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Abstract 1 

Ensemble machine learning models have been widely used in hydro-systems modeling as 2 

robust prediction tools that combine multiple decision trees. In this study, three newly 3 

developed ensemble machine learning models, namely Gradient Boost Regression (GBR), Ada 4 

Boost Regression (ABR) and Random Forest Regression (RFR) are proposed for prediction of 5 

Suspended Sediment Load (SSL), and their prediction performance and related uncertainty are 6 

assessed. The Suspended Sediment Load (SSL) of the Mississippi River, which is one of the 7 

major world rivers and is significantly affected by sedimentation, is predicted based on daily 8 

values of river Discharge (Q) and Suspended Sediment Concentration (SSC). Based on 9 

performance metrics and visualization, the RFR model shows a slight lead in prediction 10 

performance. The uncertainty analysis also indicates that the input variable combination has 11 

more impact on the obtained predictions than the model structure selection.  12 

Keywords: Suspended Sediment Load, Ensemble Machine Learning, Prediction, Uncertainty 13 

Analysis 14 

 15 

1. Introduction 16 

The quantitative evaluation of sediment load is important for ecosystem analysis and 17 

management as well as hydraulic structure design, operation and maintenance, particularly for 18 

dams and channels (Nourani & Andalib, 2015). Sediment load and associated deposition may 19 

contribute to reducing reservoir volume, obstructing dam outlets and reducing channel carrying 20 

capacity (Buyukyildiz & Kumcu, 2017). Sediment also affects water quality, by transporting 21 

contaminants and potentially leading to reduction of dissolved oxygen concentrations (Shiau 22 

& Chen, 2015). 23 
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Suspended Sediment Load (SSL) and Bed Load (BL) are the two components of the Total 1 

Sediment Load (TSL), and the former part has generally more complex characteristics 2 

compared to BL (Zounemat-Kermani et al., 2016). The spatial and temporal characteristics of 3 

SSL generally depend non-linearly on hydrologic conditions (Frings & Kleinhans, 2008).  4 

Typically, SSL is estimated using empirical equations based on data obtained in the laboratory, 5 

(i.e. Baosheng et al., 2008, Dorrell et al., 2018, Tang & Knight, 2006), which makes their 6 

derivation costly and time-consuming. Furthermore, the empirical equations are strictly 7 

applicable only for the conditions they were derived for and may not provide accurate estimates 8 

outside those conditions (Bhattacharya et al., 2005). In addition, they generally do not provide 9 

an estimate of the prediction uncertainty associated with their parameters (Shamaei & Kaedi, 10 

2016). 11 

Mathematical methods are an alternative to the empirical equations for computing SSL. They 12 

are either numerical (i.e. Cao & Carling, 2003, Mohammadian et al., 2004, Wu, 2004) or 13 

analytical (i.e. Gill, 1983a, b, Zhang & Kahawita, 1987). The former are generally more 14 

broadly applicable than the latter, which rely on several simplistic assumptions (Bor, 2008). 15 

Mathematical numerical methods, however, take a significant time to set up and are 16 

computationally burdensome.  17 

In recent years, Artificial Intelligence (AI) techniques, such as Artificial Neural Networks 18 

(ANNs) and fuzzy methods have been increasingly used to predict hydrological variables such 19 

as temperature, evaporation, rainfall and runoff (Ghorbani et al., 2017, Kuok et al., 2018, T.-20 

Y. Pan et al., 2013, Ahmad Sharafati, Khosravi, et al., 2019, L. Wang et al., 2017, Z.M. Yaseen, 21 

Awadh, et al., 2018, Zaher Mundher Yaseen et al., 2017, Zaher Mundher Yaseen, Fu, et al., 22 

2018). AI models are generally very efficient in predicting hydrological phenomena because 23 

of their simple structure, fewer input parameters and lower computation time than 24 
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mathematical numerical models (Adnan, Liang, Heddam, et al., 2019, Adnan, Liang, 1 

Trajkovic, et al., 2019, Adnan, Liang, Yuan, et al., 2019, Adnan, Malik, Kumar, et al., 2019).  2 

AI models have also been specifically applied to the evaluation of sediment concentration and 3 

load. Following is a brief review of the related research developments in the last decade. 4 

(Senthil Kumar et al., 2011) modelled Suspended Sediment Concentration (SSC) using ANNs 5 

with Back Propagation (BP) and Levenberg-Marquardt (LM) algorithms, Adaptive Neuro-6 

Fuzzy Inference System (ANFIS) and decision tree models (such as M5 and REPTree), with 7 

the M5 model showing to have the best SSC prediction performance among the various 8 

techniques considered. (Zounemat-Kermani et al., 2016) used three ANN and four Support 9 

Vector Regression (SVR) models to estimate SSC and compared those with models based on 10 

conventional Multi Linear Regression (MLR) and Sediment Rating Curve (SRC). Based on the 11 

Root Mean Square Error (RMSE) index, ANN-BFGS (Broyden–Fletcher–Goldfarb–Shanno) 12 

and SRV-RBF (Radial Basis Function) showed the best performance among the different 13 

models considered. (Kumar et al., 2016) compared six soft computing models - ANNs, Radial 14 

Basis Function Neural Networks (RBFNNs), Least Squares-Support Vector Regression (LS-15 

SVR), MLR and the tree-based models Classification And Regression Tree (CART) and M5 - 16 

for predicting SSL using hydro-meteorological variables; LS-SVR and ANN models had the 17 

best prediction performance, with M5 being the best performing among the tree-based models. 18 

(Buyukyildiz & Kumcu, 2017) compared seven different models, based on Support Vector 19 

Machine (SVM), ANN and ANFIS, in predicting SSL, with results showing the SVR model 20 

having the best prediction performance (coefficient of determination 𝑅2 = 0.868). (Himanshu 21 

et al., 2017a) used a Wavelet-SVM combined model to estimate SSL from sediment 22 

concentration, flow rate  and precipitation, and compared it with the SVM and Wavelet separate 23 

models, observing a better prediction performance for the combined model (coefficient of 24 

determination 𝑅2 = 0.94  and Nash-Sutcliffe Efficiency coefficient 𝑁𝑆𝐸 = 0.94). (Talebi et 25 

https://www.researchgate.net/publication/224349876_LS-SVR_with_variant_parameters_and_its_practical_applications_for_seismic_prospecting_data_denoising
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al., 2017) used tree-based methods such as Regression Trees (RTs) and Model Trees (MTs) to 1 

predict SSL and compared their results with ANN and SRC models; the tree-based methods, 2 

especially MT (coefficient of determination 𝑅2 = 0.98) showed a performance close to the 3 

ANN models and better than the other models considered. (Yilmaz et al., 2018) used several 4 

machine learning models such as Artificial Bee Colony (ABC), Teaching-Learning-Based 5 

Optimization (TLBO) and Multivariate Adaptive Regression Splines (MARS) to calculate 6 

SSL, with the MARS model having the best prediction performance. (Choubin et al., 2018) 7 

evaluated CART model application to predict SSL based on meteorological data and compared 8 

the model with ANFIS, Multi-Layer Perceptron (MLP), RBF-SVM and Proximal Support 9 

Vector Machine (PSVM); the CART model (NSE = 0.77) and the RBF-SVM model (NSE = 10 

0.68) showed the best prediction performance. (Nourani et al., 2019) introduced a Wavelet 11 

procedure based on data mining named Wavelet-M5 (WM5) to predict SSL; comparing this 12 

model with Wavelet-ANN (WANN) and M5 tree models they observed the WM5 model to 13 

provide a better prediction (NSE = 0.94 compared to NSE = 0.89 for WANN and NSE = 0.77 14 

for M5). (Hassanpour et al., 2019) used a hybrid Fuzzy C-Means (FCM-SVR) model to assess 15 

SSL, showing better prediction performance than SRC, ANN, ANFIS and SVR. (Adnan, 16 

Liang, El-Shafie, et al., 2019) developed a Dynamic Evolving Neural-Fuzzy Inference System 17 

(DENFIS) to estimate SSL and compared the results with ANFIS-FCM and MARS based on 18 

RMSE, Mean Absolute Error (MAE) and NSE coefficient; the NSE performance was increased 19 

by 4% and 15% using DENFIS when compared with ANFIS-FCM and MARS, respectively. 20 

Tables 1-3 list the most recent AI-based studies on SSL prediction, whether they are based on 21 

ANN (Table 1), fuzzy logic (Table 2) or other AI techniques (Table 3), specifying in each case 22 

the best predictive model, the input variables, the study area and the SSL timescale. Tables 1-23 

3 show the ANN-based models as the most popularly used for SSL prediction, discharge as the 24 

most used input variable for prediction and daily as the most considered timescale for sediment 25 



Page 5 of 36 
 

load. River discharge is a key variable to predict the SLL where most of the previous 1 

investigations (Tables 1-3) used it as a predictive variable. Furthermore, various studies used 2 

rainfall depth and SSL itself as input variables for SSL prediction, and a few investigations 3 

used water stage (Choubin et al., 2018, Jain, 2001, Lohani et al., 2007, Sari et al., 2017), 4 

temperature (Demirci & Baltaci, 2013) and turbidity (Sari et al., 2017). In general, daily data 5 

on discharge and SSC are typically the most commonly available, as observed for instance in 6 

the U. S. Geological Survey (USGS) datasets: they are therefore used as input variables for 7 

SSL prediction in this study, as illustrated in detail later on.  However, appropriated data with 8 

a suitable sample period is a major concern in sediment modeling. According to the available 9 

data in USGS daily datasets, the daily discharge (Q), suspended sediment concentration (SSC) 10 

are found suitable as predictive variables for predicting the SSL. 11 

[Tables 1,2, and 3] 12 

In general, machine learning algorithms can enhance the prediction performance offered by 13 

traditional empirical equations, because they can more easily consider and derive patterns in 14 

complex datasets. ANN, SVM and Extreme Learning Machine (ELM) algorithms have been 15 

increasingly applied to the evaluation of hydrologic and hydraulic phenomena (Alizadeh et al., 16 

2018, Adnan et al., 2019). Despite being more and more commonly used, ANN and SVM 17 

models also present drawbacks: they usually require preprocessing of the input data and the 18 

kernel functions of the SVM models or the complex structures of the ANN models require 19 

time-consuming training. On the other hand, decision tree models do not require input data 20 

preprocessing and more easily map the data features to the data target values; however, less 21 

research has been done on single-decision tree models due to their weak prediction 22 

performance (Gong et al., 2020, Song et al., 2019).  23 
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Tree-based ensemble learning algorithms generally offer better and more robust prediction 1 

performance, obtained by combining multiple decision trees. The use of multiple decision trees 2 

simultaneously decreases variance and bias associated with forecasting, avoids overfitting and 3 

improves the prediction performance compared with single learning algorithms (Rokach, 2010, 4 

Zhao et al., 2018, Zhou et al., 2019). Ensemble learning models are generally understood to 5 

provide a better prediction performance than single algorithms (Opitz & Maclin, 1999, Polikar, 6 

2006, Rokach, 2010). Results have shown that Boosting and Bagging, two among the “classic” 7 

tree-based ensemble models, outperform SVM- and ANN-based models (Alizadeh et al., 2017, 8 

Shamshirband et al., 2019).  9 

Several boosting and bagging ensemble algorithms with regression capability are available, 10 

such as Gradient Boost Regression (GBR), Ada Boost Regression (ABR) and Random Forest 11 

Regression (RFR), MadaBoost, LogitBoost, BrownBoost and LP-Boost (Domingo & 12 

Watanabe, 2000, Saffari et al., 2010, Yu et al., 2013, G. Zhang & Fang, 2007). Among these 13 

models, GBR, ABR and RFR are vastly used  in various scientific fields (Afifi & Abdelhamed, 14 

2019, Beaulac & Rosenthal, 2019, Georganos et al., 2019, Huang et al., 2019, Y. Pan et al., 15 

2019, Samadi et al., 2019, Tama & Rhee, 2019), because they have a high prediction accuracy, 16 

are computationally efficient, do not need data pre-processing, can handle missing data and can 17 

be optimized through the use of different loss functions. 18 

Although there has been an increasingly broad implementation of machine learning models in 19 

the literature for the estimation of SSL in rivers, to the authors knowledge there hasn’t been 20 

any study on the application of these novel ensemble learning methods to issues related to water 21 

resources management and engineering, and to the estimation of SSL in particular. These 22 

models have the potential to provide river managers and researchers with fast and accurately 23 

predicting tools for quantifying SSL. The Mississippi river is selected as the case study for this 24 

research, given its availability of SSL, sediment concentration and flow data and its importance 25 
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not just as the second longest river in the United States but also for its challenging 1 

sedimentation problems. Hence, the Mississippi River presents a very good case study to 2 

investigate the SSL prediction performance of the proposed machine learning models. 3 

Specifically, this study aims to predict daily SSL for various values of lead time (time span 4 

between input variables for prediction and corresponding SSL output) and to quantify the 5 

relative uncertainty associated with model structure and input variable selection. 6 

 7 

2. Methodology 8 

2.1. Study Area and Data Collection 9 

Though rivers like Missouri, as the longest river in U.S., or Colorado also can be selected as 10 

the case study for suspended sediment prediction, the Mississippi River has been much 11 

investigated regarding various aspects of its sediment transport and sedimentation (Meade & 12 

Moody, 2010, Mossa, 1996, Nagy et al., 2002). It is the second largest river in the United States 13 

and is also ranked as the 4th longest and 5th largest catchment in the world. It originates from 14 

Lake Itasca and flows for about 3,730 kilometers through ten U. S. states until it finally reaches 15 

the Gulf of Mexico. Its catchment covers nearly 3,220,000 𝑘𝑚2, which completely or partially 16 

include 32 U. S. states. Previous investigations on the Mississippi River focused on the 17 

prediction of various hydrological variables, i.e. river discharge and sedimentation load 18 

(Melesse et al., 2011, Nourani & Andalib, 2015, Sivapragasam et al., 2014) and water quality 19 

parameters (Rodriguez & Sérodes, 2004). Due to the heavy sediment transport, the Mississippi 20 

River is prone to significant changes in its physical and chemical characteristics, such as water 21 

depth and width, bed elevation, planform configuration, sediment concentration and water 22 

quality, with consequences on both terrestrial and aquatic life. In order to mitigate these 23 
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negative effects, solutions such as dams and dikes have been implemented, with general 1 

success but also serious sedimentation problems over time (Julien & Vensel, 2005). 2 

The data required for our analysis are obtained from the USGS station 05587455 (Mississippi 3 

river below Grafton, IL), downstream of the confluence between Mississippi River and Illinois 4 

River, about 40 km northwest of St. Louis and 32 km upstream of the confluence of the 5 

Missouri River with the Mississippi River, at the eastern border of Illinois and Missouri states 6 

(Figure 1). The USGS daily data employed in this study refer to three variables, namely Q 7 

(provided in units of  
𝑓𝑡3

𝑠
), SSC (

𝑚𝑖𝑙𝑙𝑖𝑔𝑟𝑎𝑚𝑠

𝑙𝑖𝑡𝑒𝑟
) and SSL (

𝑡𝑜𝑛

𝑑𝑎𝑦
), for the selected period from 2007 8 

to 2015 (with a total of 3000 daily SSL data), for which the presence of missing daily data is 9 

minimal compared to other periods. Obviously a longer historical period with adequately 10 

complete data for analysis would have been ideal; however, the period selected still allows for 11 

obtaining reliable results. 12 

Table 4 summarizes the main statistical parameters for Q, SSC and SSL for the data sample 13 

considered, including maximum, minimum and mean value (Xmax, Xmin and Xmean), 14 

standard deviation (Sx) and coefficient of skewness (Csx). From Table 4, Q, SSC and SSL are 15 

in the range of 13,400 - 400,000 ft3/s, 6 - 589 mg/L and 489 - 387,000 ton/day, respectively. 16 

Furthermore, the skewness value of Q, SSC and SSL is 0.717, 1.486 and 1.488, respectively.   17 

 18 

 [Figure 1] 19 

[Table 4] 20 

 21 

The dataset used in this study was randomly split into two groups, with proportion of 75 to 25, 22 

for training and testing phases respectively. 23 

 24 
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2.2. Ensemble Learning Methods 1 

As seen, among the most commonly applied ensemble learning algorithms are GBR, ABR and 2 

RFR, which have been used in many fields of science and engineering such as traffic prediction 3 

(Lopez-Martin et al., 2019), air quality index computation (Miskell et al., 2019, Y. Wang et 4 

al., 2019), failure detection in robotics (Costa et al., 2019), estimation of agricultural soil 5 

pollution (Tan et al., 2020), prediction of sea surface temperature (Xiao et al., 2019) and 6 

computation of seismic indicators (Asim et al., 2018). 7 

Boosting algorithms, applied by GBR and ABR, are based on the principle that the combination 8 

of multiple experts’ judgements/decisions is more reliable than the judgment/decision of a 9 

single expert. This, in the context of prediction performance, allows boosting algorithms to 10 

improve on the performance of weak regression algorithms. GBR has shown a better prediction 11 

performance than single regression tree models (J. H. Friedman, 2001) and ABR has shown 12 

low bias error and to avoid overfitting in training (Schapire et al., 1998).  13 

RFR applies bagging algorithms. Though they have been widely used, several studies have 14 

highlighted their limitations (Dudoit et al., 2002, Larivière & Van den Poel, 2005). Among the 15 

bagging algorithms, the most well-known is the Classification and Regression Tree (CART), 16 

which is used by RFR. Specifically, RFR creates a set of CART models based on the training 17 

subset to then generate a forest of tree models (Bienvenido-Huertas et al., 2019). 18 

 19 

2.2.1. Gradient Boost Regression (GBR) 20 

GBR (Figure 2) is a machine learning technique for regression and classification problems, in 21 

which the main prediction model is the combination of several weak prediction models. This 22 

technique is based on the progressive strengthening of a prediction function 𝐹𝑚 through the 23 

addition of an estimator E. The training algorithm is such that E is fitted to the (𝑦 − 𝐹𝑚) 24 
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residual and, through each iteration, 𝐹𝑚+1 is corrected to minimize the residual value (J. H. 1 

Friedman, 2001). In symbols: 2 

𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) + 𝐸 = 𝑦 →  𝐸 = 𝑦 − 𝐹𝑚(𝑥) (1) 

 3 

For this purpose, a series of input values or 𝑥 = {𝑥1,∙∙∙, 𝑥𝑘} and a series of output variables or 4 

y are considered and a loss function or Ψ(𝑦, 𝐹(𝑥)) is defined. The prediction modeling initiates 5 

by computing the 𝐹0(𝑥) as follows:  6 

𝐹0(𝑥) = argmin
𝛿
∑Ψ(𝑦𝑖, 𝛿)

𝑘

𝑖=1

 

(2) 

where, the 𝑚𝑡ℎ  pseudo-residual amount for 𝑖𝑡ℎ  data sample , 𝛿𝑖𝑚 , is calculated by the 7 

following:  8 

𝛿𝑖𝑚 = − [
𝜕Ψ(𝑦𝑖, 𝐹 (𝑥𝑖))

𝜕(𝐹 (𝑥𝑖))
] 𝐹 (𝑥𝑖)=𝐹𝑚−1 (𝑥𝑖) , 𝑓𝑜𝑟 𝑖 = 1,∙∙∙, 𝑘 

(3) 

Then, a weak learner function such as a decision tree (𝐸𝑚(𝑥𝑖)) is fitted to 𝛿𝑖𝑚 and trained based 9 

on the {(𝑥𝑖, 𝛿𝑖𝑚)}𝑖=1
k  training set. By solving a one-dimensional optimization relation, the 10 

multiplier 𝛿𝑚 is calculated as follows: 11 

𝛿𝑚 = argmin
𝛿
∑Ψ(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛿ℎ𝑚(𝑥𝑖))

𝑛

𝑖=1

 
(4) 

where, ℎ𝑚 is a new tree. The 𝐹𝑚 (𝑥𝑖) function is then taken equal to 𝐹𝑚−1
 (𝑥) + 𝛿𝑚𝐸𝑚(𝑥 ) and 12 

the process is repeated until the second term of the sum, 𝛿𝑚𝐸𝑚(𝑥 ), is minimized at iteration 13 

𝑀 where the final output 𝐹𝑀 (𝑥𝑖) is obtained (J. H. Friedman, 2002). 14 

[Figure 2] 15 

 16 
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2.2.2. Ada Boost Regression (ABR) 1 

Adaboost, the abbreviation of adaptive boosting (Figure 3), is one of the most applied models 2 

for machine learning and improves on the prediction performance of simpler learning models. 3 

This algorithm works by fitting a primary prediction function to the sum of the original data, 4 

calculating a prediction error, and applying a weighted vector to the data based on the 5 

prediction error. Given the error of the previous step, a series of additional models of primary 6 

function is applied on weighted data and the error of weighted data is calculated in this stage. 7 

It can be concluded that the error of each stage affects the next stage function in every replicate. 8 

When the weighted error reaches the minimum value, a weight is applied to each function and 9 

the result after summation is the final output (Freund & Schapire, 1997). 10 

[Figure 3] 11 

To illustrate the algorithm process, an additional model is considered whose components are 12 

functions of all input variables. Here, 𝑓𝑚(𝑥) is a weak primary learning function defined by a 13 

𝛾 parameter and an additive factor 𝛽 . The function 𝐹𝑚(𝑥) is expressed as an additional model 14 

of the ensemble of the weak functions: 15 

𝐹𝑚(𝑥) = ∑ 𝑓𝑚(𝑥)

𝑀

𝑚=1

= ∑ 𝛽𝑚𝑏(𝑥, 𝛾𝑚)

𝑀

𝑚=1

 

(5) 

{𝛽𝑚, 𝛾𝑚} = 𝑎𝑟𝑔min
𝛽.𝛾

𝐸 [𝑦 − ∑ 𝛽𝑘𝑏(𝑥, 𝛾𝑘)  − 𝛽𝑏(𝑥, 𝛾)

𝑘≠𝑚

]

2

 

(6) 

 16 

where m = 1, 2, …, M is the number of replications of the algorithm until convergence is 17 

reached. Moreover, instead of the back-fitting method in the above function, it is possible to 18 

use a step-by-step forwarding greedy approach as a substitution method to solve the problem: 19 
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{𝛽𝑚, 𝛾𝑚} = 𝑎𝑟𝑔min
𝛽.𝛾

𝐸 [𝑦 − 𝐹𝑚−1(𝑥) − 𝛽𝑏(𝑥; 𝛾)]
2 (7) 

 1 

By computing the values 𝛾𝑚 and 𝛽𝑚, the value of 𝑓𝑚(𝑥) is determined and, consequently, the 2 

value of 𝐹𝑚(𝑥) is calculated at each iteration. Then, as in the GBR algorithm, a 𝑦𝑚 residual 3 

value is obtained by subtracting the actual output from 𝐹𝑚(𝑥): 4 

𝑦𝑚 = 𝑦 − ∑ 𝑓𝑚(𝑥)

𝑘≠𝑚

 
(8) 

𝑦𝑚−1 = 𝑦𝑚 − 𝑓𝑚−1(𝑥) (9) 

 5 

In each iteration 𝑚, the value 𝑦𝑚−1 is modified in such a way that the impact of 𝑦𝑚 in each 6 

stage become lower and lower on the previous weak model 𝑓𝑚−1(𝑥). Generally, the Adaboost 7 

algorithm is a way to improve the weak learning algorithms 𝑓𝑚(𝑥) and prepares it to create a 8 

robust 𝐹𝑚(𝑥) model (J. Friedman et al., 2000). 9 

2.2.3. Random Forest Regression (RFR) 10 

RFR (Figure 4) is a tree-based algorithm, which is widely used in a variety of areas of AI. This 11 

algorithm grows several predictor trees simultaneously and teach them separately. Ultimately, 12 

the result is obtained in classification phase by determining the final category using all the 13 

category modes and in regression phase by averaging the prediction of every individual tree  14 

(Barandiaran, 1998, Ho, 1995). 15 

[Figure 4] 16 

Applying methods such as bootstrap or bagging to tree teachers is the main component of the 17 

RFR algorithm. In the bootstrap method, the performance of the model is improved by reducing 18 

variance and without increasing bias. Numbering the algorithm replications as b = 1, …, B, if 19 
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training categories include 𝑥 = {𝑥1,∙∙∙, 𝑥𝑘}  as input values and 𝑦 as output, the bagging method 1 

repeatedly chooses 𝑋𝑏, 𝑌𝑏  random samples from X, Y training categories and fit them to a 2 

𝑓𝑏 tree. After having completed the learning, the prediction for a 𝑥′ sample can be computed 3 

by averaging the predictions made by all trees on 𝑥′ (Breiman, 2001): 4 

𝑓𝑏 =
1

𝐵
∑𝑓𝑏(𝑥

′)

𝐵

𝑏=1

 

(10) 

 5 

2.2.4. Ensemble Model Parameters 6 

The development of the prediction models described in the previous sections is carried out in 7 

the Scientific Python Development Environment (Spyder), which is part of the Anaconda 8 

platform for the Python programming language. The SKLEARN Python library is utilized to 9 

develop and apply the ensemble algorithms (Pedregosa et al., 2011). Table 5 lists the default 10 

and adopted values of the various parameters of the GBR, ABR and RFR algorithms. 11 

[Table 5] 12 

The impact of the parameters in Table 5 on prediction performance and the identification of 13 

their optimal value is carried out through a sensitively analysis. Figure 5 shows an example of 14 

sensitivity analysis for the GBR algorithm, with the performance index 𝑅2  evaluated and 15 

optimized for different values of the algorithm parameters n-estimator, max depth, loss 16 

function and learning rate. 17 

[Figure 5] 18 

Figure 5 shows that all the parameters can significantly affect the prediction performance, 19 

although 𝑅2  values plateau for n-estimator greater than 50, max depth greater than 2 and 20 

learning rate lower than 0.4. 21 
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2.3. Evaluation of the Models Prediction Performance 1 

A number of indicators, such as KGE (Kling-Gupta Efficiency), PBIAS (Percent Bias), RSR 2 

(RMSE-observations standard deviation ratio), WI (Willmott's Index of agreement), MAPE 3 

(Mean Absolute Percentage Error), Mean Absolute Error (MAE), Root Mean Square Error 4 

(RMSE), Correlation Coefficient (R), Coefficient of Determination (R2) and Nash–Sutcliffe 5 

Efficiency (NSE) coefficient have been utilized in the literature to evaluate prediction 6 

performance (Abdulelah Al-Sudani et al., 2019, A. Sharafati et al., 2018, A. Sharafati & 7 

Zahabiyoun, 2013, Ahmad Sharafati, Tafarojnoruz, et al., 2019, Z. Yaseen et al., 2018, Z. M. 8 

Yaseen, Awadh, et al., 2018). Having considered them and evaluated the similarity among 9 

some of them, the following indices are used in this study to evaluate the prediction 10 

performance of the proposed models:  11 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑋𝑃 − 𝑋𝑜|

𝑛

𝑖=1

 
(11) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑋𝑃 − 𝑋𝑜)2
𝑛

𝑖=1

 

(12) 

𝑅2 =

(

 
∑ (𝑋𝑜 − 𝑋𝑜̅̅ ̅)(𝑋𝑃 − 𝑋𝑃̅̅̅̅ )
𝑁
𝑖=1

√∑ (𝑋𝑜 − 𝑋𝑜̅̅ ̅)2
𝑁
𝑖=1 ∑ (𝑋𝑃 − 𝑋𝑃̅̅̅̅ )2

𝑁
𝑖=1 )

 

2

 

(13) 

𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑃 − 𝑋𝑜)

2𝑛
𝑖=1

∑ (𝑋𝑃 − 𝑋𝑃̅̅̅̅ )2
𝑛
𝑖=1

 
(14) 

 12 

where 𝑋𝑃, 𝑋𝑜 , 𝑋𝑃̅̅̅̅  and  𝑋𝑂̅̅̅̅  express predicted, observed, average predicted and average observed 13 

values, respectively. 14 
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The prediction performance is also visualized in this study using scatter plots, boxplots, 1 

normalized Taylor diagrams and heat maps. The scatter plot is the most common graph to make 2 

a direct comparison between predicted and observed outputs (Emamgholizadeh & Demneh, 3 

2019, Hamaamin et al., 2019, Hassanpour et al., 2019, Nourani et al., 2019, Sharghi et al., 4 

2019, Tabatabaei et al., 2019). A normalized Taylor diagram plots together R, RMSE and 5 

normalized standard deviation; the closer the model performance point in the diagram to the 6 

“observed” point (RMSE = 0, R = 1, normalized standard deviation = 1), the better the 7 

performance of the model is (Taylor, 2001). A heat map shows at a glance the normalized 8 

performance indicators for each model. In addition to the plots employed in this study, the 9 

violin diagram was considered as visual tool of comparison; however, previous studies 10 

indicated a general consistency between the results obtained from violin diagrams and boxplots 11 

(Ahmad Sharafati, Khosravi, et al., 2019) and therefore violin diagrams are not shown in this 12 

paper. 13 

2.4. Uncertainty Analysis 14 

The uncertainty in SSL prediction associated with the model structure and with the selection 15 

of the input variables is also evaluated. To evaluate the uncertainty associated with the model 16 

structure, for each observed SSL value the set of corresponding SSL values predicted by the 17 

three different models (𝐺𝐵𝑅, 𝐴𝐵𝑅, 𝑅𝐹𝑅) considered in this study, for the same combination of 18 

input variables, is computed. In other words, a set of three predicted SSL values (predicted set) 19 

is assigned to each observed SSL. For each predicted set, the mean and standard deviation are 20 

computed to describe a normal distribution function. Using this distribution, 1000 values of 21 

SSL are generated through Monte Carlo simulation for each observed SSL. To quantify the 22 

corresponding uncertainty of SSL prediction, the 95% prediction confidence interval (interval 23 

between the 97.5% and the 2.5% quantiles), called the “95 percent prediction uncertainty” (95 24 
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PPU), is extracted using the generated SSLs for each observed SSL. Specifically, the 1 

uncertainty is measured using the 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 index as follows  2 

𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑆𝑝

𝑆𝑜
 

(15) 

where 𝑆𝑜 is the standard deviation of the observed data and 𝑆𝑝 is computed as follows  3 

𝑆𝑝 =∑( 𝑈𝑝𝑖 − 𝐿𝑝𝑖)/𝑛

𝑛

𝑖=1

 
(16) 

where n is the number of observed data and 𝑈𝑝𝑖 and 𝐿𝑝𝑖 are the 𝑖𝑡ℎ values of upper quartile 4 

(97.5%) and lower quartile (2.5%) of the 95 PPU band, respectively. To assess the uncertainty 5 

associated with the input variables, the predicted SSL is computed for a single model but 6 

multiple input variable combinations, for each observed SSL. Then, the uncertainty associated 7 

with the input variables is quantified using the same 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 approach described above for 8 

the uncertainty associated with the model structure. 9 

The Coefficient of Variation (CV) represents an alternative for quantifying prediction 10 

uncertainty. This index uses the mean and standard deviation of the predicted outputs while the 11 

𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 uses statistical indices obtained from both predicted and observed values, allowing 12 

for using each observed data as benchmark. For this reason several studies recommend the use 13 

of 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 instead of CV for uncertainty analysis (Abbaspour et al., 2004, Kamali et al., 14 

2013, A Sharafati & Azamathulla, 2018, Ahmad Sharafati & Pezeshki, 2020). 15 

 16 

3. Results and Discussion 17 

The main goal of this study is to evaluate the performance of our newly developed ensemble 18 

machine learning models (ABR, GBR and RFR) in predicting SSL in rivers. The historical data 19 

on SSC and Q corresponding to several lead times starting from the an “origin” day (time “t”) 20 
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to five days earlier (time “t-5”) are used as input for the models to predict SSL on the “origin” 1 

day (time “t”) and up to three days ahead (time “t+1” and “t+3”).  2 

To quantify the level of correlation between SSL and input variables SSC and Q for different 3 

times, several methods were considered, such as Pearson correlation or more complex methods 4 

based on Auto-Correlation Function (ACF), Partial Auto-Correlation Function (PACF) and 5 

Cross-Correlation Function (CCF) (Buyukyildiz & Kumcu, 2017, Himanshu et al., 2017a, Kisi 6 

& Yaseen, 2019, Nourani et al., 2019). The Pearson correlation was finally selected, because 7 

of its simplicity and efficiency in evaluating the optimal set of input variables for AI modeling 8 

(Hai et al., 2020, Malik et al., 2020, Mohammed et al., 2020, Salih et al., 2019, Ahmad 9 

Sharafati, Tafarojnoruz, et al., 2019). Table 6 reports the values of Pearson correlation 10 

coefficient between the target time series SSL (SSL(t), SSL(t+1) and SSL(t+3)) and the various 11 

times series of SSC and Q, computed based on the historically observed data at the USGS 12 

station considered in this study. From Table 6, for each of the three-time series SSL(t), 13 

SSL(t+1) and SSL(t+3), the SSC and Q time series for which the Pearson correlation coefficient 14 

is greater than 0.65 can be identified: these SSC and Q time series are considered in this study 15 

as possible inputs to predict the SSL time series. Table 6 shows a generally significant 16 

correlation between the input SSC and Q and the output SSL, with decreasing correlation for 17 

increasing time span between input and output. For instance, for SSL(t), the correlation 18 

coefficient varies between 0.915 (for SSC(t)) and 0.659 (for Q(t-4)). This is an expected pattern 19 

in hydrological process, where in general input variables with longer lead time have lower 20 

effect on output values. For this reason the prediction of SSL further in the future (e.g., “t+4” 21 

and “t+5”) is not considered in this study. Table 6 already shows low correlation values 22 

between SSL and input variables for lead time equal to 4 days, and correlation values for longer 23 

lead time would be even lower. On the other hand, the dependence characteristics of the 24 
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targeted time series SSL with times series of SSC and Q have decreasing trend by increasing 1 

the lead time.  2 

[Table 6] 3 

 4 

Tables 7, 8 and 9 display the considered input combinations for predicting SSL(t), SSL(t+1) 5 

and SSL(t+3), respectively. 6 

[Table 7, 8 and 9] 7 

 8 

The prediction performance of the models developed in this study is evaluated based on the 9 

performance indicators described above (MAE, RMSE, R2 and NSE) and graphically. 10 

Tables 10, 11 and 12 display the prediction performance indices for the predictive models 11 

GBR, ABR and RFR, respectively. For the GBR model, the optimal SSL prediction is attained 12 

for input combination M7 (with performance 𝑅2= 0.995, RMSE = 5512 ton/day), M5 (𝑅2 = 13 

0.911, RMSE = 20734 ton/day) and M1 (𝑅2  = 0.71, RMSE = 36969 ton/day) for SSL(t), 14 

SSL(t+1) and SSL(t+3), respectively. The ABR model has its best performance for input 15 

combination M6 for both SSL(t) (𝑅2 = 0.995, RMSE = 5068 ton/day) and SSL(t+1) (𝑅2 = 16 

0.887, RMSE = 23289 ton/day), and for input combination M1 (𝑅2 = 0.699, RMSE = 37672 17 

ton/day) for SSL(t+3). The RFR model achieves its best performance for input combination 18 

M7 (𝑅2 = 0.996, RMSE = 4624 ton/day) for SSL(t), M5 (𝑅2 = 0.914, RMSE = 20378 ton/day) 19 

for SSL(t+1) and M1 (𝑅2 = 0.718, RMSE = 36089 ton/day) for SSL(t+3). The best prediction 20 

performance is obtained for short-term “one day ahead” SSL prediction; the prediction 21 

performance is noticeably reduced the longer the prediction span, although it remains 22 
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acceptable based on the acceptance ranges indicated by (Lawrence & Lin, 1989, Moriasi et al., 1 

2007, Ritter & Muñoz-Carpena, 2013, Willmott & Matsuura, 2005). 2 

[Table 10, 11 and 12] 3 

Table 13 summarizes the prediction performance indices for the best established input 4 

combinations for each SSL time series. As expected, the prediction performance is the best for 5 

SSL(t) and decreases, although remaining more than acceptable, for SSL(t+3). Prediction of 6 

SSL(t) requires four input time series, namely [SSC(t), SSC(t-1), SSC(t-2) and Q(t)], while 7 

SSL(t+1) and SSL(t+3) require three [SSC(t), SSC(t-1), Q(t)] and four [SSC(t), SSC(t-1), Q(t-8 

1), Q(t)], respectively. It is noted that the SSC time series is a key input for SSL prediction for 9 

times “t” and “t+1” and the Q time series is for time “t+3”. Overall, the developed GBR, ABR 10 

and RFR models produce comparable prediction performances, with RFR having a slight lead 11 

over the other two. 12 

[Table 13] 13 

Visual comparisons are also carried out to identify optimal prediction model(s). Figure 6 14 

illustrates the heat map of the best selected predictive models based on normalized performance 15 

indicators for each time series. Again, for predicting SSL(t), RFR-M7 model has the best 16 

modeling performance. For SSL(t+3), RFR-M1 model is the most accurate predictive model 17 

and, for SSL(t+1), RFR-M6 and GBR-M5 have comparable performance and better prediction 18 

than ABR-M6. 19 

[Figure 6] 20 

Figure 7 compares the best predictive models on scatter plots. The figure shows an increasing 21 

spread of points for observed vs predicted SSL as the time considered for SSL changes from 22 

“t” to “t+3”. Based on the coefficient of determination R2, RFR-M7 (𝑅2 = 0.996), RFR-M6 23 
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(𝑅2 = 0.914) and RFR-M1 (𝑅2 = 0.718) have the best prediction performance for SSL(t), 1 

SSL(t+1) and SSL(t+3), respectively.  2 

The boxplots in Figure 8 reveal the marginally better performance of RFR-M7 (𝑄50% = 26970 3 

ton/day vs observed 𝑄50% = 26900  ton/day) and ABR-M6 (𝑄50% = 29100  ton/day vs 4 

observed 𝑄50% = 27500 ton/day) for SSL(t) and SSL(t+1), respectively. For SSL(t+3), the 5 

GBR-M1 model (𝑄50% = 27127.4 ton/day vs observed data 𝑄50% = 27350 ton/day) slightly 6 

outperforms the others.  7 

[Figure 7 and 8] 8 

The Taylor diagrams (Figure 9) confirm the slightly better performance of the RFR models 9 

(M7 for SSL(t), M6 for SSL(t+1) and M1 for SSL(t+3)) highlighted by heat maps and 10 

scatterplots. Additionally, in all cases the ABR algorithm shows the weakest performance in 11 

SSL prediction. 12 

[Figure 9] 13 

The prediction performance obtained from the ensemble machine learning models developed 14 

in this study reveals that they are remarkably capable of predicting SSL for different time spans 15 

between inputs and output. However, it is also important to compare the results obtained with 16 

reported modeling results from the literature for SSL prediction. Melesse et al. (2011) 17 

developed ANN, MLR and Auto Regressive Integrated Moving Average (ARIMA) models for 18 

predicting “one day ahead” SSL, attaining 𝑅2 = 0.96, 0.76 and 0.98, respectively. Nourani & 19 

Andalib (2015) applied ANN and Least Squares Support Vector Regression (LSSVR) models 20 

for simulating “one day ahead” SSL, achieving 𝑅2 = 0.87 and 0.92, respectively. (Olyaie et 21 

al., 2015) predicted SSL in the Flathead River and in the Santa Clara River using ANN, ANFIS 22 

and WANN models, obtaining 𝑅2 = 0.662, 0.683 and 0.894, respectively. (Rahgoshay et al., 23 

2018) modeled daily SSL using M5, SVM-GA (Genetic Algorithm) and MARS models, with  24 



Page 21 of 36 
 

NSE results of 0.91, 0.90 and 0.96, respectively. (Kisi & Yaseen, 2019) predicted SSL with 1 

ANFIS-GP with a best obtained NSE value of 0.911. (Sharghi et al., 2019) forecast daily SSL 2 

in the Upper Rio Grande and Lighvanchai Rivers using ANN, Emotional -ANN (EANN), 3 

Wavelet-Emotional-ANN (WEANN) and Wavelet-ANN (WANN) models, obtaining NSE of 4 

0.948, 0.947, 0.989 and 0.987, respectively. It can be therefore seen that the predictive models 5 

presented in this study attain a better prediction performance compared to the models in the 6 

literature. 7 

The SSL predictions provided by our newly developed ensemble machine learning models are 8 

associated, as is case with any model, with a certain degree of uncertainty that needs to be 9 

quantified. The uncertainty associated with the model structure is evaluated for the three 10 

ensemble machine learning models considered ( 𝐺𝐵𝑅, 𝐴𝐵𝑅, 𝑅𝐹𝑅 ) for the best input 11 

combination M7, M6, and M1 for SSL(t), SSL(t+1) and SSL(t+3), respectively. As regards the 12 

uncertainty associated with the input variables, the generally best performing model RFR is 13 

evaluated for the input combinations 𝑀1 to 𝑀10 , 𝑀1 to 𝑀8  and 𝑀1 to 𝑀4  for SSL(t), 14 

SSL(t+1) and SSL(t+3), respectively. 15 

Figures 10, 11, and 12 show the 95PPU band created for SSL(t), SSL(t+1) and SSL (t+3), 16 

respectively, in each case considering both model structure and input variable uncertainties and 17 

comparing with the observed SSL values. For SSL(t) and SSL(t+1), the model structure 𝑅 −18 

𝑓𝑎𝑐𝑡𝑜𝑟 (0.15 and 0.28, respectively) is lower than the input variable 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 (0.66 and 19 

0.67, respectively), especially for SSL(t), for which the difference between the two R-factor’s 20 

is significant. Hence, the prediction results are more sensitive to the input variables than they 21 

are to the model structure. On the contrary, for SSL(t+3), the input variable 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 (0.11) 22 

is lower than the model structure  𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 (0.48), which means that the model selection 23 

has larger impact on prediction than the selection of the input variables. In other words, the 24 

uncertainty analysis indicates that the input combination for short term prediction (less than 25 
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two days ahead) of SSL has a significant impact on the results obtained, while the model 1 

structure is more important than the input combination for the performance of longer term 2 

predictions of SSL. It must be noted that we exclusively focus here on the uncertainty 3 

associated with input variables and model structure; other sources of uncertainty, related to 4 

measurement errors, data handling and inadequate sampling may be important but are assumed 5 

to be negligible for the purposes of this study.  6 

[Figure 10, 11 and 12] 7 

 8 

4. Conclusion 9 

This study evaluates the prediction performance of models based on the application of the 10 

ensemble learning algorithms ABR, GBR and RFR (subcategories of machine learning 11 

algorithms) in predicting suspended sediment load in rivers. For this purpose, the Mississippi 12 

River in USA is selected as a case study and 3000 daily SSL data in the period 2007-2015 are 13 

considered. Daily discharge and suspended sediment concentration are considered as input 14 

variables for prediction of SSL. SSL is predicted for an “origin” day (t) and following days 15 

(t+1) and (t+3) and the input variables Q and SSC are considered for day (t) down to day (t-4). 16 

The prediction performance of the ABR, GBR and RFR algorithms is evaluated the 17 

performance indicators RMSE, MAE, R2 and NSE coefficient for different combinations of 18 

input variables. Visual comparisons, in the form of heat maps, scatter plots, boxplots and 19 

Taylor diagrams, are also used to identify the best predictive models. The results show RFR  as 20 

the generally leading algorithm. The optimal input variable combination is [Q(t), SSC(t), SSC(t-21 

1), SSC(t-2)], [Q(t), SSC(t), SSC(t-1)] and [Q(t), Q(t-1), SSC(t), SSC(t-1)]  for SSL(t), SSL(t+1) 22 

and SSL(t+3), respectively. Overall, our uncertainty analysis shows that the SSL prediction is 23 

significantly more affected by the selection of the input variables than it is by the model 24 
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structure (i.e. the type of algorithm). The prediction performance provided by the proposed 1 

algorithms for SSL up to three days after the current day makes them a potentially useful tool 2 

for planners and civil engineers involved in sedimentation mitigation. 3 

One limitation of this study is the consideration of a single case study (Mississippi River below 4 

Grafton, IL). Future work will involve testing the proposed methodology on several other 5 

rivers. We also plan to evaluate the use of input variables for prediction generated from weather 6 

data using numerical rainfall-runoff modeling, as an alternative to input variables measured in 7 

situ, to facilitate the adoption of our proposed predictive models (especially where in situ data 8 

are limited) and possibly further improve the SSL prediction performance. In addition, satellite 9 

data can be incorporated as external informative attribute to the prediction matrix where more 10 

accurate prediction accuracy can be attained. Thus, this is also another vital exploration can be 11 

devoted as future research as an extension for the current study.  12 

 13 

 14 
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Table 1: Summary of Artificial Neural Network (ANN) models for Suspended Sediment 2 
Load (SSL) prediction. 3 

 4 

Scholars 
Best predictive 

model 
Input variable(s) 

Study 

area 
Time scale 

(Jain, 2001) FFNN 
Discharge, Water stage, 

SSL 
USA Daily 

(H Kerem Cigizoglu, 

2004) 
MLP Discharge, SSL USA Daily 

(Agarwal et al., 2005) FFNN 
Discharge, Rainfall, 

SSL 
India 

Daily, 

Monthly 

(Hikmet Kerem 

Cigizoglu & Alp, 2006) 
FFNN Discharge, SSL USA Daily 

(Rai & Mathur, 2008) FFNN 
Discharge, Rainfall, 

SSL 
USA Daily 

(Kisi et al., 2008) MLP Discharge, SSL Turkey Daily 

(Melesse et al., 2011) FFNN 
Discharge, Rainfall, 

SSL 
USA 

Daily, 

Weekly 

(Mustafa et al., 2012) MLP Discharge, SSL Malaysia Daily 

(Singh et al., 2012) FFNN Discharge, Rainfall India Monthly 

(Afan et al., 2014) FFNN Discharge, SSL Malaysia Daily 

(Ramezani et al., 2014) FF-SBA 
Discharge, Debit, River 

length 
Iran Monthly 

(Zounemat-Kermani et 

al., 2016) 
FFNN Discharge, SSL USA Daily 

(Tfwala & Wang, 2016) MLP Discharge, SSL Taiwan Hourly 

(Chen & Chau, 2016) HDFNN Discharge, SSL USA Daily 

(Sari et al., 2017) MLP Turbidity, Water stage Brazil Monthly 

(Adib & Mahmoodi, 

2017) 
MLP-GA Discharge Iran Daily 

(Pektas & Cigizoglu, 

2017) 
FFBP SSL USA Daily 

(Samantaray & Ghose, 

2018) 
NNFIT Discharge, SSL India Monthly 

FFBP: feed forward back propagation, FFNN: feed forward neural network, FF-SBA: feed forward social based 

algorithm, HDFNN: hybrid double feedforward neural network, MLP: multi-layer back prorogation, NNFIT: neural 

network fitting. 
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 7 
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 10 

 11 

 12 
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Table 2: Summary of fuzzy logic-based models for Suspended Sediment Load (SSL) 2 

prediction 3 

Scholars 
Best predictive 

model 
Input variable(s) 

Study 

area 

Time 

scale 

(Kisi, 2005) Neuro-fuzzy Discharge, SSL USA Daily 

(Lohani et al., 2007) Fuzzy logic 
Discharge, Water 

stage, , SSL 
India Daily 

(Firat & Güngör, 2010) ANFIS Discharge, SSL Turkey Monthly 

(Rajaee et al., 2009) Neuro-fuzzy Discharge, SSL USA Daily 

(Cobaner et al., 2009) Neuro-fuzzy 
Discharge, Rainfall, 

SSL 
USA Daily 

(Demirci & Baltaci, 2013) Fuzzy logic 
Discharge, 

Temperature, SSL 
USA Daily 

(Özger & Kabataş, 2015) Fuzzy logic SSL Turkey Monthly 

(Kisi & Zounemat-

Kermani, 2016) 
ANFIS-FCM Discharge USA Daily 

(Malik et al., 2017) CANFIS Discharge, SSL India Daily 

(Nivesh & Kumar, 2018) ANFIS 
Discharge, Rainfall, 

SSL 
India Daily 

(Kisi & Yaseen, 2019) EF Discharge USA Daily 

ANFIS: adaptive neuro fuzzy inference system, ANFIS-FCM: adaptive neuro-fuzzy embedded fuzzy c-means clustering, 

CANFIS: co-active neuro-fuzzy inference system , EF: evolutionary fuzzy 
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Table 3: Summary of other artificial intelligence models for Suspended Sediment Load 1 

(SSL) prediction 2 

Scholars 
Best predictive 

model 
Input variable(s) 

Study 

area 
Time scale 

(Guven & Kişi, 2011) LGP Discharge, SSL USA Daily 

(Kişi, 2010) NDE Discharge, SSL USA Daily 

(Kisi, 2012) LSSVM Discharge, SSL USA Daily 

(Kisi et al., 2012) GP Discharge, SSL USA Daily 

(Kisi & Shiri, 2012) GEP Discharge, Rainfall, SSL USA Daily 

(Goyal, 2014) MT Discharge, Rainfall, SSL India Monthly 

(Nourani & Andalib, 

2015) 
WLSSVM Discharge, SSL USA 

Daily, 

Monthly 

(Shiau & Chen, 2015) QR Discharge Taiwan Daily 

(Nourani et al., 2016) SVM Discharge, SSL Iran Monthly 

(Rashidi et al., 2016) GT-SVM Discharge, SSL Iran Monthly 

(Shamaei & Kaedi, 

2016) 
LGP Discharge, SSL USA Daily 

(Himanshu et al., 2016) WLSSVM Discharge, Rainfall, SSL India Daily 

(Buyukyildiz & Kumcu, 

2017) 
SVR Discharge, SSL Turkey Daily 

(Himanshu et al., 

2017b) 
WLSSVM Discharge, Rainfall, SSL India 

Daily, 

Monthly 

(Talebi et al., 2017) MT Discharge Iran Daily 

(Moeeni & Bonakdari, 

2018) 
ARMAX-ANN Discharge, SSL USA Daily 

(Choubin et al., 2018) CART 
Discharge, Rainfall, Water 

stage, SSL 
Iran Daily 

(Yilmaz et al., 2018) 

 
MARS Discharge, SSL Turkey Daily 

(Emamgholizadeh & 

Demneh, 2019) 
GEP Discharge Iran daily 

(Hassanpour et al., 

2019) 
FCM-SVR Discharge, SSL Iran daily 

(Nourani et al., 2019) Wavelet-M5 Discharge, SSL Iran, USA 
Daily, 

Monthly 

(Tabatabaei et al., 2019) NSGA-II Discharge, SSL Iran Monthly 
ARMAX: autoregressive-moving average with exogenous terms, , CART: classification and regression tree, GEP: gene 

expression programming, GP: genetic programming, GT-SVM: gamma test support vector machine, LGP: linear genetic 

programming, LSSVM: least square support vector machine, MARS: multivariate adaptive regression splines, MT: model trees, 

NDE: neural differential evolution, QR: quantile regression, SVM: support vector machine, WLSSVM: wavelet least square 

support vector machine, NSGA-II: non-dominated sorting Genetic Algorithm II 
 3 

 4 



 

 

Table 4: Statistical parameters for Daily Discharge (Q), Suspended Sediment Concentration (SSC) and 

Suspended Sediment Load (SSL) at USGS station 05587455 (Mississippi river below Grafton, Illinois) 

for the period 2007-2015 

Statistic Q (ft3/s) SSC (mg/L) SSL (ton/day) 

Xmax 400000 589 387000 

Xmin 13400 6 489 

Xmean 145346.7 118.6 61538.6 

Sx 92695.5 102.8 70827.8 

Csx 0.717 1.486 1.488 

 

 

Table 5: Ensemble model parameters for Gradient Boost Regression (GBR), Ada Boost Regression 

(ABR) and Random Forest Regression (RFR) models 

 Gradient Boost Regression Ada Boost Regression Random Forest regression 

Parameter Default Used Default Used Default Used 

n Estimator 100 200 50 30 100 200 

Max Depth 3 4 10 100 None None 

Min Sample Split 2 2 --- --- 2 5 

Learning Rate 0.1 0.1 1 0.1 --- --- 

Loss Function 

Ls 

Lad 

Huber 

Quantile 

Ls  

Linear 

Square 

exponential 

Linear --- --- 

 

 

 

Table 6 – Pearson correlation between selected input and predicted variables 

 SSC(t) Q(t) SSC(t-1) Q(t-1) SSC(t-2) Q(t-2) SSC(t-3) Q(t-3) SSC(t-4) Q(t-4) 

SSL(t) 0.915 0.781 0.880 0.754 0.810 0.721 0.744 0.689 0.684 0.659 

SSL(t+1) 0.881 0.754 0.810 0.721 0.744 0.689 0.684 0.659   

SSL(t+3) 0.744 0.689 0.684 0.659       

 

 

 



Table 7 – Best input combinations considered for prediction of the SSL(t) time series 

Input Combinations Predictive variables 

M1 SSC(t), SSC(t-1), SSC(t-2), Q(t), Q(t-1), SSC(t-3), Q(t-2), Q(t-3), SSC(t-4), Q(t-4) 

M2 SSC(t), SSC(t-1), SSC(t-2), Q(t), Q(t-1), SSC(t-3), Q(t-2), Q(t-3), SSC(t-4) 

M3 SSC(t), SSC(t-1), SSC(t-2), Q(t), Q(t-1), SSC(t-3), Q(t-2), Q(t-3) 

M4 SSC(t), SSC(t-1), SSC(t-2), Q(t), Q(t-1), SSC(t-3), Q(t-2) 

M5 SSC(t), SSC(t-1), SSC(t-2), Q(t), Q(t-1), SSC(t-3) 

M6 SSC(t), SSC(t-1), SSC(t-2), Q(t), Q(t-1) 

M7 SSC(t), SSC(t-1), SSC(t-2), Q(t) 

M8 SSC(t), SSC(t-1), SSC(t-2) 

M9 SSC(t), SSC(t-1) 

M10 SSC(t) 

 

 

 

Table 8 – Best input combinations considered for prediction of the SSL(t+1) time series 

Input Combinations Predictive variables 

M1 SSC(t), SSC(t-1), Q(t), SSC(t-2), Q(t-1), Q(t-2), SSC(t-3), Q(t-3) 

M2 SSC(t), SSC(t-1), Q(t), SSC(t-2), Q(t-1), Q(t-2), SSC(t-3) 

M3 SSC(t), SSC(t-1), Q(t), SSC(t-2), Q(t-1), Q(t-2) 

M4 SSC(t), SSC(t-1), Q(t), SSC(t-2), Q(t-1) 

M5 SSC(t), SSC(t-1), Q(t), SSC(t-2) 

M6 SSC(t), SSC(t-1), Q(t) 

M7 SSC(t), SSC(t-1) 

M8 SSC(t) 

 

 

 

Table 9 – Best input combinations considered for prediction of the SSL(t+3) time series 

Input Combinations Predictive variables 

M1 SSC(t), Q(t), SSC(t-1), Q(t-1) 

M2 SSC(t), Q(t), SSC(t-1) 

M3 SSC(t), Q(t) 

M4 SSC(t) 

 

 

 



Table 10– Prediction performance indices for SSL(t), SSL(t+1) and SSL(t+3) obtained using Gradient 

Boost Regression (GBR) 

Target 

Variable 
Input Combination 

MAE 

(ton/day) 

RMSE 

(ton/day) 
R2 NSE 

SSL(t) 

M1 2305.232 5748.586 0.994 0.994 

M2 2515.935 6783.551 0.992 0.991 

M3 2304.048 6216.710 0.993 0.993 

M4 2411.340 6659.683 0.992 0.991 

M5 2456.772 7249.205 0.990 0.990 

M6 2463.932 5999.943 0.994 0.993 

M7 2195.211 5512.286 0.995 0.994 

M8 16773.242 28013.148 0.852 0.848 

M9 17517.357 29449.214 0.835 0.832 

M10 18480.468 32026.136 0.803 0.802 

SSL(t+1) 

M1 10253.613 21292.751 0.906 0.905 

M2 10292.561 21783.516 0.901 0.901 

M3 10129.111 20750.383 0.911 0.910 

M4 10020.559 21136.775 0.907 0.906 

M5 9815.220 20734.854 0.911 0.910 

M6 9654.667 21096.573 0.908 0.907 

M7 19403.365 32208.402 0.787 0.783 

M8 20417.279 32631.537 0.778 0.777 

SSL(t+3) 

M1 18711.426 36969.555 0.710 0.702 

M2 19047.896 37560.660 0.701 0.692 

M3 19623.782 37704.309 0.697 0.690 

M4 26913.895 46211.982 0.548 0.534 

 

 

 

 

 

 

 

 

 

 

 

 



Table 11 – Prediction performance indices for SSL(t), SSL(t+1) and SSL(t+3) obtained using Ada Boost 

Regression (ABR) 

Target 

Variable 
Input Combination 

MAE 

(ton/day) 

RMSE 

(ton/day) 
R2 NSE 

SSL(t) 

M1 2074.539 5366.950 0.995 0.994 

M2 2263.754 6055.567 0.993 0.993 

M3 2072.264 5256.417 0.995 0.995 

M4 2101.006 5394.456 0.995 0.994 

M5 2104.699 5466.907 0.995 0.994 

M6 2000.133 5068.103 0.995 0.995 

M7 1929.674 5195.675 0.995 0.995 

M8 18267.302 31510.344 0.811 0.808 

M9 19431.838 33675.553 0.786 0.781 

M10 20424.620 34252.543 0.777 0.773 

SSL(t+1) 

M1 11857.817 27279.099 0.855 0.844 

M2 11443.277 26003.969 0.865 0.858 

M3 11160.600 25098.966 0.873 0.868 

M4 10917.098 24609.220 0.876 0.873 

M5 11356.666 25792.813 0.865 0.861 

M6 10786.019 23289.028 0.887 0.886 

M7 23583.464 39062.095 0.693 0.680 

M8 24856.751 38938.279 0.698 0.682 

SSL(t+3) 

M1 19136.383 37672.409 0.699 0.691 

M2 19763.037 38037.871 0.691 0.685 

M3 23105.003 44204.423 0.600 0.574 

M4 32846.963 53401.274 0.448 0.378 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 12 – Prediction performance indices for SSL(t), SSL(t+1) and SLL(t+3) obtained using Random 

Forest Regression (RFR) 

Target 

Variable 
Input Combination 

MAE 

(ton/day) 

RMSE 

(ton/day) 
R2 NSE 

SSL(t) 

M1 1701.143 4883.321 0.996 0.995 

M2 1705.770 4899.723 0.996 0.995 

M3 1705.422 4847.778 0.996 0.995 

M4 1687.944 4846.538 0.996 0.995 

M5 1679.124 4834.228 0.996 0.995 

M6 1662.183 4789.289 0.996 0.996 

M7 1575.734 4624.332 0.996 0.996 

M8 17481.476 28386.176 0.845 0.844 

M9 17952.052 29003.889 0.838 0.837 

M10 18767.744 31116.474 0.813 0.813 

SSL(t+1) 

M1 10851.661 22030.972 0.902 0.898 

M2 10839.857 21912.638 0.902 0.899 

M3 10765.171 21580.923 0.905 0.902 

M4 10509.656 21218.148 0.907 0.906 

M5 10733.093 21199.616 0.908 0.906 

M6 10431.096 20378.909 0.914 0.913 

M7 20822.172 32635.966 0.778 0.777 

M8 22734.544 34818.599 0.750 0.746 

SSL(t+3) 

M1 20387.187 36089.119 0.718 0.716 

M2 21017.470 37041.385 0.704 0.701 

M3 22451.284 38874.833 0.676 0.671 

M4 30851.522 49265.926 0.495 0.471 

 

 

 

 

 

 

 

 

 

 

 



 

Table 13 – Prediction performance indices for the best predictive models 

Target 

Variable 
Predictive Model 

MAE 

(ton/day) 

RMSE 

(ton/day) 
R2 NSE 

SSL(t) 

ABR-M6 2000.133 5068.103 0.995 0.995 

GBR-M7 2195.211 5512.286 0.995 0.994 

RFR-M7 1575.734 4624.332 0.996 0.996 

SSL(t+1) 

ABR-M6 10786.019 23289.028 0.887 0.886 

GBR-M5 9815.220 20734.854 0.911 0.910 

RFR-M6 10431.096 20378.909 0.914 0.913 

SSL(t+3) 

ABR-M1 19136.383 37672.409 0.699 0.691 

GBR-M1 18711.426 36969.555 0.711 0.702 

RFR-M1 20387.187 36089.119 0.718 0.716 

 

 



 

 

 

Figure 1: Location of the USGS station 05587455 (Mississippi river below Grafton, IL) and 

geographical information on the case study area. 



 

Figure 2: Conceptual representation of the Gradient Boost Regression (GBR) algorithm. 

 

 



 

Figure 3: Conceptual representation of the Ada Boost Regression (ABR) algorithm. 



 

Figure 4: Conceptual representation of the Random Forest Regression (RFR) algorithm. 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 5: Example of sensitivity analysis and identification of the optimal parameter value for 

the GBR algorithm. a) n-estimator, b) max depth, c) loss function and d) learning rate. 
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Figure 6: Heat maps of the best predictive models based on different standardized performance 

metrics for testing phase for SSL with different lead time. a) SSL(t), b) SSL(t+1) and c) 

SSL(t+3). 
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Figure 7:  Scatter plots (predicted vs observed SSL) for the best predictive models for testing 

phase for SSL with different lead time. a) SSL(t), b) SSL(t+1), and (c) SSL(t+3). 
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Observed ABR-M1 GBR-M3 RFR-M7

Q25% 7717.50 7482.50 7685.07 7564.28

Q50% 26900.00 27050.00 27154.00 26970.85

Q75% 96625.00 96900.00 97134.50 97328.38

IQR 88907.50 89417.50 89449.43 89764.10

Q25% 7827.50 7595.00 8175.32 8278.14

Q50% 27500.00 29100.00 29663.70 30764.30

Q75% 96800.00 101000.00 94962.78 103707.50

IQR 88972.50 93405.00 86787.45 95429.36



 

 

Figure 8:  Boxplot of observed and predicted SSL for the best predictive models for testing 

phase for SSL with different lead time. a) SSL(t), b) SSL(t+1) and c) SSL(t+3). 

 

 

 

 

 

 

 

 

 

 

 

 

Q25% 7137.50 7467.50 7443.70 9507.98

Q50% 27350.00 24600.00 27127.40 37120.60

Q75% 96150.00 88225.00 90798.35 99472.98

IQR 89012.50 80757.50 83354.65 89964.99



 

 

 

 



 

Figure 9:  Normalized Taylor diagrams for the best predictive models for testing phase for SSL 

with different lead time. a) SSL(t), b) SSL(t+1) and c) SSL(t+3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 10: Generated 95PPU band for SSL(t) considering, a) model structure uncertainty and b) 

input variable uncertainty. 
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Figure 11:  Generated 95PPU band for SSL(t+1) considering, a) model structure uncertainty and 

b) input variable uncertainty. 
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Figure 12: Generated 95PPU band for SSL(t+3) considering, a) model structure uncertainty and 

b) input variable uncertainty. 
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