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ABSTRACT

iTSing the kinetic theory of gases, we have

calculated numerically the density and flux distributions

in the lunar atmosphere due to gas temperature and density

variations at the surface, which are assumed known. Com -

putation of neon density distributions along a 100 km

equatorial circular orbit shows that the density on the day

side is about one order of magnitude higher than that on the

night side in the case of a uniform surface gas density No

(case 1), but is a factor of 2 smaller in the case of

NO ,, To-5/2 (case 2), as given by Hodges and Johnson, where

To is the gas temperature at the surface. For argon, the

corresponding values for these two cases are %2.5 x 10 2 and

10. Density profiles generally have smooth transitions near

the terminator, but a peak occurs for neon in case 2. In the

8 x 60 nm elliptic descent orbit of Apollo 15, the relative

changes of density in the above two cases are ,,50 and ti25
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for neon, and % 3 x 10 3 and u7 x 10 2 for argon; at the

sunrise terminator, density distributions for both neon

and argon are sharply peaked in case 2. Computation of flux

distributions versus altitude over the equatorial terminator

shows that a positive net flux from the hot side to the cold

side persists at all altitudes in case 1; however, in case 2,

the net flux is positive at higher altitudes but negative at

lower altitudes. The density distribution of hydrogen in the

100 km orbit derived from the surface flux distribution given

by Vogel indicates substantial lateral transport as well as

particle loss due to thermal escape.

Comparison of the theoretical results derived here

with Apollo Orbital Mass Spectrometer Experiment data should

enable discrimination between various models of gas density

variations over the lunar surface. Once the latter variations

will be measured, comparison of surface and orbital experimental

data with the theoretical results will shed clear light on the

dynamic processes shaping the lunar atmosphere.
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Introduction

The lunar atmosphere has long been known to be

extremely tenuous. Pre-Apollo estimates of particle con-

centration at the lunar surface, including possible sources

and various removal processes, were recently reviewed by

Groves (1967) and Johnson (1971). Particle concentrations

of neutral gases at the surface were generally considered

to lie in the range of 10 5 to 10 6 cm 3 . Preliminary results

from the Apollo 14 Cold Cathode Gage Experiment (CCGE)

(Johnson et al., 1971) have confirmed these values for the

first time by direct measurements. However, since the lunar

surface temperature exhibits strong variation and the atmos-

pheric density at the surface may vary as well, lateral trans-

port of gases through the lunar atmosphere has drawn considerable

interest.

Hodges and Johnson (1968) made a study on the

lateral transport of neutral gases in an exosphere; including

the effect of planetary rotations. On assuming local zero
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net flux at the surface, they show that in the absence of

significant sources and sinks, the atmospheric surface

•	 temperature and concentration tend to obey No."o 5/2 = constant

if there is no rotation, and No o = constant if rotational

effects dominate; here N o and To are the gas density and

temperature at the surface. The velocity of the lunar surface

due to rotation is considerably smaller than the average

thermal velocity of gases of interest, such as neon and argon,

and we, therefore, neglect the rotational effect in the present

study. Vogel (1966) investigated the molecular fluxes, in

a steady state case, at the base of the lunar atmosphere. He

showed that if any loss mechanisms for the gas particles

exist, there must be a steady source of gas in order to main-

tain a steady state flux distribution. The thermal escape is

the predominant loss mechanism for light gases, such as

hydrogen and helium. For heavier gases the lifetime against

thermal escape is long; they are swept out of the lunar atmos-

phere by the solar wind following photo-ionization and charge

exchange. However, the time scale of these processes is on

the order of 10 7 seconds (Johnson, 1971), which is considerably

larger than the transport time, which is at most on the order

of 10 4 seconds (Grove, 1967). Hence, we also neglect the

ionization loss during flight of these gas particles.
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The studies of both Hodges and Johnson (1968)

and of Vogel (1966) were restricted to the density or flux

distributions at the surface, i.e., a two-dimensional problem.

On the other hand, the orbital and surface mass spectrometer

experiments of the Apollo 15, 16 and 17 missions are designed

to measure the density and flux distributions above the

surface as well as on it. A new analysis in support of the

experiments is therefore desirable. The information obtained

from these measurements and analysis will greatly improve

the understanding of the gas transport process in the lunar

atmosphere. Furthermore, the results of Hodges and Johnson

_	 (1968) and of Vogel (1966) are model dependent. By comparing

the orbital mass spectrometer measurements with the theoretical

analysis it may be possible to discriminate between the

various models for the surface density and flux distributions.

Consequently, in the present investigation, we

extend the calculations of density and flux distributions to

the three-dimensional case, i.e., the region of interest is

the entire space above the lunar surface. Our approach is

unique in that the density and flux (and any other macroscopic

physical quantities) are treated under the same framework.

It follows from the kinetic theory of gases that, once the

distribution function is known, the density and fluxes may be

obtained by taking the moments of the distribution function.

For the case of neutral particles in an exosphere, as is the
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case of the lunar atmosphere, the calculation is straight-

'	 forward. The above calculations, however, require the surface

density or flux as the boundary condition. Several surface

density and flux distributions, including those of Hodges

and Johnson (1968) and Vogel (1966), are used in the present

investigation so that such parametric studies may be compared

with actual measurements.

Gas Transport Model

The model adopted for the study of neutral gas

transport is an exosphere whose base is the surface of a

perfectly spherical moon. All of the gas particles are

originating from (or underneath) the surface and travel with

free trajectories through the exosphere under the lunar

gravitational force until they land on the surface or escape

to the space. In other words, collisions between gas particles

are neglected. This also implies that non-thermal escape

mechanisms such as photo-ionization and removal by the solar wind

are regarded as secondary effects. We also assume a steady

state situation. Furthermore, when a particle lands on the

lunar surface, we shall assume that it is adsorbed by the surface,

thermalized and then re-emitted according to the local surface

conditions. This is equivalent to the diffusive reflection

condition with thermal energy changes. In a steady state

situation, we shall not distinguish between the originally

emitted and re-emitted particles, except when volcanic sources
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are considered. For simplicity, the angular velocity of the

moon is neglected. These assumptions are similar to those of

Vogel (1966) and Hodges and Johnson (1968) , except that the

latter investigators included the rotational effect.

In the present model, if a particle originates

from the surface, where the coordinate is x, and the velocity

vector is v0 , its position x and velocity v at a later time

can be calculated from the trajectory equations. Conversely,

if an observer located at a position x in space sees a

particle having a velocity vector v, he can, by following the

particle's trajectory, always trace back its initial position

xo and velocity vyo at the surface (see Figure 1) . By summing

over all possible velocities, an observer at x counts all the

particles originating from the entire lunar surface that reach x.

If a statistical analysis with appropriate weighting is performed,

the density and fluxes can be easily obtained. In this model,

particles with all possible energies, including those exceeding

the escaping energy, are accounted for. The detailed formulation

based on the kinetic theory of gases is given below.

Basic Kinetic Equation

We shall describe the neutral particles (molecules,

atoms) by the distribution function

f (x, v, t)
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which is defined as follows. The product of f with the volume

element in phase space (x, v), i.e.,

f (x, v, t) d 3 x d3V,

is the number of particles whose coordinates at time t lie between

x and x + dx, and whose velocities are between v and v + dv.

The particle density and other average quantities can be

expressed in terms of the function f. For instance, the

density is

n(x, t) = ff (x, v, t) d 3v,	 (1)

and the particle flux in the i-direction is

ii (x, t) = 12^i f (x, v_, t)d 3v	 (2)

where vi is the velocity along the direction i. In general

there will be a distribution function for each species of

gas. In such a case, a subscript j may be attached to f to

indicate that particular species.

As is well known, the distribution function obeys

the Boltzmann equation. In the absence of collisions, it

is of the following form:

at + v • of + F • vv f = 0	 ( 3)

where F is the force per unit mass acting on a particle,

and v and vv are respectively the gradient operators in position

and velocity space.
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We shall choose a spherical polar coordinate system

fixed on the moon such that r is the radial distance measured

from the center of the moon, © is the co-latitude measured

from the north pole, and 0 is the longitude measured from the

subsolar point. The force field F in the present problem is

the gra •.ita:.ional force which is equal to - u /r2 , where u is

the lunar gravitational constant (universal gravitational

constant times the mass of the moon). The explicit expression

of the kinetic equation in the spherical polar coordinates is

given in Appendix A.

The general solution of Eq. 3, which is well known,

is that f is any arbitrary function of the integrals of the

Lagrangian subsidiary equations

dx

cTtr —
(4)

dv_ = F
H

Eqs. (4) are just the equations of motion of the particle

under the force field F. The explicit form of Eqs. (4)

in spherical coordinates is also given in Appendix A. These

equations are also referred to as the trajectory equations

in phase space. In fact, the statement for the general solution

of f means that f is a constant in time along a trajectory in

phase space. In other words, if f is known at one time, the
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value of f is conserved for all times along a trajectory in

phase space. The particular value of f at (x, v, t) is,

therefore, determined by the particular trajectories in

question and the initial distribution functions at the boundary

f(xe , vo , 0). Consequently, f(x, v, t) may be expressed by
k-

the following relation:

f(x, v, t) = I f (?o, v,o, 0) 6 (x-X) 6 (v-V) d3xo 3V0 	 (s)

where	

)))

x = X ( xo , vo , t)

an d
	

(6)

1. = V (X J , V0 , t)

are the position and velocity trajectories of a si.gle particle

parameterized in terms of its initial conditions x
0 

and vo

as well as the time. That is, Eqs. (6) are the solution of

Eqs. (4). In a steady state case f - f(x,v), the time t may be

considered as a free parameter in Eqs. (6). This method of

determining f(x, v, t) by tracing At back to its initial and

boundary conditions along each individual particle trajectory

is referred to as the method of characteristics, since, in

mathematical terminology, Eqs. (4) are also the characteristic

equations of the partial differential equation (1). In this

method, it is essential to determine the particle's trajectory,

or the characteristics of the system, i.e., the solution of

Eqs. (4). This is done in the next section.
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Particle Trajectories in Fixed Spherical Coordinates

Usually, the particle trajectories can be obtained

by direct integration of Eqs. (4). However, since Eqs. (4)

are a set of coupled equations (see Appendix A) , we shall

determine the trajectories via a different approach - by means

of Hamilton-Jacobi Theory* (e.g., Goldstein, 1953). The

detailed derivation of the particle trajectories is given in

Appendix B. The results are as follows:

2 (v 2 + v e 2 + v 2 ) - u = 1 (v 2 + v 2 + v 2 ) - ur 
r 2 r 	 6 	 00	 r 

r sin e v, = r  sine  v0
0

r2 (v 6 2 + v^2 ) = rot (v e 2 + v^ 2 )
0	 0

2

-1	 v Sin g e	 _1	 r(ve2+v^2)
cos (Cosa/	 1 -^ ) + Cos [(1-	 )/E)

ve 
+v^	

u

v 2 sin 2 6	 r2(v 2+v 2)
Cos -1 (Cosa o/	 1 -	 2 ) + cos-1 [(1 -	 r	 )/E)	 (10)

V 
2a +v0	 o

u

w
A different method may be used. For a two-body central

force problem, the particle's motion is always in a plane. The
trajectory may be elliptic, parabolic or hyperbolic depending on
particular parameters (so called orbit elements) which determine
the trajectory. That particular plane, and the particle's motion
on that plane, may then be transformed to the fixed reference
coordinates (r,e,O). However, since particles may emerge from every
location on the lunar surface, and may have all possible velocities,
such transformation becomes rather cumbersome and the application
of Hamilton-Jacobi Theory is more convenient.

( 7)

(8)

(9)
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where

.	 2
C = [1 + 2 (vr2 + ve2 + v^2 - ru) (ve t + v^ 2 ) 1 1/2	 (10a)

_ 1 v cose	 _1	 ov sine cose
tan	 ( v ) + tan-1 	 ) (11)

e	 (ve2+v^2)sin2eo-v^2sin2e

In the above equations, ro , e o , 0o are the coordinates of the

lunar surface where gas particles are emitted with velocity

components V  , V e , and V 
• 

Eqs. (7) - (9) give respectively
0	 o	 ^o

the total energy, ^-compone:it angular momentum, and total

angular momentum squared per unit mass of a particle, which

are constants of the motion for a particular trajectory.

Eqs. (10) and (11) describe the trajectory in position space.

The time of flight of the particle is eliminated from Eqs. (7) -

(11) in such a way that the initial time t.= 0 is taken at

the instant when the particle leaves the lunar surface at a

position (ro , 9 o , 0o). The signs on the second term of

Eq. (10) is taken according to the sign of vr.

Boundary Condition of f

In order to complete the formulation of the problem,

the boundary condition of f must be given. In the present

model, we need only prescribe f for the particles emitted at

the lunar surface. For simplicity, we shall assume that f is

Maxwellian at the surface characterized by the local surface

temperature. The same distribution function was also
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used by previous investigators (Hodges and Johnson, 1968,

Vogel, 1966). It should be remarked, however, that other

types of distribution functions may also be chosen. For

instance, if the gas comes from some distance below the

surface, the temperature there may be different from that

at the surface; or if there are volcanic sources, the

distribution function may be close to localized delta functions.

Furthermore, it should be noted that although f is locally

Maxwellian at the surface, it is not in equilibrium in space

above the surface. This is due to lack of a collisional

mechanism to equilibrate the gas particles. The escape

mechanism also tends to destroy the equilibrium.

For a Maxwellian distribution at the surface, f may

be written as:

	

f (xo , vvo) = No (x) [m/2,rkTo (xo ) ] 3/2 exp [-mvo 2 /2kTo (x) ] ,	 (12)

where

YO2 = v  2 + v  2 + v 2	 (13)
0	 0	 00

In the above equations, To is the temperature at the surface,
F`

No is twice the concentration of emitted particles at the

surface; both To and No are functions of the lunar surface

coordinates xo (ro = lunar radius, 60 , ¢0 ), m is the mass of

the particle, and k is the Boltzmann constant.



i

Lunar Surface Temperature Variation

The temperature of the lunar surface may be, in

principle,determined by the balance of heat fluxes of incident

solar radiation, reflected and emitted radiations and thermal

conduction. The variation of the surface temperature of a

point on the lunar equator during a complete lunation may be

represented by the plot shown in Figure 2 (NEPSAP, 1969). The

noon-time temperature is ti385°K, decreasing approximately as

the cosine of the solar angle to the 1/4 - 1/6 power. The

night-time temperature is %100°K with relatively small varia-

tions. Note that the temperature after sunset is somewhat

higher than that before sunrise because of thermal inertia.

For a point at some higher latitude, the temperature decreases

approximately as the cosine of the latitude to the 1/4 power,

as compared with the temperature of an equatorial point at

the same longitude (NEPSAP, 1969). This relation may be

written as:

T0(eo, 0p ) = Teq (^o ) sin 1/4 eo 	 (14)

where e  is the colatitude measured from the north pole

and 0o is the longitude measured from the subsolar point.

Teq is the temperature at the equator and is given in Figure 2.

However, for computational purpose, we shall idealize the

temperature profile of Teq by the following relation:
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Teq = T1 Cos t/4^o	 for 0 < ^o < ^*

and 0*<	 < 27	 (15)

= T2	 for ^ *<	 <(27-0*)

6

where T1 is the temperature at the subsolar point taken to

be 385°K, T2 is the night-time equatorial temperature taken

to be 100 °K , and 0* is determined in such a way that the

y r
	 temperature is continuous at O = 0*, i.e.

r
	

^* = cos-1[(T2/T1)41
	

(16)

For T1 = 385 °K, T2 = 100°K, ¢* = 89.74° which is very close

to the terminator. The idealized temperature profile is

shown by dotted lines in Figure 2.

Gas Density Variations at the Surface

The density variations of gas particles at the surface

are not as well known as the surface temperature variation. As

mentioned in the Introduction, Hodges and Johnson (1968) showed

that, by assuming the local net flux to be zero, the particle

concentration and temperature at the surface satisfy N0To5/2 =

constant for the case without rotation. For the surface

temperature variation given by Equation (14), the concentration

at the night side equator is ,,30 times that at the subsolar

point. Vogel's (1966) results were in terms of molecular fluxes

at the surface, from which the density may be derived. His

results depend upon the prescribed steady source fluxes at the
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surface, and therefore are model dependent. The most reliable

way to determine the gas density at the surface is by in-situ

measurements. The Apollo 14 and 15 CCGE and the Apollo 17

Lunar Surface Mass Spectrometer Experiment should provide

such information. However, the data obtained from Apollo 14

so far are not sufficient to include the whole lunation. When

enough data are obtained, we shall use those measurements as

the basis of our calculation. Presently, for our purpose to

calculate the density and flux distributions in space, we

shall adopt several surface density models. The simplest one

is a constant density at the surface. This is important in

that the effect of lateral transport due to surface temperature

variation alone can be studied. In addition, the surface

density derived from models of Hodges and Johnson (1968) and

of Vogel (1966) will also be used.

Computations of Density and Fluxes

By knowing the particle trajectories and the velocity 	 r

distribution function at the lunar surface, the density and

fluxes (and other averaged quantities) in space above the

surface may be easily calculated for each species of gas.

For the boundary condition of f given by Equation (12), the

number density of a gas as function of position x is:
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r-r

n (X) f No ( ') ,r To72— 	 exp	 kTo ^ (vr2+v e t+v 0 2+2u rroo) d3v '	 (17)

and the particle flux in the i -direction is

3
r-r

±i(x) viNo (xo) n To	 2e xp - 2 To 
xo (vr2+vet+v,2+2urroo) d 3v. (18)

J

In the above equations, the delta functions in Equation (5) have

been integrated out and x. and vvo are solved from the trajectory

Equations (7) - (11). The quantity yo  appearing in the

exponential function has been expressed explicitly in terms

of v and r by means of Equation (7). The quantity x0,

which No and To are depending upon as functions of v and x,

are given by Equations (10) and (11).

Equations (17) and (18) are integrated numerically.

The computational procedure is as follows. The value of the

position vector x ( r, 8, 0) at which n (x) and Ti (x) are to be

calculated is first assigned. During the integration in velocity

space, for each particular set of velocity components vr , ve

and v,, the values of 8o and 0o ( ro = lunar radius) are

calculated by the trajectory equations (10) and (11); i.e.,

by tracing back along a trajectory to the position on the surface

where the particle originates. Knowing the value of e o and 00,

the surface temperature To is calculated according to Equations

(14) and ( 15) , and the gas density No is calculated by using

specific surface density models. Having known the values of
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To and No , the integrands of Equations (17) and (18) are

then calculated and the integrations may be performed. The

above numerical integrations are performed by a standard

summation method. The infinite integration limits are replaced

by sufficiently large finite values. The mesh size and the

integration limits are varied independently until the integration

converges. The program was first tested for the density n (x)

in the case of constant surface temperature and density, which

yielded excellent agreement with the theoretical barometric

formula. We then ran the program for various cases of variable

surface temperature and different models of surface gas density.

The results of these calculations will be discussed below.

Results and Discussion

The orbital mass-spectrometers of Apollo missions

are designed to measure gases with mass number ranging from 12

to 66, and within this range neon and argon are probably the

most abundant species. In the present investigation we are,

therefore, primarily interested in the density and flux

distributions in space for neon (20) and argon (40). As mentioned

before, several models for the surface density distributions

will be adopted. Here we are mainly concerned with two cases:

a uniform surface density No throughout the entire lunar surface,

and No . To-5/2, i.e., the result of Hodges and Johnson. A third

case for hydrogen with surface density N o derived from Vogel
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will also be investigated. All of the present calculations are

normalized in such a way that N o = 1 at the subsolar point.

In Figure 3, we show the density distributions of neon

and argon in an equatorial orbit of 100 km height above the

lunar surface for the case of uniform N o . For this model of

surface density No , the transport of gas particles is due to

the effect of temperature variation only. As shown in Figure 3,

the neon density at the subsolar point in the orbit is approx-

imately one order of magnitude larger than that at the anti-

solar point; and for the case of argon, about a factor of

2.5 x 10 2 . This is because the temperature on the dayside of

the moon is much higher than that of the night side, and

consequently particles emitted from the day side surface have

higher energies so that the fraction of particles reaching

100 km height is larger. Most of the results shown in Figure 3

are quite close to the local scale height approximation except

in the region near the terminator where the surface temperature

gradient is very large and the local scale height approximation

is no longer valid. But this is precisely the region of very

prominent lateral transport of gas particles from the hot side

of the moon to the cold side. Our results clearly show such

regions of net lateral transport as the density profiles

decrease gradually toward the night side. For the case of

neon, this region extends to approximately 30 0 toward the night

side beyond the terminator; and for the case of argon, about 150.
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Such net lateral transport effect may be best understood

by looking at the net particle flux across the terminator.

Figure 4 shows the net flux as function of height above the

surface at the equatorial terminator, also for the case of

uniform No. We observe from the results that the net flux,

the difference between positive (from hot side to the cold

side) and negative fluxes, across the terminator has a maximum

which occurs for the case of neon at about 25 km height, and

for the case of argon at 15 km. This maximum may be explained

as follows. Because of the temperature contrast between lunar

day and night, the distributions with height for the oppositely

directed fluxes are not the same. Particles traveling from

the hot side of the moon to the cold side tend to spread over

a higher altitude, whereas those moving from the cold side to

the hot side are restricted to lower altitudes. The difference

which is the net flux turns out to have a maximum above the
0

surface. In Figure 4, the positive flux of neon and argon is

also shown (the difference between the positive flux and the

net flux is the negative flux) .

In Figure 5, we show the density distributions of

neon and argon in an 100 km height equatorial orbit for the

case of No ti To 5/2 , i.e., the surface density distribution

•	 of Hodges and Johnson (1968). For this model, the neon density

initially increases from the subsolar point with longitude

reaches a maximum approximately at the terminator, and then
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decreases gradually at the night side to a value about twice

that at the subsolar point. For the case of argon, the density

increases form the subsolar point with ^, reaches a maximum

approximately 20° before the terminator, and decreases rapidly

at the night side to a value about one order of magnitude

smaller than that at the subsolar point. It is interesting

to note that, for both cases, the density variations between

subsolar and antisolar points at 100 km height are not mono-

tonic functions of 0, althought this is true for T o and No.

The positive and negative fluxes as functions of

height at the equatorial terminator, for the case of

No ti To-5/2, are shown in Figure 6 for neon and Figure 7

for argon. Again, because of the large temperature contrast

between lunar day and night, the distribut.ic is of positive and

negative fluxes with height are very different, both for neon

and argon. For this model of surface density N o , the absolute

values of the negative fluxes at higher altitudes are smaller

than positive fluxes, but at lower altitudes, the reverse is

true. The zero net flux occurs at ti63 km for neon and .27 km

for argon. The larger negative fluxes at lower altitudes are

the result of the combination of low night-time temperatures

with higher surface densities at night: lower temperatures on

the night side confine most of the particles to lower altitudes,

yet the larger surface density N o on the night side (No ti To-5/2^

provides a larger number of these particles.
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The expected density variations of neon and argon

as functions of 0 for the 8 x 60 nm descent orbit of Apollo

15 are shown respectively in Figures 8 and 9 for the

cases of uniform No and No ,, To-5/2. The ground track and

altitude elements of the 8 x 60 nm orbit are listed in Table 1.,

but a transformation of coordinates is made such that in our

result, ^ = 0 is at the subsolar point. In Figure 8, which

is for the case of uniform N o , the relative change of the

density at the orbit is about a factor of 50 for neon,

and 3 x 10 3 for argon. For the case of N o n, To-5/2, shown

in Figure 9, the relative change of the density over the

orbit is about a factor of 25 for neon, and 7 x 10 2 for

argon. In this case, the density distributions, especially

for neon, are peaked at both sunrise and sunset terminators.

The last case in the present investigation is the

density variation of hydrogen atom at 100 km equatorial circular

orbit, where the surface density N o is derived from the flux

distribution of Vogel (1966). He assumed a steady source flux

proportional to the cosine of the sun angle for the sunlit side

of the moon, and obtained a flux distribution at the surface.

For our computations we have chosen a flux of the form

[cos mo sin eo + 0.125] (in arbitrary units) at the day side

and a constant 0.125 at the night side. It can be shown that the

surface density No may then be obtained from the flux distribution
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by multiplying the latter by a factor ti To-1/2. Af ter

normalizing N o = 1 at the subsolar point, the density distri-

bution in 100 km equatorial orbit is shown in Figure 10.

I'he result shows it to be very different from the local

scale height approximation. For instance, at 100 km above

the subsolar point, our result gives n = 0.59, they local

scale height approximation would give n = 0.95. At the same

height above the antisolar point, the corresponding values

for density are 0.18 and 0.15 respectively. Therefore, it is

clear that the atmosphere loses particles on the day side

and gains particles at the night side, a process due to lateral

transport. The large difference between the present result

and the local scale height approximation at 100 km above the

subsolar point is due to particles lost to space by the thermal

escape mechanism. Therefore, the present model may also be

used for the study of thermal escape in planetary exospheres,

a subject which has long been of interest.

Summary and Conclusions

A theoretical model has been constructed, on the

basis of the kinetic theory of gases, for the collisionless

lunar atmosphere, to determine the three-dimensional spatial

variations of neutral gas densities and fluxes due to non-

uniform distribution of surface temperature and gas densities.

The collisionless Boltzmann equation is solved by the method

of characteristics, and the gas densities and fluxes are
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obtained by taking moments of the velocity distribution

function, which are calculated numerically. Primary emphasis

is on the neon and argon density distributions in an 100 km

(ti54 nm) equatorial circular orbit and an 8 x 60 nm elliptic

orbit of Apollo 15, and flux distributions versus altitude

across the equatorial terminator. The lunar surface tempera-

ture used for the present calculation is a good representation

of the true temperature distribution. For the gas sources

at the surface, two models are adopted: (1) a uniform

surface density No , and (2) No - To-5/2.

The results of density distributions, for both neon

and argon, show that the relative changes in density, i.e., the

ratio of maximum and minimum values, at a particular orbit may

differ by orders of magnitude for different models of gas sources.

The flux distributions versus altitude at the equatorial terminator

for these two models of gas densities are also quite different.

For the case of uniform No, the positive flux, which is from

the hot side of the moon to the cold side, is always greater

than the negative flux. However, for the case of N o ti 
To-5/2

the positive flux is greater than the negative flux only above

certain altitudes; below this altitude, the reverse is true.

Therefore, after the Apollo orbital mass-spectrometer experi-

ments' data are collected and analyzed, it may be possible to

discriminate the various models of gas sources at the surface.
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The density distribution of hydrogen atoms at

the 100 km equatorial circular orbit is also calculated for

a model of surface gas density derived from the flux

distribution of Vogel. This model has higher surface density

at the day side than that at the night side. The result

shows substantial lateral transport between day and night

as well as particle loss due to thermal escape. Therefore,

the present model may also be used for the study of thermal

escape in planetary exospheres.
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APPENDIX A

EXPLICIT EXPRESSION OF THE COLLISIONLESS BOLTZMANN EQUATION

AND ITS CHARACTERISTIC EQUATIONS IN SPHERICAL COORDINATES

In spherical polar coordinates (r, 9, 0), the

collisionless Boltzmann equation is in the following form:

of+v of + "e of+^_af
at	 r ar r a 	 r sin a ao

v e t+v 2	 u	 of	 v 2	 v v
2_ _	 r e a f

+	 r	 avr + r cot e -	 r	 ave

N
itcot e +	 =0 	 (A-1) r	 av0

where vr , v  and v 0 are the velocity components in the

directions r, a and 0 respectively, and u is the lunar

gravitational constant.

The characteristic equations of (A-1) may be written

in the following form:

dr _
dt - vr'

r  —te =ve,

rain e d = v,,

dvr vet + v e 2

	

s	 r	 -	 (A-2)
r



a

O
A - 2

	

dv e v 2	 v  ve
dt - - cot e - r

dv	 v v	 v v
d _ - e r cot 6 - rr—^.

These are the equations of motion of a particle in spherical

coordinates under the gravitational force.
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APPENDIX B

DERIVATION OF PARTICLE TRAJECTORIES

IN FIXED SPHERICAL COORDINATES

The Hamiltonian of a particle under a central

gravitational force in a spherical coordinate may be

written as

H = (1/2m) (p
r 2

+p 6 2/r 2+p^ 2/r 2 sin  e) - mu/r (B-1)

where u is the Lunar gravitational constant, and p's are

the momenta defined as

Pr = mr,

p e = mr2e.	 (B-2)

p^ = mr 2 sin  6.

The Hamilton-Jacobi equation for the Hamilton's characteristic

function w is (Goldstein, 1953)

1	 2	
1	 8w 

2	
1	 /a w` 2	 mu =

[(2w
ar)+ 17 

(
^^ 1+ 2 I an- ral(B-3)

 r	 !	 r sin a	 ` I

Assuming that the solution of w is separable in the following

form:

w = wr (r) + ':; e ;,v:, + w0 ( 0 ),	 (B-4)
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i

B ,	 O
by substituting ( B-4) into ( B-3) the following relations may

be obtained:

awl

30 = a
0 = const.	 (B-5)

aw 2	
2

\ae
e) + a 2	 = a 2 = const.	 (B-6)/	 sin e

In fact, a l , a 0 and a are constants of the motion, identified

as the total energy, O-angular momentum and total angular

momentum respectively. The solution of w may be obtained by

integrating (B-5), (B-6), and (B-3), and the result is

w  = +	 dr 2m ( a l+mu/r) - a2/r2,

w e =	 de a - a 
0 
/sin g 6,	 (B-7 )

wo = a 0 0.

Consider a canonical tranformation in which the new momenta

P. are all constants of the motion a.. If the function w1	 1
be denoted by w(q i , Pi ), then the equations of transformation

are

aw	 aw	 aw	 (B-8)
Pi = aql , 4i = api = aai
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O
B - 3

According to the Hamilton-Jacobi theory, the new Hamil-

tonian, after the above transformation, depends on only one

of the momenta a , , and the equation of motion for Q are1

Qi	 as - 1 i = 1i

= 0 i V 1.

The immediate solutions of ( B-9) are

Q1	 t + sl	
C11,

aw
Q2 = S 2 = Da'

__	 _ aw
Q3	 S 3	 aa,'

(B-9)

(B-10)

where the B's are integration constants. With the solution

of w given by (B-7) and (B-4), the explicit forms of (B-10)

may be written as:

t + g 1 =	 mdr

2m (a l+mu/r) - a2 /r2
'x

a2 1 - 1
6 2 Cos
	 e_ 

+cos-1 m2 u r--
a 2	 2a1 a

1 - +a	 m3 u2

(B-11)



i

0
B - 4

_ 1 	 a^ COS 8
s 3 = tan

	

	 +

(A' sin  e - a^2 )

If the integration constants O's are determined in such a way

that at t = 0, the particle leaves the lunar surface at

(rO ,9 O ,0O ) with velocity components (vr 	 ve , v ), we obtain
0	 0	 00

the particles trajectory given in the main text, Eqs. (7) - (11).
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Table 1

Ground Track and Altitude Elements of the

First 8 x 60 nm Descent Orbit for Apollo 15

Latitude Longitude Altitude Sun Angle
(Degree) (Degree) (nm) (Degree)

25.28 .88 11.31 0
23.70 -10.07 13.82 -10
21.38 -20.70 16.93 -20
18.41 -30.97 20.56 -^C
14.90 -40.89 24.62 -40
10.97 -50.50 29.00 -50
6.72 -59.91 33.58 -60
2.22 -69.33 38.28 -70

-2.75 -79.52 43.26 -80
-9.32 -93.51 49.42 -100

-13.83 -104.13 53.28 -110
-17.56 -114.23 56.15 -120
-20.71 -124.53 58.24 -130
-23.21 -135.15 59.52 -140
-24.98 -146.07 59.97 -150
-25.94 -157.21 59.54 -160
-26.04 -168.44 58.29 -170
-25.28 -179.61 56.26 180
-23.70 169.44 53.51 170
-21.37 158.80 50.15 160
-18.40 148.53 46.28 150
-14.90 138.61 42.03 140
-10.97 129.00 37.53 130
-6.72 119.59 32.91 120
-2.21 110.17 28.26 110
2.76 99.97 23.43 100
9.32 87.00 17.61 s0

13.83 75.38 14.03 70
17.56 65.28 11.40 60
20.71 54.98 9.51 50
23.21 44.37 8.37 40
24.98 33.45 7.98 30
25.94 22.31 8.39 20
26.04 11.08 9.54 10
25.28 -.09 11.40 0



'i

r:

N
W_

O
H
V
W

F-
W
J
_V
H

Q
IL

O
J
W
c
O

r
W

i



-
"
,
~
,
,
'
.
~
'
 

',
:'

 
;' 

":.
 

,~
,:
,~
 

~
 ~
I-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-~
 

3
5

0
 

30
0 

To
C

O
K

) 
25

0 

20
0 

15
0 

10
0 

o 
5 

I I I I I I I I L 
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

 ~
 

10
 

15
 

D
A

Y
 

2
0

 
25

 

F
IG

U
R

E
 2

 -
V

A
R

IA
T

IO
N

 O
F 

L
U

N
A

R
 S

U
R

FA
C

E
 T

E
M

PE
R

A
T

U
R

E
 D

U
R

IN
G

 A
 C

O
M

PL
E

T
E

 L
U

N
A

T
IO

N
. 

SO
L

ID
 C

U
R

V
E

, G
IV

E
N

 B
Y

 N
E

PS
A

P 
FO

R
 T

H
E

R
M

A
L

 I
N

E
R

T
IA

 O
F 

75
0;

 D
O

T
T

E
D

 C
U

R
V

E
, 

ID
E

A
L

IZ
E

D
. 

3
0

 



10

10 1

DENSITY	 10-2

10-3

10-4

Ne

I

Az
g

a
J

m
N

0	 15	 30	 45	 60	 75	 90 105 120 135 150 165 180

(DEGREE)
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