8 research outputs found

    Climate Assessment of Vegetable Oil and Biodiesel from Camelina Grown as an Intermediate Crop in Cereal-Based Crop Rotations in Cold Climate Regions

    Get PDF
    The oilseed crop winter camelina (Camelina sativa) is attracting increasing interest for biofuel production. This study assessed the climate impacts of growing camelina as an intermediate crop in northern Europe (Sweden) for the production of vegetable oil and biofuel. Climate impacts were analyzed using life cycle assessment (LCA), while impacts on biodiversity and eutrophication were discussed. Three functional units were considered: 1 ha of land use, 1 kg of oil, and 1 MJ biofuel (hydrogenated vegetable oil, HVO). The results showed that dry matter yield over the whole crop rotation was higher in the camelina crop rotation, despite the lower yield of peas due to relay cropping with camelina. In the whole camelina crop rotation, fat production more than doubled, protein and fiber production marginally increased, and the production of carbohydrates decreased. Higher climate impacts related to field operations and fertilizer use in the camelina crop rotation, with associated N2O emissions, were compensated for by increased soil carbon accumulation due to the increased return of organic matter from the additional crop in the rotation. The total climate impact was around 0.5 kg CO2 eq/kg camelina oil when macronutrient allocation was used. The global warming potential was 15 g CO2 eq/MJ HVO, or 27 g CO2 eq/MJ HVO when soil organic carbon effects were not included, representing an 84% and 71% reduction, respectively, compared with fossil fuels

    The suppression of MAPK/NOX/MMP signaling prompts renoprotection conferred by prenatal naproxen in weaning preeclamptic rats

    Get PDF
    Although nonsteroidal antiinflammatory drugs (NSAIDs) are frequently used for fever and pain during pregnancy, their possible interaction with perinatal renal injury induced by preeclampsia (PE) has not been addressed. Here, studies were undertaken in the N(gamma)-nitro-l-arginine methyl ester (l-NAME) PE model to assess the influence of gestational NSAIDs on renal damage in weaning dams. PE-evoked increments and decrements in urine protein and creatinine clearance, respectively, were intensified by celecoxib and weakened by diclofenac or naproxen. Naproxen also improved renal cloudy swelling, necrosis, and reduced glomerular area evoked by PE. The concomitant rises in renal expression of markers of oxidative stress (NOX2/4), extracellular matrix metaloproteinase deposition (MMP9), and prostanoids (PGE2, PGF2α, TXA2) were all more effectively reduced by naproxen compared with celecoxib or diclofenac. Western blotting showed tripled expression of mitogen-activated protein kinases (MAPKs; p-p38, p-JNK1, p-ERK1, p-ERK2) in PE kidneys that was overturned by all NSAIDs, with naproxen producing the largest drop in p-ERK2 expression. The PE-provoked elevation in renal expression of autophagic marker LC3 was reduced by naproxen and diclofenac, but not celecoxib. The data suggests superior effect for naproxen over other NSAIDs in rectifying preeclamptic renal injury and predisposing inflammatory, oxidative, autophagic, and fibrotic signals

    A combined photobiological-photochemical route to C-10 cycloalkane jet fuels from carbon dioxide via isoprene

    Get PDF
    The hemiterpene isoprene is a volatile C-5 hydrocarbon with industrial applications. It is generated today from fossil resources, but can also be made in biological processes. We have utilized engineered photosynthetic cyanobacteria for direct, light-driven production of bio-isoprene from carbon dioxide, and show that isoprene in a subsequent photochemical step, using either near-UV or simulated or natural solar light, can be dimerized into limonene, paradiprene, and isomeric C10H16 hydrocarbons (monoterpenes) in high yields under photosensitized conditions (above 90% after 44 hours with near-UV and 61% with simulated solar light). The optimal sensitizer in our experiments is di(naphth-1-yl)methanone which we use with a loading of 0.1 mol%. It can also easily be recycled for subsequent photodimerization cycles. The isoprene dimers generated are a mixture of [2 + 2], [4 + 2] and [4 + 4] cycloadducts, and after hydrogenation this mixture is nearly ideal as a drop-in jet fuel. Importantly the photodimerization can be carried out at ambient conditions. However, the high content of hydrogenated [2 + 2] dimers in our isoprene dimer mix lowers the flash point below the threshold (38 degrees C); yet, these dimers can be converted thermally into [4 + 2] and [4 + 4] dimers. When hydrogenated these monoterpenoids fully satisfy the criteria for drop-in jet fuels with regard to energy density, flashpoint, kinematic viscosity, density, and freezing point. Life-cycle assessment results show a potential to produce the fuel in an environmentally sustainable way

    Gestational NSAIDs distinctly reprogram cardiac injury in preeclamptic rats: Roles of cyclooxygenase, apoptotic and autophagic trails

    No full text
    Aims: Considering the role of cyclooxygenases (COX) in placental programming induced by preeclampsia (PE), we investigated whether gestational exposure to nonsteroidal antiinflammatory drugs (NSAIDs) with different COX-1/2 selectivity would variably modulate pre- and postnatal (weaning time, i.e. 3 weeks after delivery) cardiovascular manifestations of PE. Materials and methods: PE was induced by oral administration of Nω-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg/day for 7 days) to pregnant rats starting from day 14 of gestation. Rats were treated simultaneously with celecoxib (10 mg/kg/day), diclofenac (0.5 mg/kg/day), or naproxen (1 mg/kg/day). Key findings: Tail-cuff measurements revealed a higher systolic blood pressure (SBP) in PE mothers at gestational day 20 (GD20). More exaggerated rises in prenatal SBP were noted in PE rats treated with celecoxib but not diclofenac or naproxen. Higher levels of serum creatine and kinase MB (CK-MB), a biomarker of cardiac damage, were demonstrated in weaning PE rats and this effect was suppressed by naproxen only. Additionally, naproxen was the most effective among all 3 NSAIDs in diminishing the PE-induced surges in (i) cardiomyocyte cross-sectional area, (ii) cardiac COX-1/COX-2 activities, (iii) arachidonate metabolites (PGE2, PGF2α, and TXA2), (iv) caspase-3 and beclin-1 expressions. By contrast, the PE-related increments in cardiac expression of antiangiogenic (sFlt-1, and endoglin-1) and inflammatory (nuclear factor kappa B, NF-κB) factors were indiscriminately reduced by all NSAIDs. Significance: Compared with celecoxib or diclofenac, naproxen appears to be the most advantageous in minimizing cardiac damage in weaning PE rats due to its synchronized downregulatory effects on cyclooxygenase, apoptotic, and autophagic pathways

    A Combined Photobiological-Photochemical Route to C10 Cycloalkane Jet Fuels from Carbon Dioxide via Isoprene

    No full text
    The hemiterpene isoprene is a volatile C5 hydrocarbon with industrial applications. It is generated today from fossil resources, but can also be made in biological processes. We have utilized engineered photosynthetic cyanobacteria for direct, light-driven production of bio-isoprene from carbon dioxide, and show that isoprene in a subsequent photochemical step, using either near-UV or simulated or natural solar light, can be dimerized into limonene, paradiprene, and isomeric C10H16 hydrocarbons (monoterpenes) in high yields under photosensitized conditions (above 90% after 44 hours with near-UV and 61% with simulated solar light). The optimal sensitizer in our experiments is di(naphth-1-yl)methanone which we use with a loading of 0.1 mol%. It can also easily be recycled for subsequent photodimerization cycles. The isoprene dimers generated are a mixture of [2+2], [4+2] and [4+4] cycloadducts, and after hydrogenation this mixture is nearly ideal as a drop-in jet fuel. Importantly the photodimerization can be carried out at ambient conditions. However, the high content of hydrogenated [2+2] dimers in our isoprene dimer mix lowers the flash point below the threshold (38 °C), yet, these dimers can be converted thermally into [4+2] and [4+4] dimers. When hydrogenated these monoterpenoids fully satisfy the criteria for drop-in jet fuels with regard to energy density, flashpoint, kinematic viscosity, density, and freezing point. Life-cycle assessment results show a potential to produce the fuel in an environmentally sustainable way
    corecore