7,424 research outputs found
Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer
We study ground-state properties of a two-site, two-electron Holstein model
describing two molecules coupled indirectly via electron-phonon interaction by
using both exact diagonalization and self-consistent diagrammatic many-body
perturbation theory. The Hartree and self-consistent Born approximations used
in the present work are studied at different levels of self-consistency. The
governing equations are shown to exhibit multiple solutions when the
electron-phonon interaction is sufficiently strong whereas at smaller
interactions only a single solution is found. The additional solutions at
larger electron-phonon couplings correspond to symmetry-broken states with
inhomogeneous electron densities. A comparison to exact results indicates that
this symmetry breaking is strongly correlated with the formation of a bipolaron
state in which the two electrons prefer to reside on the same molecule. The
results further show that the Hartree and partially self-consistent Born
solutions obtained by enforcing symmetry do not compare well with exact
energetics, while the fully self-consistent Born approximation improves the
qualitative and quantitative agreement with exact results in the same symmetric
case. This together with a presented natural occupation number analysis
supports the conclusion that the fully self-consistent approximation describes
partially the bipolaron crossover. These results contribute to better
understanding how these approximations cope with the strong localizing effect
of the electron-phonon interaction.Comment: 9 figures, corrected typo
Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas
We present a diagrammatic approach to construct self-energy approximations
within many-body perturbation theory with positive spectral properties. The
method cures the problem of negative spectral functions which arises from a
straightforward inclusion of vertex diagrams beyond the GW approximation. Our
approach consists of a two-steps procedure: we first express the approximate
many-body self-energy as a product of half-diagrams and then identify the
minimal number of half-diagrams to add in order to form a perfect square. The
resulting self-energy is an unconventional sum of self-energy diagrams in which
the internal lines of half a diagram are time-ordered Green's functions whereas
those of the other half are anti-time-ordered Green's functions, and the lines
joining the two halves are either lesser or greater Green's functions. The
theory is developed using noninteracting Green's functions and subsequently
extended to self-consistent Green's functions. Issues related to the conserving
properties of diagrammatic approximations with positive spectral functions are
also addressed. As a major application of the formalism we derive the minimal
set of additional diagrams to make positive the spectral function of the GW
approximation with lowest-order vertex corrections and screened interactions.
The method is then applied to vertex corrections in the three-dimensional
homogeneous electron gas by using a combination of analytical frequency
integrations and numerical Monte-Carlo momentum integrations to evaluate the
diagrams.Comment: 19 pages, 19 figure
Diagrammatic expansion for positive density-response spectra: Application to the electron gas
In a recent paper [Phys. Rev. B 90, 115134 (2014)] we put forward a
diagrammatic expansion for the self-energy which guarantees the positivity of
the spectral function. In this work we extend the theory to the density
response function. We write the generic diagram for the density-response
spectrum as the sum of partitions. In a partition the original diagram is
evaluated using time-ordered Green's functions (GF) on the left-half of the
diagram, antitime-ordered GF on the right-half of the diagram and lesser or
greater GF gluing the two halves. As there exist more than one way to cut a
diagram in two halves, to every diagram corresponds more than one partition. We
recognize that the most convenient diagrammatic objects for constructing a
theory of positive spectra are the half-diagrams. Diagrammatic approximations
obtained by summing the squares of half-diagrams do indeed correspond to a
combination of partitions which, by construction, yield a positive spectrum. We
develop the theory using bare GF and subsequently extend it to dressed GF. We
further prove a connection between the positivity of the spectral function and
the analytic properties of the polarizability. The general theory is
illustrated with several examples and then applied to solve the long-standing
problem of including vertex corrections without altering the positivity of the
spectrum. In fact already the first-order vertex diagram, relevant to the study
of gradient expansion, Friedel oscillations, etc., leads to spectra which are
negative in certain frequency domain. We find that the simplest approximation
to cure this deficiency is given by the sum of the zero-th order bubble
diagram, the first-order vertex diagram and a partition of the second-order
ladder diagram. We evaluate this approximation in the 3D homogeneous electron
gas and show the positivity of the spectrum for all frequencies and densities.Comment: 19 pages, 19 figure
Vertex corrections for positive-definite spectral functions of simple metals
We present a systematic study of vertex corrections in the homogeneous
electron gas at metallic densities. The vertex diagrams are built using a
recently proposed positive-definite diagrammatic expansion for the spectral
function. The vertex function not only provides corrections to the well known
plasmon and particle-hole scatterings, but also gives rise to new physical
processes such as generation of two plasmon excitations or the decay of the
one-particle state into a two-particles-one-hole state. By an efficient Monte
Carlo momentum integration we are able to show that the additional scattering
channels are responsible for the bandwidth reduction observed in photoemission
experiments on bulk sodium, appearance of the secondary plasmon satellite below
the Fermi level, and a substantial redistribution of spectral weights. The
feasibility of the approach for first-principles band-structure calculations is
also discussed
Sparse seismic imaging using variable projection
We consider an important class of signal processing problems where the signal
of interest is known to be sparse, and can be recovered from data given
auxiliary information about how the data was generated. For example, a sparse
Green's function may be recovered from seismic experimental data using sparsity
optimization when the source signature is known. Unfortunately, in practice
this information is often missing, and must be recovered from data along with
the signal using deconvolution techniques.
In this paper, we present a novel methodology to simultaneously solve for the
sparse signal and auxiliary parameters using a recently proposed variable
projection technique. Our main contribution is to combine variable projection
with sparsity promoting optimization, obtaining an efficient algorithm for
large-scale sparse deconvolution problems. We demonstrate the algorithm on a
seismic imaging example.Comment: 5 pages, 4 figure
Correlation effects in bistability at the nanoscale: steady state and beyond
The possibility of finding multistability in the density and current of an
interacting nanoscale junction coupled to semi-infinite leads is studied at
various levels of approximation. The system is driven out of equilibrium by an
external bias and the non-equilibrium properties are determined by real-time
propagation using both time-dependent density functional theory (TDDFT) and
many-body perturbation theory (MBPT). In TDDFT the exchange-correlation effects
are described within a recently proposed adiabatic local density approximation
(ALDA). In MBPT the electron-electron interaction is incorporated in a
many-body self-energy which is then approximated at the Hartree-Fock (HF),
second-Born (2B) and GW level. Assuming the existence of a steady-state and
solving directly the steady-state equations we find multiple solutions in the
HF approximation and within the ALDA. In these cases we investigate if and how
these solutions can be reached through time evolution and how to reversibly
switch between them. We further show that for the same cases the inclusion of
dynamical correlation effects suppresses bistability.Comment: 13 pages, 12 figure
Bodem en bemesting in de bollenteelt
De Nederlandse bloembollenteelt vindt plaats binnen meerdere bedrijfstypen en op vele grondsoorten. In al deze situaties vergen bodemkwaliteit en bemesting veel aandacht. Door onder meer strengere wetgeving rond bemesting en gebruik van bestrijdingsmiddelen en door hogere prijzen van grond, meststoffen en energie worden de thema’s rond bodem en bemesting steeds belangrijker. Deze brochure behandelt de beoordeling van de bodemkwaliteit, de beworteling, de bodemstructuur, het bodemleven en de profielopbouw. Verder wordt de bemesting van bollen op verschillende bodemtypen behandeld. Tenslotte wordt ingegaan op de verschillende aspecten rond bodem en bemesting bij bollenteelt op huurland. Dit zowel voor de gangbare als de biologische bollenteelt en voor teelt op zand-, zavel- en kleigronden
On the Age and Binarity of Fomalhaut
The nearby (d = 7.7 pc) A3V star Fomalhaut is orbited by a resolved dusty
debris disk and a controversial candidate extrasolar planet. The commonly cited
age for the system (200+-100 Myr) from Barrado y Navascues et al. (1997) relied
on a combination of isochronal age plus youth indicators for the K4V common
proper motion system TW PsA. TW PsA is 1.96 deg away from Fomalhaut, and was
first proposed as a companion by Luyten (1938), but the physicality of the
binarity is worth testing with modern data. I demonstrate that TW PsA is
unequivocally a physical stellar companion to Fomalhaut, with true separation
0.280+0.019-0.012 pc (57.4+3.9-2.5 kAU) and sharing velocities within 0.1+-0.5
km/s -- consistent with being a bound system. Hence, TW PsA should be
considered "Fomalhaut B". Combining modern HR diagram constraints with four
sets of evolutionary tracks, and assuming the star was born with protosolar
composition, I estimate a new isochronal age for Fomalhaut of 450+-40 Myr and
mass of 1.92+-0.02 Msun. Various stellar youth diagnostics are re-examined for
TW PsA. The star's rotation, X-ray emission, and Li abundances are consistent
with approximate ages of 410, 380, and 360 Myr, respectively, yielding a
weighted mean age of 400+-70 Myr. Combining the independent ages, I estimate a
mean age for the Fomalhaut-TW PsA binary of 440+-40 Myr. The older age implies
that substellar companions of a given mass are approximately one magnitude
fainter at IR wavelengths than previously assumed.Comment: ApJ Letters, in press, 5 pages in emulateapj, 1 figure. Minor edits.
Difference in velocity between Fomalhaut and TW PsA corrected to be 0.1+-0.5
km/
Conserving GW scheme for nonequilibrium quantum transport in molecular contacts
We give a detailed presentation of our recent scheme to include correlation
effects in molecular transport calculations using the GW approximation within
the non-equilibrium Keldysh formalism. We restrict the GW self-energy to the
central region, and describe the leads by density functional theory (DFT). A
minimal basis of maximally localized Wannier functions is applied both in the
central GW region and the leads. The importance of using a conserving, i.e.
fully self-consistent, GW self-energy is demonstrated both analytically and by
numerical examples. We introduce an effective spin-dependent interaction which
automatically reduces self-interaction errors to all orders in the interaction.
The scheme is applied to the Anderson model in- and out of equilibrium. In
equilibrium at zero temperature we find that GW describes the Kondo resonance
fairly well for intermediate interaction strengths. Out of equilibrium we
demonstrate that the one-shot G0W0 approximation can produce severe errors, in
particular at high bias. Finally, we consider a benzene molecule between
featureless leads. It is found that the molecule's HOMO-LUMO gap as calculated
in GW is significantly reduced as the coupling to the leads is increased,
reflecting the more efficient screening in the strongly coupled junction. For
the IV characteristics of the junction we find that HF and G0W0[G_HF] yield
results closer to GW than does DFT and G0W0[G_DFT]. This is explained in terms
of self-interaction effects and life-time reduction due to electron-electron
interactions.Comment: 23 pages, 16 figure
- …
