19 research outputs found

    Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts : A critical review

    Get PDF
    The distinct physicochemical properties and renewable origin of gamma-valerolactone (GVL) have provided opportunities for diversifying its applications, particularly as a green solvent, excellent fuel additive, and precursor to valuable chemicals. Among the related publications found in the SCOPUS database (≈172 in the last 10 years), we focused our effort to review the conversion of levulinic acid (LA) to GVL over non-noble metal catalysts and the corresponding mechanisms (≈30 publications) as well as the applications of GVL as a solvent, fuel additive, and platform chemical (≈30 publications) mostly in the last five years (some preceding publications have also been included due to their relevance and importance in the field). The use of non-noble metals (e.g., Cu and Zr) presents a greener route of GVL synthesis than the conventional practice employing noble metals (e.g., Pd and Ru), in view of their higher abundance and milder reaction conditions needed (e.g., low pressure and temperature without H 2 involved). The significance of the catalyst characteristics in promoting catalytic transfer hydrogenation of LA to GVL is critically discussed. Structural features and acid-base properties are found to influence the activity and selectivity of catalysts. Furthermore, metal leaching in the presence of water in catalytic systems is an important issue, resulting in catalyst deactivation. Various endeavors for developing catalysts using well-dispersed metal particles along with a combination of Lewis acid and base sites are suggested for efficiently synthesizing GVL from LA

    A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes

    Get PDF
    We have developed a wood waste-derived biochar as a sustainable graphitic carbon catalyst for environmental remediation through catalytic pyrolysis under the synergistic effects between Cu heteroatoms and CO2, which for the first time are found to significantly enhance the oxygen functionalities, defective sites, and highly ordered sp2-hybridized carbon matrix. The copper-doped graphitic biochars (Cu-GBCs) were further characterized by XRD, FTIR, Raman, XPS, etc., revealing that the modified specific surface area, pore structure, graphitization, and active sites (i.e., defective sites and ketonic group) on the Cu-GBCs corresponded to the synergistic Cu species loading and Cu-induced carbon-matrix reformation in CO2 environment during pyrolysis. The catalytic ability of Cu-GBCs was evaluated using the ubiquitous peroxydisulfate (PDS) activation system for the removal of various organic contaminants (i.e., rhodamine B, phenol, bisphenol A, and 4-chlorophenol), and gave the highest degradation rate of 0.0312 min-1 in comparison with those of pristine GBCs and N2-pyrolyzed Cu-GBCs ranging from 0.0056 to 0.0094 min-1. The synergistic effects were attributed to the encapsulated Cu heteroatoms, evolved ketonic groups, and abundant unconfined π electrons within the carbon lattice. According to scavenger experiments, ESR analysis, and two-chamber experiments, selective and sustainable non-radical pathways (i.e., singlet oxygenation and electron transfer) mediated by the Cu-induced metastable surface complex were achieved in the Cu-GBC/PDS system. This study offers the first insights into the efficacy, sustainability, and mechanistic roles of Cu-GBCs as an emerging carbon-based catalyst for green environmental remediation

    Efficient Depolymerization of Cellulosic Paper Towel Waste Using Organic Carbonate Solvents

    Get PDF
    Efficient depolymerization of lignocellulosic biomass is a prerequisite for sugar production and its subsequent upgradation to fuels and chemicals. Organic carbonate solvents, i.e., propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC), which are low in toxicity and biodegradable, were investigated as "green"co-solvents (PC/H2O, EC/H2O, DMC/H2O, solvent ratio 1:1) for depolymerization of cellulosic paper towel waste. PC/H2O and EC/H2O enhanced the depolymerization of paper towel waste and improved the total sugar yield (up to ∌25 C mol %) compared to H2O only (up to ∌11 C mol %) under mild reaction conditions (130 °C, 20 min). The higher performance of PC/H2O and EC/H2O can be attributed to higher availability of reactive protons in the catalytic system that facilitates efficient acid hydrolysis of recalcitrant cellulosic fibers. Moreover, a substantial buildup of in-vessel pressure by CO2 release during the microwave-assisted reaction because of decomposition of PC or EC might have accelerated the conversion of paper towel wastes. PC and EC are prospective solvents for lignocellulosic biomass conversion considering their green features and notable catalytic performance, which have a good potential for substituting conventional organic solvents such as dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF) that are often considered hazardous in terms of health, safety, and environmental implications

    Tailored design of graphitic biochar for high-efficiency and chemical-free microwave-assisted removal of refractory organic contaminants

    Get PDF
    Energy-saving, chemical-free, and high-efficiency microwave (MW)-assisted water treatment can be greatly facilitated via tailored design of an economical, sustainable, and ‘green’ carbonaceous catalyst. In this study, various biochars (BC) were pyrolyzed from two lignocellulosic waste biomasses, oak (O) and apple tree (A), at a high temperature (900 °C) and under different gases (N2 and CO2). The holistic characterization by advanced spectroscopic techniques demonstrated that CO2 pyrolysis of feedstock with more lignin (i.e., oak), produced biochar with increased aromaticity and degree of carbonization. CO2 modification created a hierarchical porous structure, improved surface hydrophilicity, polarity, and acidity, and provided higher densities of near-surface functionalities of the biochar. Without MW irradiation, ABC-900C (1 g L−1) provided the highest adsorption (52.6%, 1 min) of 2,4-dichlorophenoxy acetic acid (2,4-D) ascribed to large specific surface area, high micropore content, appropriate pore size, and abundant active groups. OBC-900C (1 g L−1) enabled significantly increased 2,4-D removal (81.6%, 1 min) under MW irradiation (90 °C) in contrast with an oil bath (55.7%, 90 °C, 1 min) and room temperature (33.9%, 1 min) conditions, due to its highest graphitization degree and medium-developed microporous structure. The MW-induced thermal effect formed “hot spots” on the biochar surface as evidenced by elevated temperature of the bulk solution and lowered energy consumption of the MW reactor in the presence of OBC-900C, compared to those of the other biochars. The scavenging tests suggested that the generation of highly oxidative hydroxyl (‱OH), anionic superoxide (O2 ‱−), and singlet oxygen (1O2) radicals contributed to the removal of 2,4-D. This study has demonstrated that biochar with customized structure and high organic adsorption capacity can act as an effective MW absorber suitable for rapid and improved removal of toxic organics

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Ball-milled, solvent-free Sn-functionalisation of wood waste biochar for sugar conversion in food waste valorisation

    No full text
    A solvent-free ball milling protocol was investigated for synthesizing sustainable Sn-functionalized biochars for glucose isomerization to fructose. Raw wood biomass (W) and its derived biochars pyrolyzed at low (LB, 400 °C) and high (HB, 750 °C) temperatures were investigated as catalyst supports. This study emphasized that the interactions between Sn and the carbonaceous supports were related to the surface chemistry of the catalysts. Functional group-enriched surfaces provide more active sites for anchoring Sn, resulting in a high loading on the biochar support. Sn was primarily bound with W via surface complexation or precipitation, while it mainly interacted with LB and HB via physical adsorption. The annealing temperature was another critical factor that affected the concentrations and nature of the species of loaded Sn. Catalytic conversion experiments indicated that SnW annealed at 750 °C exhibited the best fructose yield (12.8 mol%) and selectivity (20.2 mol%) at 160 °C in 20 min. The catalytic activity was correlated to the amount and nature of active Sn sites. Reusability tests revealed a noticeable increase in product selectivity compared to pristine materials, despite a compromise in product yield. This study elucidated the roles of the carbon support and annealing temperature for synthesizing biochar-supported catalysts, highlighting a simple and green approach for designing effective solid catalysts for sustainable biorefineries

    Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water

    No full text
    Graphite (G), graphite oxide (GIO), and graphene oxide (GO) were evaluated for the first time as carbonaceous supports to synthesise heterogeneous Lewis acid catalysts, via simple AlCl3 pretreatment followed by one-step thermal modification. The GIO- and GO-supported Al catalysts were active towards catalytic isomerisation of glucose in water as the greenest solvent. The highest fructose yield of 34.6 mol% was achieved under microwave heating at 140 °C for 20 min. The major active sites were characterised as amorphous Al hydroxides (e.g., ÎČ-Al(OH)3, Îł-Al(OH)3, and Îł-AlO(OH)) with octahedral coordination, as revealed by 27Al NMR, XPS, SEM, TEM-EDX, Raman, ESR, and XRD analyses. The transformation of octahedral Al to pentahedral/tetrahedral coordination was observed when the activation temperature increased. Oxygen-containing functional groups on the GIO and GO surfaces, e.g., C-O-C, -OH, and -COOH, contributed to the formation of microwave-absorbing active sites. In contrast, the G-supported catalyst may contain microwave-transparent Al hydroxides, accounting for its low catalytic activity under microwave irradiation. This study elucidates the significance of the surface chemistry of carbonaceous supports in generating active species for a Lewis acid-driven reaction. The revealed intertwined relationships among modification conditions, physicochemical properties, and catalytic performance will be useful for designing effective carbon-supported catalysts for sustainable biorefinery

    Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts

    No full text
    Driven by the worldwide demand for sustainable resources and renewable energy, the synthesis of bio-based platform chemicals has attracted broad interest. The isomerisation of glucose to fructose acts as a critical intermediate step among many chemical synthesis routes. In this study, biochar (BC), graphitic oxide (GIO), and graphene oxide (GO) were used as carbon supports to synthesize Al-impregnated heterogeneous catalysts, which were then used for glucose isomerisation under microwave heating in the water at 140 °C. The kinetics model with parameters was used to reveal the interplay of the active sites and compare the activity of the three carbon-based catalysis systems. Catalyst characterisation results showed effective aluminium (Al) impregnation onto the three types of catalysts, and it was found that GIO-Al200 and GO-Al200 showed comparable catalytic activity (fructose yield of 34.3–35.0%) for glucose isomerisation. At the same time, BC-Al200 exhibited slightly lower catalytic activity (fructose yield of 29.4%). The conversion kinetics suggested similar catalytic mechanisms on the three catalysts while BC-Al200 manifested slower kinetics, possibly implying higher activation energy. The fructose selectivity decreased with increasing time due to the formation of side products, yet BC-Al200 resulted in less carbon loss than GIO-Al200 and GO-Al200, probably attributed to its lower catalytic activity and higher pH buffering capacity. A green synthesis route of this study promotes biomass valorisation and makes engineered biochar a promising carbon-based catalyst for sustainable biorefinery
    corecore