415 research outputs found
Spin Susceptibility and Superexchange Interaction in the Antiferromagnet CuO
Evidence for the quasi one-dimensional (1D) antiferromagnetism of CuO is
presented in a framework of Heisenberg model. We have obtained an experimental
absolute value of the paramagnetic spin susceptibility of CuO by subtracting
the orbital susceptibility separately from the total susceptibility through the
Cu NMR shift measurement, and compared directly with the theoretical
predictions. The result is best described by a 1D antiferromagnetic
Heisenberg (AFH) model, supporting the speculation invoked by earlier authors.
We also present a semi-quantitative reason why CuO, seemingly of 3D structure,
is unexpectedly a quasi 1D antiferromagnet.Comment: 7 pages including 4 tables and 9 figure
Dephasing of Electrons in Mesoscopic Metal Wires
We have extracted the phase coherence time of electronic
quasiparticles from the low field magnetoresistance of weakly disordered wires
made of silver, copper and gold. In samples fabricated using our purest silver
and gold sources, increases as when the temperature
is reduced, as predicted by the theory of electron-electron interactions in
diffusive wires. In contrast, samples made of a silver source material of
lesser purity or of copper exhibit an apparent saturation of
starting between 0.1 and 1 K down to our base temperature of 40 mK. By
implanting manganese impurities in silver wires, we show that even a minute
concentration of magnetic impurities having a small Kondo temperature can lead
to a quasi saturation of over a broad temperature range, while
the resistance increase expected from the Kondo effect remains hidden by a
large background. We also measured the conductance of Aharonov-Bohm rings
fabricated using a very pure copper source and found that the amplitude of the
conductance oscillations increases strongly with magnetic field. This set
of experiments suggests that the frequently observed ``saturation'' of
in weakly disordered metallic thin films can be attributed to
spin-flip scattering from extremely dilute magnetic impurities, at a level
undetectable by other means.Comment: 16 pages, 11 figures, to be published in Physical Review
The Outer Tracker Detector of the HERA-B Experiment Part I: Detector
The HERA-B Outer Tracker is a large system of planar drift chambers with
about 113000 read-out channels. Its inner part has been designed to be exposed
to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions
similar to those expected for future hadron collider experiments. 13
superlayers, each consisting of two individual chambers, have been assembled
and installed in the experiment. The stereo layers inside each chamber are
composed of honeycomb drift tube modules with 5 and 10 mm diameter cells.
Chamber aging is prevented by coating the cathode foils with thin layers of
copper and gold, together with a proper drift gas choice. Longitudinal wire
segmentation is used to limit the occupancy in the most irradiated detector
regions to about 20 %. The production of 978 modules was distributed among six
different laboratories and took 15 months. For all materials in the fiducial
region of the detector good compromises of stability versus thickness were
found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all
chambers. The successful operation of the HERA-B Outer Tracker shows that a
large tracker can be efficiently built and safely operated under huge radiation
load at a hadron collider.Comment: 28 pages, 14 figure
The Outer Tracker Detector of the HERA-B Experiment. Part II: Front-End Electronics
The HERA-B Outer Tracker is a large detector with 112674 drift chamber
channels. It is exposed to a particle flux of up to 2x10^5/cm^2/s thus coping
with conditions similar to those expected for the LHC experiments. The
front-end readout system, based on the ASD-8 chip and a customized TDC chip, is
designed to fulfil the requirements on low noise, high sensitivity, rate
tolerance, and high integration density. The TDC system is based on an ASIC
which digitizes the time in bins of about 0.5 ns within a total of 256 bins.
The chip also comprises a pipeline to store data from 128 events which is
required for a deadtime-free trigger and data acquisition system. We report on
the development, installation, and commissioning of the front-end electronics,
including the grounding and noise suppression schemes, and discuss its
performance in the HERA-B experiment
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Recommended from our members
Planned Use of Pulsed Crab Cavities for Short X-Ray Pulse Generation at the Advanced Photon Source
Recently, we have explored application to the Advanced Photon Source (APS) of Zholents'[1] crab cavity scheme for production of short x-ray pulses. We assumed use of superconducting (SC) cavities in order to have a continuous stream of crabbed bunches and flexibility of operating modes. The challenges of the SC approach are related to the size, cost, and development time of the cavities and associated systems. A good case can be made [2] for a pulsed system using room-temperature cavities. APS has elected to pursue such a system in the near term, with the SC-based system planned for a later date. This paper describes the motivation for the pulsed system and gives an overview of the planned implementation and issues. Among these are overall configuration options and constraints, cavity design options, frequency choice, cavity design challenges, tolerances, instabilities, and diagnostics plans
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Search for the Lepton Flavor Violation Processes and
The lepton flavor violation processes and are
searched for using a sample of 5.8 events collected with
the BESII detector. Zero and one candidate events, consistent with the
estimated background, are observed in and
decays, respectively. Upper limits on the branching ratios are determined to be
and at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure
- …