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The mixed H2=H1 filtering problem for uncertain linear
continuous-time systems with regional pole assignment is
considered. The purpose of the problem is to design an
uncertainty-independent filter such that, for all admissible
parameter uncertainties, the following filtering requirements are
simultaneously satisfied: 1) the filtering process is asymptotically
stable; 2) the poles of the filtering matrix are located inside a
prescribed region that compasses the vertical strips, horizontal
strips, disks, or conic sectors; 3) both the H2 norm and the H1
norm on the respective transfer functions are not more than
the specified upper bound constraints. We establish a general
framework to solve the addressed multiobjective filtering problem
completely. In particular, we derive necessary and sufficient
conditions for the solvability of the problem in terms of a set of
feasible linear matrix inequalities (LMIs). An illustrative example
is given to illustrate the design procedures and performances of
the proposed method.
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I. INTRODUCTION

State estimation of dynamic systems in the
presence of both process and measurement noises is
one of the important problems in control engineering
[1]. Among various state estimation methods,
the celebrated Kalman filtering (also known as
H2 filtering) approach minimizes the H2 norm
of the estimation error, under the assumptions
that the system parameters are well posed and
the noise processes have exactly known power
spectral densities. The application areas of Kalman
filtering range from control engineering to signal
processing, such as depth estimation in machine vision
development (see e.g. [15]).
It is now well known that (see e.g. [1]) the

traditional Kalman filtering approach may have
poor performance against modeling error and noises
with uncertain spectral densities. This situation has
resulted in the rapid developments of H1 filtering
and cost-guaranteed robust filtering. For instance, the
estimation problem was reformulated in [22] in terms
of H1 norm constraints. An example was proposed
by de Souza et al. [10] to demonstrate that the H1
filtering is more robust against plant uncertainties
than the H2 filtering. So far, there have been many
approaches to dealing with the H1 filtering problem,
such as the game-theoretic method [23], the linear
matrix inequality (LMI) approach [8, 18], the model
matching approach [14], to name just a few.
On the other hand, the H1 filtering typically

leads to a large intolerable estimation error variance
when the system is driven by white noise signals.
Therefore, the mixed H2=H1 filtering problem, which
simultaneously considers the presence of two sets of
exogenous signal inputs (i.e., the deterministic input
with bounded energy and the stochastic input with
known statistics), was first introduced in [3] as an
attempt to capture the benefits of both the pure H2 and
H1 filters. The mixed H2=H1 filtering theory allows
us to trade off between the best performances of the
H2 and H1 filters. As is well known, the individual
H2 or H1 filtering problem has readily computable
solutions. Unfortunately, this is no longer such a case
for the mixed H2=H1 problem as there is no known
“nice” solution.
So far, there have been several approaches to

tackling the mixed H2=H1 filtering problem. For
example, Bernstein and Haddad [3] transformed the
mixed H2=H1 filtering problem into an auxiliary
minimization problem. Then, by using the Lagrange
multiplier technique, they gave the solutions in terms
of an upper bound on the H2 filtering error. In [5] and
[23], a time domain game approach was proposed to
solve the mixed H2=H1 filtering problem through a
set of coupled Riccati equations. Khargonekar et al.
[17] and Rotstein et al. [20] exploited the convex
optimization method to obtain the solutions involving
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affine symmetric matrix inequalities. Furthermore,
when there exist parameter uncertainties, the robust
H2 and/or H1 filtering problem has recently received
much research attention, see e.g. [9, 12, 17, 24—26,
28] and references therein.
On the other hand, the standard mixed H2=H1

filter design primarily concerns with the stability and
frequency-domain performance specifications of the
filter, and considers very little about the transient
property of the estimation dynamics. As is well
known, the dynamics of a linear system is closely
related to the location of its poles. By constraining the
filter’s poles to lie inside a prescribed region in the
open left-half plane, the filter designed would have the
expected transient performance. Besides, regional pole
assignment can also provide indirect tolerance against
plant uncertainties. It is worth emphasizing that, in
the past few years, the controller design problem
with regional poles placement has been extensively
studied. In particular, Chilali and Gahinet [6] studied
in detail the design of state- or output-feedback H1
controllers that satisfy additional constraints on the
regional pole location, and the results were further
extended in [7] and [21] to the uncertain system that
was described by a polytopic state-space model. In
[2], the mixed H2=H1 control problem with regional
pole assignment was considered for deterministic
continuous-time systems. Recently, in [13], the
H2=H1 robust filtering problem was investigated for
convex bounded uncertain systems by using an LMI
approach. It should be pointed out that, compared
with the control design case, the corresponding
filtering design problem with pole assignment in a
desired region has gained much less attention, not to
mention the case when mixed H2=H1 performance is
also the required filtering objectives. This situation
motivates our present investigation.
We deal here with the multiobjective H2=H1

filtering problem with regional pole assignment. The
approach developed is different from that proposed
in [3], where the Lagrange multiplier technique was
used for solving a set of highly coupled Riccati and
Lyapunov equations. Instead, the LMI approach is
employed, which is based on the change-of-variable
technique introduced in [21] and used in [13]. Since
LMIs intrinsically reflect constraints rather than
optimality, they tend to offer more flexibility for
combining several constraints. LMIs can now be
solved efficiently via interior-point optimization
algorithms, such as those described in [4], [11], and
[16]. Moreover, software like MATLAB LMI Toolbox
is now available to solve such LMIs efficiently.
Specifically, we transform all the performance
specifications (that is, the constraints on H2 norm
bound, H1 norm bound, and pole clustering as
well) into unified LMI formulations. Therefore, the
overall problem remains convex, and the desired filter
parameters can be obtained by solving the LMIs.

The rest of this work is organized as follows. The
mixed H2=H1 filtering problem with regional pole
assignment for uncertain continuous-time system is
formulated in Section II. In Section III, necessary
and sufficient conditions are developed for solving
the mixed H2=H1 filtering problem with regional
pole assignment. An illustrative example is given
in Section IV. Section V contains some concluding
remarks.
The notation used here is fairly standard. −

denotes the Kronecker product. k ² kp stands for
Hp-norm in Hardy space. Tr(M) represents the
trace of matrix M. In symmetric block matrices, the
symbol * is used as an ellipsis for terms induced
by symmetry. ¯̧ means the conjugate of ¸. The
block (m,n) of a block matrix is the submatrix with
respect to the mth row and nth column. The shorthand
diagfM1,M2, : : : ,MNg is denoted by

diagfM1,M2, : : : ,MNg=

2666664
M1 0 ¢ ¢ ¢ 0

0 M2
. . .

...

...
. . .

. . . 0

0 ¢ ¢ ¢ 0 MN

3777775 :

Sometimes, the arguments of an identity matrix are
omitted in the analysis when no confusion can arise.

II. PROBLEM FORMULATION

Consider a linear uncertain continuous-time system
described by

_x(t) = (A+¢A)x(t)+B1w(t) +B2v(t)

y(t) = (C+¢C)x(t)+D1w(t)+D2v(t)

z1(t) = L1x(t)

z2(t) = L2x(t)

(1)

where x(t) 2 Rn is the state, y(t) 2 Rp is the measured
output, z1(t) 2 Rm1 is a combination of the states to
be estimated (with respect to H1-norm constraints),
and z2(t) 2 Rm2 is another combination of the states
to be estimated (with respect to H2-norm constraints).
w(t) 2 Rp1 is a disturbance input with bounded energy
and stationary power, which is assumed to belong
to L2[0,1], and v(t) 2 Rp2 is a zero-mean Gaussian
white noise process with unit covariance. A, C, B1,
B2, D1, D2, L1, and L2 are known real matrices
with appropriate dimensions, whereas ¢A and ¢C
are perturbation matrices representing parameter
uncertainties, and are assumed to be time-invariant
matrices of the form·

¢A

¢C

¸
=
·
H1

H2

¸
¡E (2)

where H1, H2, and E are known constant matrices of
appropriate dimensions, and ¡ 2 Ri£j is an uncertain
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matrix that satisfies

¡T¡ · I: (3)

The uncertainties ¢A and ¢C are said to be
admissible if they meet conditions (2) and (3). It
is also assumed that the initial state x(0) is known.
Without loss of generality, we take x(0) = 0.

REMARK 1 The parameter uncertainty structure
as in (2)—(3) has been widely used in the problems
of robust control and robust filtering of uncertain
systems (see, e.g., [24—28] and the references
therein). Many practical systems possess parameter
uncertainties that can be either exactly modeled
or overbounded by (3). Note that when z1(t) and
z2(t) are identical, the system (1) without parameter
uncertainties will be reduced to those described in
[20, 23].

We make the following assumption throughout this
work.

Assumption 1 The system matrix A is stable, that
is, all eigenvalues are located in the left-half complex
plane.

REMARK 2 Assumption 1 is necessary for the robust
filtering problem to be meaningful.

Now consider the following filter for the system
(1):

_̂x(t) = Fx̂(t) +Gy(t)

ẑ1(t) = L̂1x̂(t)

ẑ2(t) = L̂2x̂(t)

(4)

where x̂(t) 2 Rn is the estimated state, ẑ1(t) 2 Rm1 is
an estimate for z1(t), ẑ2(t) 2 Rm2 is an estimate for
z2(t), and F, G, L̂1, and L̂2 are filter parameters to be
determined. Notice that the filter structure (4) is not
dependent upon the parameter uncertainties.
Define

xe(t) =
·
x(t)

x̂(t)

¸
(5)

the augmented system formed from the system (1) and
the filter (4) can now be expressed as

_xe(t) = (Ae+¢Ae)xe(t)+Be1w(t)+Be2v(t)

e1(t) = z1(t)¡ ẑ1(t) = C1xe(t)
e2(t) = z2(t)¡ ẑ2(t) = C2xe(t)

(6)

where

Ae =

·
A 0

GC F

¸
, ¢Ae =

·
H1

GH2

¸
¡ [E 0] =:He¡Ee

(7a)

Be1 =

·
B1

GD1

¸
, Be2 =

·
B2

GD2

¸
(7b)

C1 = [L1 ¡L̂1], C2 = [L2 ¡L̂2]:

Let

T1(s) = C1(sI¡Ae¡¢Ae)¡1Be1
T2(s) = C2(sI¡Ae¡¢Ae)¡1Be2

be, respectively, the transfer function from w(t) to
the error state e1(t) (corresponding to the H1-norm
consideration), and the transfer function from v(t) to
the error state e2(t) (corresponding to the H2-norm
consideration).
For the purpose of regional pole assignment, we

now recall the concept of LMI region proposed in [7].
An LMI region is any subset D in the open left-half
complex plane that can be described as follows:

D = f¸ 2 C : fD(¸) = L+¸M + ¯̧MT < 0g (8)

where L and M are real matrices such that LT = L.
The matrix-valued function fD(¸) is called the
characteristic function of D. As explained in [7], with
different choices of the matrices L and M, the LMI
region D defined in (8) can be used to represent many
kinds of popular pole regions, such as left half-plane,
disk, vertical strips, horizontal strips, conic sector, etc.
Now, we are in the position to introduce the

notions of “quadratic stability” and “quadratic
D-stability” for the uncertain system (6).

DEFINITION 1 The uncertain augmented system
(6) is said to be quadratically stable if there exists a
symmetric positive definite matrix X such that for all
admissible perturbations ¢A and ¢C, the following
inequality

(Ae+¢Ae)
TX +X(Ae+¢Ae)< 0 (9)

holds.

DEFINITION 2 [6, 7] The uncertain augmented
system (6) is said to be quadratically D-stable if there
exists a symmetric positive definite matrix X such
that for all admissible perturbations ¢A and ¢C, the
following matrix inequality

L−X +M − (X(Ae+¢Ae)) +MT− ((Ae+¢Ae)TX)< 0
(10)

is true where the LMI region D is defined in (8).

REMARK 3 It has been revealed in [6] and [7] that,
if (10) is satisfied, then all poles of the uncertain
time-invariant matrix Ae+¢Ae are constrained to lie
within the specified LMI region D.

The following well-known lemmas, which give
the bounded realness results for the addressed H2 and
H1-norm constraints, are needed in the derivation of
our main results.

LEMMA 1 [11, 18] Let the constant ° > 0 be given.
The uncertain augmented system (6) is quadratically
stable and kT1(s)k1 < °, if and only if there exists a
symmetric positive definite matrix X such that for all
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admissible perturbations ¢A and ¢C, the following
inequality264(Ae+¢Ae)

TX +X(Ae+¢Ae) XBe1 CT1
BTe1X ¡°I 0

C1 0 ¡°I

375< 0
(11)

is true.

LEMMA 2 [19, 21] Let the constant ¯ > 0 be given.
The uncertain augmented system (6) is quadratically
stable and kT2(s)k2 < ¯, if and only if there exist
symmetric positive definite matrices X and Q such
that for all admissible perturbations ¢A and ¢C, the
following three inequalities·

(Ae+¢Ae)
TX +X(Ae+¢Ae) XBe2

BTe2X ¡I

¸
< 0

(12)·
X CT2

C2 Q

¸
> 0 (13)

Tr(Q)< ¯2 (14)

hold.

Now, we are ready to state the multiobjective
filtering problem investigated in the work presented
here. For the linear time-invariant uncertain systems
(1) with given LMI pole region D, H2-norm upper
bound ¯ and H1-norm upper bound °, we are
interested in seeking the filter parameters F, G,
L̂1 and L̂2, such that for all admissible parameter
uncertainties ¢A and ¢C, the augmented system
(6) satisfies the following four robust performance
requirements simultaneously.

1) All poles of the augmented system (6) are
constrained to lie inside a prescribed LMI region D,
that is, (6) is quadratically D-stable.
2) The transfer function from the deterministic

disturbance input w(t) to the error state e1(t) meets
the H1-norm upper bound constraint

kT1(s)k1 = kC1(sI¡Ae¡¢Ae)¡1Be1k1 < °:
3) The transfer function from the white noise

input v(t) to the error state e2(t) meets the H2-norm
upper bound constraint

kT2(s)k2 = kC2(sI¡Ae¡¢Ae)¡1Be2k2 < ¯:
4) The upper bound of the H2 guaranteed cost is

minimized, that is, Tr(Q) is minimized.

In the above, we aim to minimize the upper
bound of the H2 performance that is of direct physical
significance. On the other hand, if the solution exists,
then there should be a solution set for achieving the
H1-norm upper bound constraint 2 above, and the
H2-norm upper bound constraint 3 above. In this case,

we have a design freedom to minimize either the
upper bound of H2 performance, or the upper bound
of H1 performance, or play the tradeoff between
them.
In the light of Definition 1, Definition 2, Lemma 1

and Lemma 2, the multiobjective filtering problem
addressed above can be recast into the following
optimization problem:

min
X>0,Q>0,F,G,L̂2,L̂1

Tr(Q) subject to (10)—(13):

(15)
The problem (15) is referred to as the mixed

H2=H1 filtering problem with regional pole
assignment. Note that at this stage, such a problem is
not a convex one yet, since the parameter uncertainties
¢A and ¢C are involved, which makes the problem
more complicated. Our goal in the next section is
to derive necessary and sufficient conditions, in the
form of LMIs, for the solutions of the aforementioned
filter design problem. Therefore, the powerful LMI
Toolbox could be utilized to solve the overall convex
optimization problem efficiently.
We point out that the filtering problems as well

as the system descriptions presented here are quite
different from those presented in [13]. Specifically, in
this paper, 1) we consider an additional performance
requirement, the regional pole assignment, which is
used to guarantee the transient performance of the
filtering process, 2) we consider two different kinds
of exogenous signal inputs (i.e., the deterministic
input with bounded energy and the stochastic input
with known statistics), and 3) the norm-bounded
uncertainties are considered here whereas the
convex-bounded uncertainties are treated in [13].

III. SOLUTION TO MULTIOJECTIVE H2=H1
FILTERING PROBLEM

In this section, we give the solution to the
mixed H2=H1 filtering problem with regional pole
assignment based on an LMI approach. Before giving
our main results, the following lemmas are needed.

LEMMA 3 (Schur Complement) Given constant
matrices −1, −2, and −3 where −1 =−T1 and 0<−2 =
−T2 . Then −1 +−T3−

¡1
2 −3 < 0 if and only if·
−1 −T3

−3 ¡−2

¸
< 0

or equivalently ·¡−2 −3

−T3 −1

¸
< 0:

LEMMA 4 Let M, H, and E be real matrices of
appropriate dimensions, with ¡ satisfying (3), then

M +H¡E+ET¡THT < 0 (16a)
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if and only if there exists a positive scalar " > 0 such
that

M + "ETE+
1
"
HHT < 0 (16b)

or equivalently 264 M H "ET

HT ¡"I 0

"E 0 ¡"I

375< 0: (17)

PROOF The first conclusion is Lemma 2.4 of [27].
The equivalence between (16b) and (17) follows
immediately from the Schur complement lemma
(Lemma 3).

REMARK 4 Lemma 4 is also known as the
S-procedure technique, which is often utilized to
convert the inequality involving norm-bounded
uncertainty like (16a) into an equivalent LMI with an
extra scalar parameter ".

It is shown in the following theorem that the
addressed multiobjective filtering problem can be
solved if and only if the solutions to certain LMIs are
known to exist.

THEOREM 1 Let D be an arbitrary LMI region
contained in the open left-half plane and let (8) be its

characteristic function. The problem (15) is solvable,
if and only if there exist symmetric positive definite
matrices R, S, Q, matrices Q1, Q2, Q3, Q4 and positive
scalars "1, "2, and "3 such that the following LMIs

26664
£ MT

1 −
·

SH1

RH1 +Q2H2

¸
MT
2 −

·
"1E

T

"1E
T

¸
M1− [HT

1 S (RH1 +Q2H2)
T] ¡"1I 0

M2− ["1E "1E] 0 ¡"1I

37775< 0 (18)

26666666664

ATS+ SA ¤ ¤ ¤ ¤ ¤
RA+Q2C+Q1 +A

TS RA+Q2C+A
TR+CTQT2 ¤ ¤ ¤ ¤

BT1 S (RB1 +Q2D1)
T ¡°I ¤ ¤ ¤

L1¡Q3 L1 0 ¡°I ¤ ¤
HT
1 S (RH1 +Q2H2)

T 0 0 ¡"2I ¤
"2E "2E 0 0 0 ¡"2I

37777777775
< 0 (19)

26666664

ATS+ SA ¤ ¤ ¤ ¤
RA+Q2C+Q1 +A

TS RA+Q2C+A
TR+CTQT2 ¤ ¤ ¤

BT2 S (RB2 +Q2D2)
T ¡I ¤ ¤

HT1 S (RH1 +Q2H2)
T 0 ¡"3I ¤

"3E "3E 0 0 ¡"3I

37777775< 0 (20)

264 ¡S ¡S LT2 ¡QT4
¡S ¡R LT2

L2¡Q4 L2 ¡Q

375< 0 (21)

where

£ := L−
·
S S

S R

¸
+M −

·
SA SA

RA+Q2C+Q1 RA+Q2C

¸
+MT−

·
SA SA

RA+Q2C+Q1 RA+Q2C

¸T
are feasible. Here, the constant matrices M1, M2 are
obtained from the factorization of M =MT

1 M2 where M1
and M2 have full column rank. Moreover, if the LMIs
(18)—(21) are solvable, the desired filter parameters can
be determined by

F = X¡112 Q1(S¡R)¡1X12 (22)

G = X¡112 Q2 (23)

L̂1 =Q3(S¡R)¡1X12 (24)

L̂2 =Q4(S¡R)¡1X12 (25)

where the matrix X12 comes from the following
factorization

I¡RS¡1 = X12YT12 (26)
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with both X12 and Y12 being nonsingular square
matrices.

PROOF Factorize the matrix M as M =MT
1 M2, where

M1, M2 have full column rank. Such a factorization
can be obtained easily through the singular value
decomposition (SVD) technique. The purpose of this
factorization is to guarantee that the block (1,2) and
block (1,3) have the same row by Schur Complement
Lemma (Lemma 3).
Applying Lemma 4 to (10)—(13), respectively, we

obtain the following LMIs on the positive definite
matrix X > 0 and the positive scalar parameters "1,
"2, and "3:26664
L−X +M − (XAe)
+MT− (AeX)T MT

1 − (XHe) "1M
T
2 −ETe

M1− (HT
e X) ¡"1I 0

"1M2−Ee 0 ¡"1I

37775< 0
(27)26666664

ATe X +XAe XBe1 CT1 XHe "2E
T
e

BTe1X ¡°I 0 0 0

C1 0 ¡°I 0 0

HT
e X 0 0 ¡"2I 0

"2Ee 0 0 0 ¡"2I

37777775< 0

(28)

26664
ATe X +XAe XBe2 XHe "3E

T
e

BTe2X ¡I 0 0

HT
e X 0 ¡"3I 0

"3Ee 0 0 ¡"3I

37775< 0
(29)·

X CT2

C2 Q

¸
> 0:

(30)

Recall that our goal is to derive the expressions of
the filter parameters from (27)—(30). To do this, we
partition X and X¡1 as

X =
·
R X12

XT12 X22

¸
, X¡1 =

·
S¡1 Y12

YT12 Y22

¸
(31)

where the partitioning of X and X¡1 is compatible
with that of Ae defined in (7a), i.e., R 2 Rn£n, X12 2
Rn£n, X22 2 Rn£n, S 2 Rn£n, Y12 2 Rn£n, Y22 2 Rn£n.
We define

T1 :=
·
S¡1 I

YT12 0

¸
, T2 :=

·
I R

0 XT12

¸
: (32)

It follows directly from XX¡1 = I that

XT1 = T2 (33)

TT1 XT1 = T
T
1 T2 =

·
S¡1 I

I R

¸
> 0 (34)

and

I¡ S¡1R = Y12XT12: (35)

From (34), we have R¡ S > 0, which implies that
I¡ S¡1R is nonsingular. Hence, X12 and Y12 are also
nonsingular, i.e., invertible.
Furthermore, let us define the changes of the filter

parameters as follows:

Q1 := X12FY
T
12S,

Q2 := X12G

Q3 := L̂1Y
T
12S,

Q4 := L̂2Y
T
12S:

(36)

Applying the congruence transformations
diagfI−T1,I,Ig to (27), diagfT1,I,I,I,Ig to (28),
diagfT1,I,I,Ig to (29), diagfT1,Ig to (30), respectively,
we obtain

26664
£ MT

1 −
·

H1

RH1 +Q2H2

¸
MT
2 −

·
"1S

¡1ET

"1E
T

¸
M1− [HT

1 (RH1 +Q2H2)
T] ¡"1I 0

M2− ["1ES¡1 "1E] 0 ¡"1I

37775< 0 (37)

26666666664

AS¡1 + S¡1AT ¤ ¤ ¤ ¤ ¤
RAS¡1 +Q2CS

¡1 +Q1S
¡1 +AT RA+Q2C+A

TR+CTQT2 ¤ ¤ ¤ ¤
BT1 (RB1 +Q2D1)

T ¡°I ¤ ¤ ¤
L1S

¡1¡Q3S¡1 L1 0 ¡°I ¤ ¤
HT1 (RH1 +Q2H2)

T 0 0 ¡"2I ¤
"2ES

¡1 "2E 0 0 0 ¡"2I

37777777775
< 0 (38)
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26666664

AS¡1 + S¡1AT ¤ ¤ ¤ ¤
RAS¡1 +Q2CS

¡1 +Q1S
¡1 +AT RA+Q2C+A

TR+CTQT2 ¤ ¤ ¤
BT2 (RB2 +Q2D2)

T ¡I ¤ ¤
HT
1 (RH1 +Q2H2)

T 0 ¡"3I ¤
"3ES

¡1 "3E 0 0 ¡"3I

37777775< 0 (39)

264 ¡S¡1 ¡I S¡1LT2 ¡ S¡1QT4
¡I ¡R LT2

L2S
¡1¡Q4S¡1 L2 ¡Q

375< 0 (40)

where

£ := L−
·
S¡1 I

I R

¸
+M −

·
AS¡1 A

RAS¡1 +Q2CS
¡1 +Q1S

¡1 RA+Q2C

¸
+MT−

·
AS¡1 A

RAS¡1 +Q2CS
¡1 +Q1S

¡1 RA+Q2C

¸T
:

Again, applying the congruence transformations
diagfI−diagfS,Ig,I,Ig to (37), diagfS,I,I,I,I,Ig
to (38), diagfS,I,I,I,Ig to (39), diagfS,I,Ig to (40),
respectively, leads to the inequalities (18)—(21). This
concludes the proof.

It follows from Theorem 1 that the problem (15)
is now successfully recast as the following convex
optimization problem:

min
R>0,S>0,Q>0,Q1,Q2,Q3,Q4,"1,"2,"3

Tr(Q) subject to (18)—(21):

(41)

On the other hand, in view of (22)—(25), we make
the linear transformation on the state estimate

~x(t) = X12x̂(t)

and then obtain a new representation form of the filter
as follows:

_~x(t) =Q1(S¡R)¡1~x(t) +Q2y(t)
ẑ1(t) =Q3(S¡R)¡1~x(t)
ẑ2(t) =Q4(S¡R)¡1~x(t):

(42)

We can now see from (42) that, the filter
parameters can be obtained directly by solving the
problem (41) without performing QR factorization for
the identity (26).

REMARK 5 The problem (41) is a standard LMI
problem. Note that in recent years LMIs have
gained much attention for their computational
tractability and usefulness in control engineering
as the so-called interior point method has been

proved to be numerically very efficient for solving
the LMIs [4, 11, 16]. Theorem 1 shows that the
addressed multiobjective problem also lies in the LMI
framework. The change-of-variable technique utilized
in the proof of Theorem 1 was introduced in [21], and
similar to that used in [13].

REMARK 6 LMI regions are often specified as the
intersection of elementary regions, such as vertical
strips, horizontal strips, disks, or conic sectors. Given
LMI regions D1,D2, : : : ,DN , the intersection

D =D1 \D2 \ ¢¢ ¢ \DN
has characteristic function

fD(¸) = diagffD1 (¸),fD2 (¸), : : : ,fDN (¸)g
and is still an LMI region [6, 7]. Therefore, the LMIs
of fD1 (¸),fD2 (¸), : : : ,fDN (¸), which can be derived,
respectively, from (18), must be feasible so that the
corresponding LMI for the intersection of the regions
D1,D2, : : : ,DN is solvable. This point is illustrated by
an example in the next section.

REMARK 7 Note that LMIs (18)—(21) are affine in
the scalar positive parameters "1, "2, and "3. Hence,
unlike the results in [24—26], [28], these parameters
do not need to be tuned when solving the LMIs.
Furthermore, these three parameters can be viewed as
additional LMI variables, which could be exploited
to reduce the possible conservatism when using
Lemma 4. The optimal solutions can be obtained
conveniently by solving LMIs (18)—(21) using Matlab
LMI Toolbox.

IV. ILLUSTRATIVE EXAMPLE

Consider linear continuous-time system described
by (1) with

A=

264¡3 2 ¡2
3 ¡5 1

4 1 ¡1

375 , B1 =

264¡10
1

375
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B2 =

264¡12
1

375 , C = [¡1 1 2]

D1 = 1, D2 = 2

L1 = [0:5 1 2], L2 = [1 2 3]:

The parameter uncertainties are given by

¢A=H1¡N =

2640:50:6
0:8

375¡ [1 0:5 0:5]

¢C =H2¡N = 0:5¡ [1 0:5 0:5]

where ¡ is a perturbation matrix satisfying ¡T¡ · I.
We wish to design a filter such that the upper bound
Tr(Q) of kT2(s)k22 is minimized subject to kT1(s)k1 <
° = 8, and pole assignment to the shadow part in
Fig. 1, where ®= 0:2, r = 8, ®1 = 0:5, ®2 = 7.
We first consider the disk centered at (¡®,0) with

radius r, that is, in terms of the LMI region,

L=
·¡r ®

® ¡r

¸
, M =

·
0 0

0 1

¸
M1 = [1 0], M2 = [0 1]:

In this case, (18) can be rewritten as follows:

26666666664

¡rS ¡rS S(A+®I) S(A+®I) SH1 0

¤ ¡rR RA+Q2C+Q1 +®S R(A+®I) +Q2C RH1 +Q2H2 0

¤ ¤ ¡rS ¡rS 0 "1E
T

¤ ¤ ¤ ¡rR 0 "1E
T

¤ ¤ ¤ ¤ ¡"1I 0

¤ ¤ ¤ ¤ ¤ ¡"1I

37777777775
< 0: (43)

In the case of a vertical strip Re(¸)<¡®1, i.e., L=
2®1, M = 1, M1 = 1, and M2 = 1, the corresponding
inequality (18) can be rewritten as follows:26664

(A+®1I)
TS+ S(A+®1I) S(A+®1I) +A

TR+CTQT2 +Q
T
1 +®1S SH1 "4E

T

¤ (A+®1I)
TR+CTQT2 +R(A+®1I) +Q2C RH1 +Q2H2 "4E

T

¤ ¤ ¡"4I 0

¤ ¤ ¤ ¡"4I

37775< 0: (44)

Furthermore, for the vertical strip Re(¸)>¡®2,
i.e., L=¡2®2, M =¡1, M1 =¡1, and M2 = 1, (18)
can be rewritten as follows:26664

¡(A+®2I)TS¡ S(A+®2I) ¡S(A+®2I)¡ATR¡CTQT2 ¡QT1 ¡®2S ¡SH1 "5E
T

¤ ¡(A+®2I)TR¡CTQT2 ¡R(A+®2I)¡Q2C ¡RH1¡Q2H2 "5E
T

¤ ¤ ¡"5I 0

¤ ¤ ¤ ¡"5I

37775< 0: (45)

Fig. 1. Intersection of vertical strips and circle.

According to (41), the desired filter design
problem can be transformed into the following convex
problem:

min
R>0,S>0,Q>0,Q1,Q2,Q3,Q4,"1,"2,"3,"4,"5

Tr(Q)

subject to (19)—(21) and (43)—(45): (46)

By using the Matlab LMI Toolbox, the optimal
solution to the convex problem (46) is given by
Tr(Q) = 2:5324 with the filter parameters

F =

264¡3:8342 2:5490 ¡3:3582
1:7257 ¡5:2803 ¡0:8384
2:1521 ¡0:1680 ¡0:3074

375
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G =

264 1:4759

¡0:4552
¡2:5692

375
L̂1 = [¡0:0965 ¡0:3192 ¡0:3888]

L̂2 = [0:0248 ¡0:4532 ¡0:5504]
and the scalar parameters "1 = 9:7576, "2 = 8:2645,
"3 = 3:1529, "4 = 5:5567, "5 = 1:7829.
If ° = 4:8, the optimal solution is given by Tr(Q) =

3:5319 with the filter parameters

F =

264¡4:1712 2:5874 ¡3:7071
1:8171 ¡5:1073 ¡0:1456
2:2749 ¡0:0785 ¡0:1776

375

G =

264 1:2962

¡0:3377
¡2:1584

375
L̂1 = [¡0:2540 ¡0:4357 ¡0:5625]

L̂2 = [¡0:0615 ¡0:5444 ¡0:7938]
and the scalar parameters "1 = 6:7113, "2 = 5:3312,
"3 = 2:2130, "4 = 3:5058, "5 = 1:3566.
It is evident from this example that, by using the

proposed LMI algorithm, there exists much flexibility
in compromising both the H2 performance and H1
performance.

V. CONCLUSION

In this paper, we have considered the mixed
H2=H1 filtering problem with regional pole
assignment for uncertain continuous-time systems.
Necessary and sufficient conditions for the solvability
of the problem have been given in terms of LMIs that
can be solved efficiently and reliably. Finally, in our
opinion, the idea introduced here can also be applied
to design robust filters for more complex systems such
as sampled-data systems and stochastic parameter
systems.
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