/2) convolu-
tional code vs the E,/N, of the concatenated channel. For
E [N, < 2dB, B,(V-1, t-1) =1; hence (18) becomes
Py, r(RS) = Py(Viterbi). Note that the code rate of the RS
code is

RS code rate = (N - 2t)/N (20)

As is seen from Figs. 6 and 7

8.1 S,F
and
F, [RS) <P, . RS) 21
Therefore
Fy=Fp
and
P,(RS) = P, -(RS) (22)

At this point, since the probability of a decoding error
event is very small, it can be ignored for further computations.

Using this fact, we determine the RS of information block
error probability.

D. RS Information Block Error Probability

Note that if a codeword is in error it is not necessary that
the corresponding information block be in error. This error
probability is important for source coding (data compression).
Denote the information block error probability by P(N, 1).
Ignoring the probability of decoding error event to find
Pi(N, 1), we should subtract the probability of all possible
patterns of symbol error that happen only in the parity check
symbols, from Py,. This implies there is no error in the
information block. Thus we have

2t
P(N,t) = P,,(N,1) —Z (i’)n(‘(l - mNVk (23)

k=t+1

Obviously, in the practical range of error probability the last
term can be ignored and we can say approximately

P(N,)=P,(N,¢) 29

VI. Effects of Phase Jitter

If the data rate is sufficiently large with respect to the PLL
loop bandwidth so that the phase error does not vary signifi-
cantly during the Viterbi decoder error bursts, then the phase
error can be assumed to be constant during one RS symbol. In
addition, since we have /= 16 level of interleaving, the phase
errors affect the RS input symbols approximately indepen-
dently. Noting the approach we have taken for the derivations
of B, Pg and P, (RS), we have

N
P, = E{P, (9,0, -9,)} = E (j,f)w(—_@" [1- @]V "

k=t+1
(25)
and
ma— /|
P,(RS) = Pb(ViterbiIdb)Z ( . )@k [1- n(@)] Y+
k=t
(26)
where
n Eb
(9 = f |57 cos’ ¢)p(¢) d¢ @7
—n 0
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and p(¢) is the probability density function of phase jitter
given by (Ref. 8)

p(g) = 2L D) I(C,(():)¢) , -n<¢<n (28)
where p is the SNR in the tracking loop bandwidth and n(¢) is
given by (1), replacing E,/N, with (E,/N,) cos? ¢. Figure 8
shows ﬂm for various loop SNR p. The effect of a noisy
carrier reference on Reed-Solomon Viterbi bit error rate per-
formance, given by (26), is shown in Fig. 9. Note that in (26)
P, (Viterbi|$) can be computed from

n (E
P, (Viterbi|¢) = f f (Fb cos? ¢) p(¢) d¢ 29

0

where
exp (oz0 - alx); x=2T
6 =14 | (30)
'5; x<T
and
a, = 4.4514 a, = 5.7230.

T is the Viterbi decoder node synchronization threshold,
where

1n2+oz0

a

T=2

and with equality for perfect node synchronization. In this
paper we have assumed perfect node synchronization. The
effect of node sync on RS decoding can be found using (25)
through (30) with the model for 7 given in (1); results are illus-
trated in Fig. 9. Further detail is given in Ref. 9.

For the effect of a noisy carrier reference on RS/Viterbi,
we also recommend Ref. 5 to the interested reader.

VIl. Effects of Slow Fading on the RS/Viterbi
Decoder Performance

Usually the RF telemetry signal can be expressed as

S(t) = V2 A sin [w,t + m(D)] 31)
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where m(?) contains the telemetry information which can be a
subcarrier, biphase modulated with a binary data stream. Now
if this signal is passed through a fading channel, at the output
we have

r(t) = V2a(@) sin [w g +m() + ¢(1)] + n(t)  (32)

where a(¢#) is random amplitude process and 6(f) is random
phase process. If a(f) and 6(f) change slowly with time, and
the spectral bandwidths of a(r) and 8(f) are narrow with
respect to average loop bandwidth of PLL at the receiver, then
0(r), together with the carrier phase, can be tracked by PLL.

Here we consider a slow varying fading channel with perfect
tracking. Depending on the channel, we can have Rayleigh,
Rician, or log-normal channels. Consider first the Rician
channel, since it is Rayleigh with an added specular compo-
nent. If we pass transmitted signal (31) through a Rician
channel we get

r(d) = V24 sin [w,t +m(D)] + \/fnc(t) cos [w_? +m(z)]

+ \/2—ns(t) sin [t + m()] +n(z) (33)

where n, and n, are zero mean Gaussian random processes
each with variance 02. Then the received signal amplitude a(f)
has the Rician probability density function

p(a) = ? exp {a* +4%))20%} I, (%) a=0 (34)

Define

— (35)

as the ratio of the specular power to the fading power.
Suppose the received power is P where

P = A% +20° (36)

Let’s normalize a(#) as

_a@®
y() P

(37
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Then
p(») = 27 (1+ ") exp{(1+ ")y - v}
L, [y VW aeA) y=o (38)
with
y=1 (39)

For the Rayleigh channel we don’t have specular components,
which means 4 = 0 or 42 = 0. Then pdf for y is

p() = yexp(-¥?) y=0 (40)

Figure 10 shows p(y) given in (38) and (40). For Log-normal
channels the received signal amplitude is of the form

at) = A ex® (41)

where x(?) is Gaussian random process with variance 0)2(. Pdf of
normalized a(?) is

() = exp {-(Iny +02)’/202} y>0 (42)
yV2m o,

Therefore in all cases we can assume the received signal is

r(t) = /2Py cos [wt+m(D)+0()] +n@@)  (43)

where pdf of y is given by (38), (40) or (42).

If the signal amplitude changes very slowly in comparison
to the bit rate, y will remain constant over a large number of
bits. On the other hand, 16 levels of interleaving makes y
affect RS symbols independently. Therefore, we have

e=mm = [ a2,
=100 = [ 2l imay @9
0

0

and
, - [E i
N o
P, (Viterbi) = P, (Viterbily*) = f f 170 y*| p(y) dy
o

(45)

- Using these averages in (2), (5), and (18) we can get

performance of concatenated coded system in the presence of
a slow fading channel. The corresponding performance curves
are shown in Figs. 11 and 12.

VIil. Combined Effect of Phase Jitter and
Slow Fading

With a similar argument as before, we can find the
combined effect of phase jitter and slow fading by finding the
average of m and P, (Viterbi) over the phase error ¢ and
amplitude fading factor y as

oo L d E
7= 7(,9) = f f n(yb »? cos? ¢) p(¢ly) do dy
0 - 0

(46)

where (for details of effects of a fading channel on PLL see
Ref. 10).

poly) = L1 (47)
2 1, (p(»?))
N /N g
%) = N B, 6507 (48)
and similarly
L Y B A
P, (Viterbi) = f f f (7\’; y? cos? ¢) p(o1y) p(y) do dy
[] -
(49)

Using these in our performance formulas, we get the desired
results.

IX. Conclusion

Key parameters for characterizing the performance of
concatenated Reed-Solomon/Viterbi coding have been con-
sidered. Simple derivations of close form expressions for a
number of error probabilities are presented; these include RS
codeword, RS information block, RS symbol, and RS bit error
probabilities. A functional model for the RS decoder input
symbol error probability is found which enables us to carry
out numerical computations of the above-mentioned -error
probabilities. In addition, the effects of noisy carrier reference
and slow fading on the RS/Viterbi decoding performance are
determined.
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Fig. 3. Equivalent M-ary discrete memoryless channel (DMC) of Fig. 1
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Appendix
Chernoff Bound on Pr {xo - x,,}

Here we would like to find a simple upperbound on P, (x4 —> x,,) using the Chernoff '
bound technique. Note for A > 0 we have

Prixg>x,} = PP{W+Z<1} = Pr{t- W-Z>0} < {""-2))

=eME{e W) E{e™) (A-1)

But

n
) - W,
E{e™}=E{e '; A ﬁE{e-’*Wi}= 1o\
T m-1 m-1
l:

(A-2)
Similarly
N-n
—AZ z,
E{e™) = F{e ! = [(1- n)+ne V" (A-3)
Therefore,
Prix,~>x }<min eM|—"— + [1- —"—|e? n[(l—n)+1re_}‘]N_"
0 n A>0 m-1 m-1
(A-4)
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