Abstract

We have extracted the phase coherence time τϕ\tau_{\phi} of electronic quasiparticles from the low field magnetoresistance of weakly disordered wires made of silver, copper and gold. In samples fabricated using our purest silver and gold sources, τϕ\tau_{\phi} increases as T2/3T^{-2/3} when the temperature TT is reduced, as predicted by the theory of electron-electron interactions in diffusive wires. In contrast, samples made of a silver source material of lesser purity or of copper exhibit an apparent saturation of τϕ\tau_{\phi} starting between 0.1 and 1 K down to our base temperature of 40 mK. By implanting manganese impurities in silver wires, we show that even a minute concentration of magnetic impurities having a small Kondo temperature can lead to a quasi saturation of τϕ\tau_{\phi} over a broad temperature range, while the resistance increase expected from the Kondo effect remains hidden by a large background. We also measured the conductance of Aharonov-Bohm rings fabricated using a very pure copper source and found that the amplitude of the h/eh/e conductance oscillations increases strongly with magnetic field. This set of experiments suggests that the frequently observed ``saturation'' of τϕ\tau_{\phi} in weakly disordered metallic thin films can be attributed to spin-flip scattering from extremely dilute magnetic impurities, at a level undetectable by other means.Comment: 16 pages, 11 figures, to be published in Physical Review

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016
    Last time updated on 05/06/2019