228 research outputs found

    New stochastic modeling strategy on the prediction enhancement of pier scour depth in cohesive bed materials

    Get PDF
    Abstract Scouring around the piers, especially in cohesive bed materials, is a fully stochastic phenomenon and a reliable prediction of scour depth is still a challenging concern for bridge designers. This study introduces a new stochastic model based on the integration of Group Method of Data Handling (GMDH) and Generalized Likelihood Uncertainty Estimation (GLUE) to predict scour depth around piers in cohesive soils. The GLUE approach is developed to estimate the related parameters whereas the GMDH model is used for the prediction target. To assess the adequacy of the GMDH-GLUE model, the conventional GMDH and genetic programming (GP) models are also developed for evaluation. Several statistical performance indicators are computed over both the training and testing phases for the prediction accuracy validation. Based on the attained numerical indicators, the proposed GMDH-GLUE model revealed better predictability performance of pier scour depth against the benchmark models as well as several gathered literature studies. To provide an informative comparison among the proposed techniques (i.e. GMDH-GLUE, GMDH, and GP models), an improvement index () is employed. Results indicated that the GMDH-GLUE model achieved = 6% and = 3%, demonstrating satisfying performance improvement in comparison with the previously proposed GMDH model

    A novel simulation–optimization strategy for stochastic‐based designing of flood control dam: A case study of Jamishan dam

    Get PDF
    This study presents a novel stochastic simulation–optimization approach for optimum designing of flood control dam through incorporation of various sources of uncertainties. The optimization problem is formulated based on two objective functions, namely, annual cost of dam implementation and dam overtopping probability, as those are the two major concerns in designing flood control dams. The nondominated solutions are obtained through a multi-objective particle swarm optimization (MOPSO) approach. Results indicate that stochastic sources have a significant impact on Pareto front solutions. The distance index (DI) reveals the rainfall depth (DI = 0.41) as the most significant factor affecting the Pareto front and the hydraulic parameters (DI = 0.02) as the least. The dam overtopping probability is found to have a higher sensitivity to the variability of stochastic sources compared to annual cost of dam implementation. The values of interquartile range (IQR) indicate that the dam overtopping probability is least uncertain when all stochastic sources are considered (IQR = 0.25%). The minimum annual cost of dam implementation (2.79 M$) is also achieved when all stochastic sources are considered in optimization process. The results indicate the potential of the proposed method to be used for better designing of flood control dam through incorporation of all sources of uncertainty

    Hybrid data intelligent models and applications for water level prediction

    Get PDF
    Artificial intelligence (AI) models have been successfully applied in modeling engineering problems, including civil, water resources, electrical, and structure. The originality of the presented chapter is to investigate a non-tuned machine learning algorithm, called self-adaptive evolutionary extreme learning machine (SaE-ELM), to formulate an expert prediction model. The targeted application of the SaE-ELM is the prediction of river water level. Developing such water level prediction and monitoring models are crucial optimization tasks in water resources management and flood prediction. The aims of this chapter are (1) to conduct a comprehensive survey for AI models in water level modeling, (2) to apply a relatively new ML algorithm (i.e., SaE-ELM) for modeling water level, (3) to examine two different time scales (e.g., daily and monthly), and (4) to compare the inspected model with the extreme learning machine (ELM) model for validation. In conclusion, the contribution of the current chapter produced an expert and highly optimized predictive model that can yield a high-performance accuracy

    A comparison between reconstruction methods for generation of synthetic time series applied to wind speed simulation

    Get PDF
    Wind energy is an attractive renewable sources and its prediction is highly essential for multiple applications. Over the literature, there are several studies have been focused on the related researches of synthetic wind speed data generation. In this research, two reconstruction methods are developed for synthetic wind speed time series generation. The modeling is constructed based on different processes including independent values generation from the known probability distribution function, rearrangement of random values and segmentation. They have been named as Rank-wise and Step-wise reconstruction methods. The proposed methods are explained with the help of a standard time series and the examination on wind speed time series collected from Galicia, the autonomous region in the northwest of Spain. Results evidenced the potential of the developed models over the state-of-the-art synthetic time series generation methods and demonstrated a successful validation using the means of mean and median wind speed values, autocorrelations, probability distribution parameters with their corresponding histograms and confusion matrix. Pros and cons of both methods are discussed comprehensively

    Application of nature-inspired optimization algorithms to ANFIS model to predict wave-induced scour depth around pipelines

    Get PDF
    Wave-induced scour depth below pipelines is a physically complex phenomenon, whose reliable prediction may be challenging for pipeline designers. This study shows the application of adaptive neuro-fuzzy inference system (ANFIS) incorporated with particle swarm optimization (ANFIS-PSO), ant colony (ANFIS-ACO), differential evolution (ANFIS-DE) and genetic algorithm (ANFIS-GA) and assesses the scour depth prediction performance and associated uncertainty in different scour conditions including live-bed and clear-water. To this end, the non-dimensional parameters Shields number (θ), Keulegan–Carpenter number (KC) and embedded depth to diameter of pipe ratio (e=D) are considered as prediction variables. Results indicate that the ANFIS-PSO model (R 2 live bed ¼ 0:832 and R 2 clear water ¼ 0:984) is the most accurate predictive model in both scour conditions when all three mentioned non-dimensional input parameters are included. Besides, the ANFIS-PSO model shows a better prediction performance than recently developed models. Based on the uncertainty analysis results, the prediction of scour depth is characterized by larger uncertainty in the clear-water condition, associated with both model structure and input variable combination, than in live-bed condition. Furthermore, the uncertainty in scour depth prediction for both live-bed and clear-water conditions is due more to the input variable combination (R-factor ave ¼ 4:3) than it is due to the model structure (R-factor ave ¼ 2:2)

    Application of newly developed ensemble machine learning models for daily suspended sediment load prediction and related uncertainty analysis

    Get PDF
    Ensemble machine learning models have been widely used in hydro-systems modeling as robust prediction tools that combine multiple decision trees. In this study, three newly developed ensemble machine learning models, namely gradient boost regression (GBR), AdaBoost regression (ABR) and random forest regression (RFR) are proposed for prediction of suspended sediment load (SSL), and their prediction performance and related uncertainty are assessed. The SSL of the Mississippi River, which is one of the major world rivers and is significantly affected by sedimentation, is predicted based on daily values of river discharge (Q) and suspended sediment concentration (SSC). Based on performance metrics and visualization, the RFR model shows a slight lead in prediction performance. The uncertainty analysis also indicates that the input variable combination has more impact on the obtained predictions than the model structure selection

    Shrewd vehicle framework model with a streamlined informed approach for green transportation in smart cities

    Get PDF
    Infrastructure is essential for the activity of a smart city in lighting framework, water conveyance system, smart monitoring infrastructure, and so on. Presently the transport framework is set at the task of such smart city by making smooth portability of the individuals and products, particularly with the probability of managing traffic clog, giving up-dated information and in time data from the open transportation client, creating green methods for transportation (bicycle and vehicle sharing for example), and so on. This paper is highly engaged in keeping up the shrewd vehicle framework model with a streamlined informed approach, which has been planned and created depending on the Smart City segment. This smart model vehicle framework has added to the structure and planning for a smart city by making it increasingly important with a superior utilization of offices, less noisy, free of accidents, progressively conscious of condition with web organized analysis for utilizing data from the clients for adjusting the transportation administrations. Further, the ability to serve the client by giving it to them with open transportation and increasingly interconnected stations moves towards urban areas inside the city

    Improved Fitness Dependent Optimizer for Solving Economic Load Dispatch Problem

    Full text link
    Economic Load Dispatch depicts a fundamental role in the operation of power systems, as it decreases the environmental load, minimizes the operating cost, and preserves energy resources. The optimal solution to Economic Load Dispatch problems and various constraints can be obtained by evolving several evolutionary and swarm-based algorithms. The major drawback to swarm-based algorithms is premature convergence towards an optimal solution. Fitness Dependent Optimizer is a novel optimization algorithm stimulated by the decision-making and reproductive process of bee swarming. Fitness Dependent Optimizer (FDO) examines the search spaces based on the searching approach of Particle Swarm Optimization. To calculate the pace, the fitness function is utilized to generate weights that direct the search agents in the phases of exploitation and exploration. In this research, the authors have carried out Fitness Dependent Optimizer to solve the Economic Load Dispatch problem by reducing fuel cost, emission allocation, and transmission loss. Moreover, the authors have enhanced a novel variant of Fitness Dependent Optimizer, which incorporates novel population initialization techniques and dynamically employed sine maps to select the weight factor for Fitness Dependent Optimizer. The enhanced population initialization approach incorporates a quasi-random Sabol sequence to generate the initial solution in the multi-dimensional search space. A standard 24-unit system is employed for experimental evaluation with different power demands. Empirical results obtained using the enhanced variant of the Fitness Dependent Optimizer demonstrate superior performance in terms of low transmission loss, low fuel cost, and low emission allocation compared to the conventional Fitness Dependent Optimizer. The experimental study obtained 7.94E-12.Comment: 42 page
    corecore