5 research outputs found

    Depth electrode neurofeedback with a virtual reality interface

    Get PDF
    Invasive brain–computer interfaces (BCI) provide better signal quality in terms of spatial localization, frequencies and signal/noise ratio, in addition to giving access to deep brain regions that play important roles in cognitive or affective processes. Despite some anecdotal attempts, little work has explored the possibility of integrating such BCI input into more sophisticated interactive systems like those which can be developed with game engines. In this article, we integrated an amygdala depth electrode recorder with a virtual environment controlling a virtual crowd. Subjects were asked to down regulate their amygdala using the level of unrest in the virtual room as feedback on how successful they were. We report early results which suggest that users adapt very easily to this paradigm and that the timing and fluctuations of amygdala activity during self-regulation can be matched by crowd animation in the virtual room. This suggests that depth electrodes could also serve as high-performance affective interfaces, notwithstanding their strictly limited availability, justified on medical grounds only

    Pathological tau disrupts ongoing network activity

    Get PDF
    SummaryPathological tau leads to dementia and neurodegeneration in tauopathies, including Alzheimer’s disease. It has been shown to disrupt cellular and synaptic functions, yet its effects on the function of the intact neocortical network remain unknown. Using in vivo intracellular and extracellular recordings, we measured ongoing activity of neocortical pyramidal cells during various arousal states in the rTg4510 mouse model of tauopathy, prior to significant cell death, when only a fraction of the neurons show pathological tau. In transgenic mice, membrane potential oscillations are slower during slow-wave sleep and under anesthesia. Intracellular recordings revealed that these changes are due to longer Down states and state transitions of membrane potentials. Firing rates of transgenic neurons are reduced, and firing patterns within Up states are altered, with longer latencies and inter-spike intervals. By changing the activity patterns of a subpopulation of affected neurons, pathological tau reduces the activity of the neocortical network

    Chemical suppression of harmaline-induced body tremor yields recovery of pairwise neuronal coherence in cerebellar nuclei neurons

    Get PDF
    Neuronal oscillations occur in health and disease; however, their characteristics can differ across conditions. During voluntary movement in freely moving rats, cerebellar nuclei (CN) neurons display intermittent but coherent oscillations in the theta frequency band (4–12 Hz). However, in the rat harmaline model of essential tremor, a disorder attributed to cerebellar malfunction, CN neurons display aberrant oscillations concomitantly with the emergence of body tremor. To identify the oscillation features that may underlie the emergence of body tremor, we analyzed neuronal activity recorded chronically from the rat CN under three conditions: in freely behaving animals, in harmaline-treated animals, and during chemical suppression of the harmaline-induced body tremor. Suppression of body tremor did not restore single neuron firing characteristics such as firing rate, the global and local coefficients of variation, the likelihood of a neuron to fire in bursts or their tendency to oscillate at a variety of dominant frequencies. Similarly, the fraction of simultaneously recorded neuronal pairs oscillating at a similar dominant frequency (<1 Hz deviation) and the mean frequency deviation within pairs remained similar to the harmaline condition. Moreover, the likelihood that pairs of CN neurons would co-oscillate was not only significantly lower than that measured in freely moving animals, but was significantly worse than chance. By contrast, the chemical suppression of body tremor fully restored pairwise neuronal coherence; that is, unlike in the harmaline condition, pairs of neurons that oscillated at the same time and frequency displayed high coherence, as in the controls. We suggest that oscillation coherence in CN neurons is essential for the execution of smooth movement and its loss likely underlies the emergence of body tremor

    Author Correction: The role of mPFC and MTL neurons in human choice under goal-conflict

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper
    corecore