119,105 research outputs found
A new time scale based k-epsilon model for near wall turbulence
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data
A kappa-epsilon calculation of transitional boundary layers
A recently proposed kappa-epsilon model for low Reynolds number turbulent flows was modified by introducing a new damping function f(sub mu). The modified model is used to calculate the transitional boundary layer over a flat plate with different freestream turbulence levels. It is found that the model could mimic the transitional flow. However, the predicted transition is found to be sensitive to the initial conditions
A k-epsilon modeling of near wall turbulence
A k-epsilon model is proposed for turbulent bounded flows. In this model, the turbulent velocity scale and turbulent time scale are used to define the eddy viscosity. The time scale is shown to be bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using the time scale, removing the need to introduce the pseudo-dissipation. A damping function is chosen such that the shear stress satisfies the near wall asymptotic behavior. The model constants used are the same as the model constants in the commonly used high turbulent Reynolds number k-epsilon model. Fully developed turbulent channel flows and turbulent boundary layer flows over a flat plate at various Reynolds numbers are used to validate the model. The model predictions were found to be in good agreement with the direct numerical simulation data
Magnesium and magnesium alloys as degradable metallic biomaterials
Drawbacks associated with permanent metallic implants lead to the search for degradable metallic biomaterials. Magnesium has been considered as it is essential to bodies and has a high biodegradation potential. For magnesium and its alloys to be used as biodegradable implant materials, their degradation rates should be consistent with the rate of healing of the affected tissue, and the release of the degradation products should be within the body's acceptable absorption levels. Conventional magnesium degrades rapidly, which is undesirable. In this study, biodegradation behaviours of high purity magnesium and commercial purity magnesium alloy AZ31 in both static and dynamic Hank's solution have been systematically investigated. The results show that magnesium purification and selective alloying are effective approaches to reduce the degradation rate of magnesium. In the static condition, the corrosion products accumulate on the materials surface as a protective layer, which results in a lower degradation rate than the dynamic condition. Anodised coating can significantly further reduce the degradation rate of magnesium. This study indicates that magnesium can be used as degradable implant materials as long as the degradation is controlled at a low rate. Magnesium purification, selective alloying and anodised coating are three effective approaches to reduce the rate of degradation
Recommended from our members
Mixed H2/H∞ filtering for uncertain systems with regional pole assignment
Copyright [2005] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.The mixed H2/H∞ filtering problem for uncertain linear continuous-time systems with regional pole assignment is considered. The purpose of the problem is to design an uncertainty-independent filter such that, for all admissible parameter uncertainties, the following filtering requirements are simultaneously satisfied: 1) the filtering process is asymptotically stable; 2) the poles of the filtering matrix are located inside a prescribed region that compasses the vertical strips, horizontal strips, disks, or conic sectors; 3) both the H2 norm and the H∞ norm on the respective transfer functions are not more than the specified upper bound constraints. We establish a general framework to solve the addressed multiobjective filtering problem completely. In particular, we derive necessary and sufficient conditions for the solvability of the problem in terms of a set of feasible linear matrix inequalities (LMIs). An illustrative example is given to illustrate the design procedures and performances of the proposed method
Tackling Challenges in Seebeck Coefficient Measurement of Ultra-High Resistance Samples with an AC Technique
Seebeck coefficient is a widely studied semiconductor property. Conventional Seebeck coefficient measurements are based on DC voltage measurement. Normally this is performed on samples with moderate resistances (e.g., below a few MΩ level). Certain semiconductors are intrinsic and highly resistive. Many examples can be found in optical and photovoltaic materials. The hybrid halide perovskites that have gained extensive attention recently are a good example. Despite great attention from the materials and physics communities, few successful studies exist of the Seebeck coefficient of these compounds, for example CH3NH3PbI3. An AC-technique-based Seebeck coefficient measurement is reported, which makes high-quality Seebeck voltage measurements on samples with resistances up to the 100 GΩ level. This is achieved through a specifically designed setup to enhance sample isolation and increase capacitive impedance. As a demonstration, Seebeck coefficient measurement of a CH3NH3PbI3 thin film is performed at dark, with sample resistance 150 GΩ, and found S = +550 µV K−1. The strategy reported could be applied to the studies of fundamental transport parameters of all intrinsic semiconductors that have not been feasible
Intrinsic Percolative Superconductivity in Heavily Overdoped High Temperature Superconductors
Magnetic measurements on heavily overdoped ,
, and single crystals reveal
a new type magnetization hysteresis loops characterized by the vanishing of
usual central peak near zero field. Since this effect has been observed in
various systems with very different structural details, it reflects probably a
generic behavior for all high temperature superconductors. This easy
penetration of magnetic flux can be understood in the picture of percolative
superconductivity due to the inhomogeneous electronic state in heavily
overdoped regime.Comment: 4 pages, 5 figure
- …