101 research outputs found
All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications
© 2019, The Author(s). Inkjet-printed wearable electronic textiles (e-textiles) are considered to be very promising due to excellent processing and environmental benefits offered by digital fabrication technique. Inkjet-printing of conductive metallic inks such as silver (Ag) nanoparticles (NPs) are well-established and that of graphene-based inks is of great interest due to multi-functional properties of graphene. However, poor ink stability at higher graphene concentration and the cost associated with the higher Ag loading in metal inks have limited their wider use. Moreover, graphene-based e-textiles reported so far are mainly based on graphene derivatives such as graphene oxide (GO) or reduced graphene oxide (rGO), which suffers from poor electrical conductivity. Here we report inkjet printing of highly conductive and cost-effective graphene-Ag composite ink for wearable e-textiles applications. The composite inks were formulated, characterised and inkjet-printed onto PEL paper first and then sintered at 150 °C for 1 hr. The sheet resistance of the printed patterns is found to be in the range of ~0.08â4.74 Ω/sq depending on the number of print layers and the graphene-Ag ratio in the formulation. The optimised composite ink was then successfully printed onto surface pre-treated (by inkjet printing) cotton fabrics in order to produce all-inkjet-printed highly conductive and cost-effective electronic textiles
Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions.
Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder.S.I. acknowledges funding from the EPSRC, the Winton Programme for the Physics of Sustainability and the Cambridge Home and EU scholarship scheme (CHESS). G. S. acknowledges postdoctoral fellowship support from the Wiener-Anspach Foundation. We acknowledge the support of Nippon Kayaku in providing the materials C8-BTBT and C10-DNTT. We acknowledge Dr John Morrison for synthesis of TMTES-P and Marie Beatrice for her work that resulted in the thin-film structure of TMTES-P. We acknowledge Audrey Richard and Christian Ruzié for the synthesis of ditBu-BTBT and diTMS-BTBT.This is the final version of the article. It first appeared from Nature Publishing Group via https://doi.org/10.1038/ncomms1073
An efficient reusable perylene hydrogel for removing some toxic dyes from contaminated water
From Wiley via Jisc Publications RouterHistory: received 2020-11-24, rev-recd 2021-01-05, accepted 2021-01-11, pub-electronic 2021-02-03, pub-print 2021-09Article version: VoRPublication status: PublishedAbstract: The synthesis of adsorbents that meet the need for largeâscale production at relatively low cost and are capable of removing anionic and cationic toxic dyes from aqueous solutions, with high sorption capacity and reusability, is urgently needed from an environmental and industrial viewpoint. In this context the identification of hydrogels that remove dyes efficiently under ambient conditions and at nearâneutral pH without the necessity of preâtreatment is an imperative. In this study we report the preparation of two hydrogels using the redox polymerisation of acrylamide, hydroxyethylmethacrylate (HEMA) and Nâisopropylacrylamide (H1) and acrylamide, HEMA, Nâisopropylacrylamide and peryleneâ5âylpentâ3âyneâ2âmethylpropâ2âenoateâcoâ2âmethylâ2â(propâ2âenoylamino)propaneâ1âsulfonic acid (PePnUMAâcoâAMPS) (H2). These hydrogels proved to be effective for the removal of methylene blue (MB), fuchsin acid (FA) and Congo Red (CR) from aqueous solution at nearâneutral pH where their adsorption behaviour was in keeping with the Langmuir model having qmax values of 769.2 mg gâ1 (MB), 1666.7 mg gâ1 (FA) and 2358.2 mg gâ1 (CR). The adsorption of MB and FA by these hydrogels follows pseudoâfirstâorder kinetics, whilst the adsorption of CR follows pseudoâsecondâorder kinetics. Detailed thermodynamic analysis indicated that the dyeâadsorbent interaction is primarily one of physisorption in nature. Finally, desorption studies carried out in 1.0 mol Lâ1 NaClO4 indicated that these adsorbents could be recycled at least four times using a variety of dyes while maintaining their mechanical properties. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry
Genome-wide association analysis reveals QTL and candidate mutations involved in white spotting in cattle
International audienceAbstractBackgroundWhite spotting of the coat is a characteristic trait of various domestic species including cattle and other mammals. It is a hallmark of HolsteinâFriesian cattle, and several previous studies have detected genetic loci with major effects for white spotting in animals with HolsteinâFriesian ancestry. Here, our aim was to better understand the underlying genetic and molecular mechanisms of white spotting, by conducting the largest mapping study for this trait in cattle, to date.ResultsUsing imputed whole-genome sequence data, we conducted a genome-wide association analysis in 2973 mixed-breed cows and bulls. Highly significant quantitative trait loci (QTL) were found on chromosomes 6 and 22, highlighting the well-established coat color genes KIT and MITF as likely responsible for these effects. These results are in broad agreement with previous studies, although we also report a third significant QTL on chromosome 2 that appears to be novel. This signal maps immediately adjacent to the PAX3 gene, which encodes a known transcription factor that controls MITF expression and is the causal locus for white spotting in horses. More detailed examination of these loci revealed a candidate causal mutation in PAX3 (p.Thr424Met), and another candidate mutation (rs209784468) within a conserved element in intron 2 of MITF transcripts expressed in the skin. These analyses also revealed a mechanistic ambiguity at the chromosome 6 locus, where highly dispersed association signals suggested multiple or multiallelic QTL involving KIT and/or other genes in this region.ConclusionsOur findings extend those of previous studies that reported KIT as a likely causal gene for white spotting, and report novel associations between candidate causal mutations in both the MITF and PAX3 genes. The sizes of the effects of these QTL are substantial, and could be used to select animals with darker, or conversely whiter, coats depending on the desired characteristics
A rich gallery of carbon dots based photoluminescent suspensions and powders derived by citric acid/urea
Abstract: In this study we demonstrate simple guidelines to generate a diverse range of fluorescent materials in both liquid and solid state by focusing on the most popular C-dots precursors, i.e. the binary systems of citric acid and urea. The pyrolytic treatment of those precursors combined with standard size separation techniques (dialysis and filtration), leads to four distinct families of photoluminescent materials in which the emissive signal predominantly arises from C-dots with embedded fluorophores, cyanuric acid-rich C-dots, a blend of molecular fluorophores and a mixture of C-dots with unbound molecular fluorophores, respectively. Within each one of those families the chemical composition and the optical properties of their members can be fine-tuned by adjusting the molar ratio of the reactants. Apart from generating a variety of aqueous dispersions, our approach leads to highly fluorescent powders derived from precursors comprising excessive amounts of urea that is consumed for the build-up of the carbogenic cores, the molecular fluorophores and the solid diluent matrix that suppresses self-quenching effects
Layer by Layer Antimicrobial Coatings Based on Nafion, Lysozyme, and Chitosan
The study focuses on the development of a new family of layer-by-layer coatings comprising Nafion, lysozyme and chitosan to address challenges related to microbial contamination. Circular dichroism was employed to gain insights on the interactions of the building blocks at the molecular level. Quartz crystal microbalance tests were used to monitor in real time the build-up of multilayer coatings, while atomic force microscopy, contact angle and surface zeta potential measurements were performed to assess the surface characteristics of the multilayer assemblies. Remarkably, the nanocoated surfaces show almost 100% reduction in the population of both Escherichia coli and Staphylococcus aureus. The study suggests that Nafion based synergistic platforms can offer an effective line of defence against bacteria, facilitating antimicrobial mechanisms that go beyond the concept of exclusion zone
Lowering of blood pressure after nitrate-rich vegetable consumption is abolished with the co-ingestion of thiocyanate-rich vegetables in healthy normotensive males
A diet rich in vegetables is known to provide cardioprotection. However, it is unclear how the consumption of different vegetables might interact to influence vascular health. This study tested the hypothesis that nitrate-rich vegetable consumption would lower systolic blood pressure but that this effect would be abolished when nitrate-rich and thiocyanate-rich vegetables are co-ingested. On four separate occasions, and in a randomised cross-over design, eleven healthy males reported to the laboratory and consumed a 750 mL vegetable smoothie that was either: low in nitrate (~ 0.3 mmol) and thiocyanate (~ 5 Όmol), low in nitrate and high in SCN- (~ 72 Όmol), high in nitrate (~ 4 mmol) and low in SCN- and high in nitrate and SCN-. Blood pressure as well as plasma and salivary [thiocyanate], [nitrate] and [nitrite] were assessed before and 3 hours after smoothie consumption. Plasma [nitrate] and [nitrite] and salivary [nitrate] were not different after consuming the two high-nitrate smoothies, but salivary [nitrite] was higher after consuming the high-nitrate low-thiocyanate smoothie (1183 ± 625 ”M) compared to the high-nitrate high-thiocyanate smoothie (941 ± 532 ”M; P<0.001). Systolic blood pressure was only lowered after consuming the high-nitrate low-thiocyanate smoothie (-3 ± 5 mmHg; P<0.05). The acute consumption of vegetables high in nitrate and low in thiocyanate lowered systolic blood pressure. However, when the same dose of nitrate-rich vegetables was co-ingested with thiocyanate-rich vegetables the increase in salivary [nitrite] was smaller and systolic blood pressure was not lowered. These findings might have implications for optimising dietary guidelines aimed at improving cardiovascular health
Plasma-etched pattern transfer of sub-10 nm structures using a metalâorganic resist and helium ion beam lithography
Field-emission devices are promising candidates to replace silicon fin field-effect transistors as next-generation nanoelectronic components. For these devices to be adopted, nanoscale field emitters with nanoscale gaps between them need to be fabricated, requiring the transfer of, for example, sub-10 nm patterns with a sub-20 nm pitch to substrates like silicon and tungsten. New resist materials must therefore be developed that exhibit the properties of sub-10 nm resolution and high dry etch resistance. A negative tone, metalâorganic resist is presented here. It can be patterned to produce sub-10 nm features when exposed to helium ion beam lithography at line doses on the order of tens of picocoulombs per centimeter. The resist was used to create 5 nm wide, continuous, discrete lines spaced on a 16 nm pitch in silicon and 6 nm wide lines on an 18 nm pitch in tungsten, with line edge roughness of 3 nm. After the lithographic exposure, the resist demonstrates high resistance to silicon and tungsten dry etch conditions (SF_6 and C_4F_8 plasma), allowing the pattern to be transferred to the underlying substrates. The resistâs etch selectivity for silicon and tungsten was measured to be 6.2:1 and 5.6:1, respectively; this allowed 3 to 4 nm thick resist films to yield structures that were 21 and 19 nm tall, respectively, while both maintained a sub-10 nm width on a sub-20 nm pitch
- âŠ