15,800 research outputs found

    Ionospheric electron content at temperate latitudes during the declining phase of the sunspot cycle

    Get PDF
    Ionospheric electron density during declining phase of sunspot cycle by Faraday effect observation

    Parameter dependence of phase and log amplitude scintillation

    Get PDF
    Parameter dependence of phase and log amplitude scintillation - Signal statistics of spherical wave emitted by transmitter through intervening slab of irregularitie

    Density and flux distributions of neutral gases in the lunar atmosphere

    Get PDF
    Neon, argon, and helium density and flux distributions in lunar atmospher

    Data synthesis and display programs for wave distribution function analysis

    Get PDF
    At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display

    Wave propagation and earth satellite radio emission studies

    Get PDF
    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry

    Scintillation observations at medium latitude geomagnetically conjugate stations

    Get PDF
    Scintillation observations at medium latitude geomagnetically conjugate station

    Improved silicon nitride for advanced heat engines

    Get PDF
    The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters

    M\"{o}ssbauer study of the '11' iron-based superconductors parent compound Fe(1+x)Te

    Full text link
    57Fe Moessbauer spectroscopy was applied to investigate the superconductor parent compound Fe(1+x)Te for x=0.06, 0.10, 0.14, 0.18 within the temperature range 4.2 K - 300 K. A spin density wave (SDW) within the iron atoms occupying regular tetrahedral sites was observed with the square root of the mean square amplitude at 4.2 K varying between 9.7 T and 15.7 T with increasing x. Three additional magnetic spectral components appeared due to the interstitial iron distributed over available sites between the Fe-Te layers. The excess iron showed hyperfine fields at approximately 16 T, 21 T and 49 T for three respective components at 4.2 K. The component with a large field of 49 T indicated the presence of isolated iron atoms with large localized magnetic moment in interstitial positions. Magnetic ordering of the interstitial iron disappeared in accordance with the fallout of the SDW with the increasing temperature

    Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor La(O1x_{1-x}Fx_x)FeAs

    Full text link
    We report high-resolution photoemission spectroscopy of newly-discovered iron-based layered superconductor La(O0.93_{0.93}F0.07_{0.07})FeAs (Tc = 24 K). We found that the superconducting gap shows a marked deviation from the isotropic s-wave symmetry. The estimated gap size at 5 K is 3.6 meV in the s- or axial p-wave case, while it is 4.1 meV in the polar p- or d-wave case. We also found a pseudogap of 15-20 meV above Tc, which is gradually filled-in with increasing temperature and closes at temperature far above Tc similarly to copper-oxide high-temperature superconductors.Comment: 4 pages, 3 figures, J. Phys. Soc. Jpn. Vol. 77, No. 6 (2008), in pres

    Quasi-Homogeneous Backward-Wave Plasmonic Structures: Theory and Accurate Simulation

    Full text link
    Backward waves and negative refraction are shown to exist in plasmonic crystals whose lattice cell size is a very small fraction of the vacuum wavelength (less than 1/40th in an illustrative example). Such ``quasi-homogeneity'' is important, in particular, for high-resolution imaging. Real and complex Bloch bands are computed using the recently developed finite-difference calculus of ``Flexible Local Approximation MEthods'' (FLAME) that produces linear eigenproblems, as opposed to quadratic or nonlinear ones typical for other techniques. FLAME dramatically improves the accuracy by incorporating local analytical approximations of the solution into the numerical scheme.Comment: 4 pages, 3 figure
    corecore