22 research outputs found

    Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Get PDF
    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results

    Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Get PDF
    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones

    The Airborne Metagenome in an Indoor Urban Environment

    Get PDF
    The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens

    Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application

    Get PDF
    CdS/ZnO nanorods composite nanofilms were successfully synthesized via hydrothermal method on indium doped tin oxide glass substrates. Sequentially deposited CdS formed cauliflower like nanostructures on vertically aligned ZnO nanorods. The morphological, compositional, structural and optical properties of the films were characterized by field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction and ultraviolet–visible spectroscopy. Photoelectrochemical conversion efficiencies were evaluated by photocurrent measurements in a mixture of Na2S and Na2SO3 akaline aqueous solution. The amount of deposit, as well as the diameter and crystallinity of the CdS cauliflower were found to increase with growth time. CdS/ZnO nanorods composite exhibited greater photocurrent response than ZnO nanorod arrays. Besides, the composite film with 90 min of growth duration displayed the highest photocurrent density which is nearly four times greater than plain ZnO nanorods under the illumination of halogen light. The result exhibited remarkable photoconversion efficiency (η) of 1.92 %

    Combinatorial Complexity of Signed Discs

    No full text
    Let C + and C \Gamma be two collections of topological discs of arbitrary radii. The collection of discs is `topological' in the sense that their boundaries are Jordan curves and each pair of Jordan curves intersect at most twice. We prove that the region [C + \Gamma [C \Gamma has combinatorial complexity at most 10n \Gamma 30 where p = jC + j, q = jC \Gamma j and n = p+q 5. Moreover, this bound is achievable. We also show less precise bounds that are stated as functions of p and q. 1 CKY is supportedby NSF grants #DCR-84-01898 and #CCR-87-03458; DLS is supported by NSF grants #CCR-88-03549 and #CCR-91-04732. 1 INTRODUCTION 2 1 Introduction Analysis of the combinatorial complexity of geometric or topological arrangements is often a prelude to the complexity analysis of algorithms. There have been several recent papers on the combinatorial complexity of arrangements of planar curves. In particular, Kedem et al. [4] shows that if C is a collection of n 0 topological di..
    corecore