133 research outputs found

    Energy levels of the soliton--heavy-meson bound states

    Get PDF
    We investigate the bound states of heavy mesons with finite masses to a classical soliton solution in the Skyrme model. For a given model Lagrangian we solve the equations of motion exactly so that the heavy vector mesons are treated on the same footing as the heavy pseudoscalar mesons. All the energy levels of higher grand spin states as well as the ground state are given over a wide range of the heavy meson masses. We also examine the validity of the approximations used in the literatures. The recoil effect of finite mass soliton is naively estimated.Comment: 24 pages, REVTeX v3.0, 6 figures are available upon request

    Closed-flavor pi + J/psi and pi + Upsilon Cross Sections at Low Energies from Dipion Decays

    Full text link
    The scale of low energy c-cbar and b-bbar cross sections on light hadrons is of great importance to searches for the quark gluon plasma using the heavy-quarkonium suppression signature. Unfortunately, little is known about these near-threshold cross sections at present, and recent theoretical estimates span many orders of magnitude. Here we use experimental data on the four observed closed-flavor heavy quarkonium hadronic decays psi' -> pi pi J/psi, Upsilon' -> pi pi Upsilon, Upsilon'' -> pi pi Upsilon and Upsilon'' -> pi pi Upsilon', combined with simple models of the transition amplitudes, to estimate the pion scattering cross sections of c-cbar and b-bbar mesons near threshold. Specifically we consider the closed-flavor reactions pi J/psi -> pi psi', pi Upsilon -> pi Upsilon', pi Upsilon -> pi Upsilon'' and pi Upsilon' -> pi Upsilon'' and their time-reversed analogues. Our results may be useful in constraining theoretical models of the strong interactions of heavy quarkonia, and can be systematically improved through future detailed studies of dipion decays, notably psi' -> pi pi J/psi and Upsilon'' -> pi pi Upsilon.Comment: 6 pages, 6 figure

    Heavy Quark Solitons

    Get PDF
    We investigate the heavy baryons which arise as solitonic excitations in a ``heavy meson" chiral Lagrangian which includes the light vector particles. It is found that the effect of the light vectors may be substantial. We also present a simple derivation which clearly shows the connection to the Callan-Klebanov approach.Comment: 13 pages; LaTex; SU-4240-532; UR 1306/ER-40685-755 (Minor typos corrected

    Heavy Quark Solitons: Strangeness and Symmetry Breaking

    Get PDF
    We discuss the generalization of the Callan-Klebanov model to the case of heavy quark baryons. The light flavor group is considered to be SU(3)SU(3) and the limit of heavy spin symmetry is taken. The presence of the Wess-Zumino-Witten term permits the neat development of a picture , at the collective level, of a light diquark bound to a ``heavy" quark with decoupled spin degree of freedom. The consequences of SU(3)SU(3) symmetry breaking are discussed in detail. We point out that the SU(3)SU(3) mass splittings of the heavy baryons essentially measure the ``low energy" physics once more and that the comparison with experiment is satisfactory.Comment: 17 pages, RevTEX. Minor typos corrected and new references adde

    J/psi absorption by pi and rho mesons in a meson exchange model with anomalous parity interactions

    Full text link
    We reanalyze the dissociation process of the J/ψJ/\psi by π\pi and ρ\rho mesons into D+DˉD + \bar{D}, D∗+DˉD^* + \bar{D}, D+Dˉ∗D + \bar{D}^*, and D∗+Dˉ∗D^* + \bar{D}^* within a meson exchange model. In addition to the dissociation mechanisms considered in the literature, we consider anomalous parity interactions, whose couplings are constrained by heavy quark spin symmetry and phenomenology. This opens new dissociation channels and adds new diagrams in the previously considered processes. Compared to the previous results, we find that these new additions have only a minor effect on the ρ+J/ψ\rho + J/\psi total inelastic cross section, but reduce the one for π+J/ψ\pi + J/\psi by about 50 % near the threshold.Comment: 21 pages, REVTeX, 7 figures, references added, to appear in Phys. Rev.

    Excited states of heavy baryons in the Skyrme model

    Get PDF
    We obtain the spectra of excited heavy baryons containing one heavy quark by quantizing the exactly-solved heavy meson bound states to Skyrme soliton. The results are comparable to the recent experimental observations and quark model predictions, and are consistent with the heavy quark spin symmetry. However, somewhat large dependence of the results on the heavy quark mass strongly calls for the incorporation of the soliton-recoil effects.Comment: 24 pages, REVTeX, epsf.sty, 7 figures in uuencoded fil

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Psi(2S) -> pi^+ pi^- J/psi Decay Distributions

    Full text link
    Using a sample of 3.8 M psi(2S) events accumulated with the BES detector, the process psi(2S) -> pi^+ pi^- J/psi is studied. The angular distributions are compared with the general decay amplitude analysis of Cahn. We find that the dipion system requires some D-wave, as well as S-wave. On the other hand, the J/psi-(pi pi) relative angular momentum is consistent with being pure S-wave. The decay distributions have been fit to heavy quarkonium models, including the Novikov-Shifman model. This model, which is written in terms of the parameter kappa, predicts that D-wave should be present. We determine kappa = 0.183 +/- 0.002 +/- 0.003 based on the joint dipion mass - cos theta distribution. The fraction of D-wave as a function of the dipion mass is found to decrease with increasing dipion mass, in agreement with the model. We have also fit the Mannel-Yan model, another model that allows D-wave.Comment: 21 pages, 10 figure
    • 

    corecore