33 research outputs found

    Experimental limits on the proton life-time from the neutrino experiments with heavy water

    Full text link
    Experimental data on the number of neutrons born in the heavy water targets of the large neutrino detectors are used to set the limit on the proton life-time independently on decay mode through the reaction d -> n+?. The best up-to-date limit tau_p > 4 10^23 yr with 95% C.L. is derived from the measurements with D_2O target (mass 267 kg) installed near the Bugey reactor. This value can be improved by six orders of magnitude with future data accumulated with the SNO detector containing 1000 t of D_2O.Comment: LaTeX, 7 pages, 1 table; small typo is correcte

    Double beta decay experiments

    Full text link
    The present status of double beta decay experiments are reviewed. The results of the most sensitive experiments, NEMO-3 and CUORICINO, are discussed. Proposals for future double beta decay experiments are considered. In these experiments sensitivity for the effective neutrino mass will be on the level of (0.1-0.01) eV.Comment: 20 pages, 7 fugures; talk at 12-th Lomonosov Conference on Elementary Particle Physics (Moscow, August 25-31, 2005

    What can we learn from neutrinoless double beta decay experiments?

    Get PDF
    We assess how well next generation neutrinoless double beta decay and normal neutrino beta decay experiments can answer four fundamental questions. 1) If neutrinoless double beta decay searches do not detect a signal, and if the spectrum is known to be inverted hierarchy, can we conclude that neutrinos are Dirac particles? 2) If neutrinoless double beta decay searches are negative and a next generation ordinary beta decay experiment detects the neutrino mass scale, can we conclude that neutrinos are Dirac particles? 3) If neutrinoless double beta decay is observed with a large neutrino mass element, what is the total mass in neutrinos? 4) If neutrinoless double beta decay is observed but next generation beta decay searches for a neutrino mass only set a mass upper limit, can we establish whether the mass hierarchy is normal or inverted? We base our answers on the expected performance of next generation neutrinoless double beta decay experiments and on simulations of the accuracy of calculations of nuclear matrix elements.Comment: Added reference

    New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility

    Get PDF
    The results of background measurements with the second version of the BOREXINO Counting Test Facility (CTF-II), installed in the Gran Sasso Underground Laboratory, were used to obtain limits on the instability of nucleons, bounded in nuclei, for decays into invisible channels (invinv): disappearance, decays to neutrinos, etc. The approach consisted of a search for decays of unstable nuclides resulting from NN and NNNN decays of parents 12^{12}C, 13^{13}C and 16^{16}O nuclei in the liquid scintillator and the water shield of the CTF. Due to the extremely low background and the large mass (4.2 ton) of the CTF detector, the most stringent (or competitive) up-to-date experimental bounds have been established: τ(ninv)>1.81025\tau(n \to inv) > 1.8 \cdot 10^{25} y, τ(pinv)>1.11026\tau(p \to inv) > 1.1 \cdot 10^{26} y, τ(nninv)>4.91025\tau(nn \to inv) > 4.9 \cdot 10^{25} y and τ(ppinv)>5.01025\tau(pp \to inv) > 5.0 \cdot 10^{25} y, all at 90% C.L.Comment: 22 pages, 3 figures,submitted to Phys.Lett.

    The Majorana neutrino masses, neutrinoless double beta decay and nuclear matrix elements

    Full text link
    The effective Majorana neutrino mass is evaluated by using the latest results of neutrino oscillation experiments. The problems of the neutrino mass spectrum,absolute mass scale of neutrinos and the effect of CP phases are addressed. A connection to the next generation of the neutrinoless double beta decay (0nbb-decay) experiments is discussed. The calculations are performed for 76Ge, 100Mo, 136Xe and 130Te by using the advantage of recently evaluated nuclear matrix elements with significantly reduced theoretical uncertainty. An importance of observation of the 0nbb-decay of several nuclei is stressed.Comment: 29 pages, 5 figures, EXO (10 t) experiment considere

    To what extent does the latest SNO result guarantee the proton stability?

    Get PDF
    AbstractExperimental data accumulated by the SNO detector (containing 1000 t of D2O) on neutral-current solar neutrinos interactions [Phys. Rev. Lett. 89 (2002) 011301] have been used to set the best up-to-date life-time limit on the proton disappearance (or decay to the weakly interacting particles like neutrinos, majorons, etc.): limτ(p→?)>5.7(3.5)×1028 yr at 68% (90%) C.L

    Has neutrinoless double β decay of 76Ge been really observed?

    Get PDF
    AbstractThe claim of discovery of the neutrinoless double beta (0ν2β) decay of 76Ge [Mod. Phys. Lett. A 16 (2001) 2409] is considered critically and firm conclusion about, at least, prematurity of such a claim is derived on the basis of a simple statistical analysis of the measured spectra. This result is also proved by analyzing the cumulative data sets of the Heidelberg–Moscow and IGEX experiments. Besides, it allows us to establish the highest worldwide half-life limit on the 0ν2β decay of 76Ge: T1/20ν⩾2.5(4.2)×1025yrat90%(68%)C.L. This bound corresponds to the most stringent constraint on the Majorana neutrino mass: mν⩽0.3(0.2)eVat90%(68%)C.L

    Ice shielding in the large scale GENIUS experiment for double beta decay and dark matter search

    No full text
    We suggest here the use of ice as shielding material in the large scale GENIUS experiment for the ultimate sensitive double beta decay and dark matter search. The idea is to pack a working volume of several tons of liquid nitrogens, which contains the “naked” Ge detectors, inside an ice shielding. Very thin plastic foil would be used in order to prevent leakage of the liquid nitrogen. Due to the excellent advantages of ice shielding (high purity and low cost, self-supporting ability, thermo-isolation and optical properties, safety) this could be another possible way of realization of the GENIUS project
    corecore