9 research outputs found

    Structural model updating based on metamodel using modal frequencies

    Get PDF
    Modal frequencies are often used in structural model updating based on the finite element model, and metamodel technique is often applied to the corresponding optimization process. In this work, the Kriging model is used as the metamodel. Firstly, the influence of different correlation functions of Kriging model is inspected, and then the approximate capability of Kriging model is investigated via inspecting the approximate accuracy of nonlinear functions. Secondly, a model updating procedure is proposed based on the Kriging model, and the samples for constructing Kriging model are generated via the method of Optimal Latin Hypercube. Finally, a typical frame structure is taken as a case study and demonstrates the feasibility and efficiency of the proposed approach. The results show the Kriging model can match the target functions very well, and the finite element model can achieve accurate frequencies and can reliably predict the frequencies after model updating

    Effects of an allelochemical in Phaeodactylum tricornutum filtrate on Heterosigma akashiwo : morphological, physiological and growth effects

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Chemosphere 186 (2017): 527-534, doi:10.1016/j.chemosphere.2017.08.024.The effects of an allelochemical extracted from the culture filtrate of diatom Phaeodactylum tricornutum on the raphidophyte Heterosigma akashiwo were investigated using a series of morphological, physiological and biochemical characters. Growth experiments showed that H. akashiwo was significantly inhibited immediately after exposure to the allelochemical, with many cells rapidly dying and lysing based on microscopic observation. The effects of the allelochemical on the surviving cells were explored using Scanning Electron Microscopy (SEM) and Flow cytometry (FCM), the latter by examination of a suite of physiological parameters (membrane integrity, esterase activity, chlorophyll-a content, membrane potential). The results demonstrate that the membrane of H. akashiwo was attacked by the allelochemical directly, causing cell membrane breakage and loss of integrity. Esterase activity was the most sensitive indicator of the impacts of the allelochemical. Membrane potential and chlorophyll-a content both showed significant decreases following exposure of the Heterosigma cells to high concentrations of the allelochemical for 5 and 6 days. Both were affected, but the membrane potential response was more gradual compared to other effects. The cell size of H. akashiwo did not change compared with the control group. The surviving cells were able to continue to grow and in a few days, re-establish a successful culture, even in the presence of residual allelochemical, suggesting either development of cellular resistance, or the degradation of the chemical.The authors wish to thank the National Programme on Global Change and Air-Sea Interaction (Grant No. GASI-03-01-02-01); the National Key Research and Development Program [Grant No. 2016YFC1402101]; the assessment of nanomaterials on biological and ecological effects in the coastal area (Grant No. 201505034)

    The Ontology for Biomedical Investigations

    Get PDF
    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl

    Effect of Thoracoscopic Talc Poudrage vs Talc Slurry via Chest Tube on Pleurodesis Failure Rate Among Patients With Malignant Pleural Effusions: A Randomized Clinical Trial.

    Get PDF
    Importance Malignant pleural effusion (MPE) is challenging to manage. Talc pleurodesis is a common and effective treatment. There are no reliable data, however, regarding the optimal method for talc delivery, leading to differences in practice and recommendations. Objective To test the hypothesis that administration of talc poudrage during thoracoscopy with local anesthesia is more effective than talc slurry delivered via chest tube in successfully inducing pleurodesis. Design, Setting, and Participants Open-label, randomized clinical trial conducted at 17 UK hospitals. A total of 330 participants were enrolled from August 2012 to April 2018 and followed up until October 2018. Patients were eligible if they were older than 18 years, had a confirmed diagnosis of MPE, and could undergo thoracoscopy with local anesthesia. Patients were excluded if they required a thoracoscopy for diagnostic purposes or had evidence of nonexpandable lung. Interventions Patients randomized to the talc poudrage group (n = 166) received 4 g of talc poudrage during thoracoscopy while under moderate sedation, while patients randomized to the control group (n = 164) underwent bedside chest tube insertion with local anesthesia followed by administration of 4 g of sterile talc slurry. Main Outcomes and Measures The primary outcome was pleurodesis failure up to 90 days after randomization. Secondary outcomes included pleurodesis failure at 30 and 180 days; time to pleurodesis failure; number of nights spent in the hospital over 90 days; patient-reported thoracic pain and dyspnea at 7, 30, 90, and 180 days; health-related quality of life at 30, 90, and 180 days; all-cause mortality; and percentage of opacification on chest radiograph at drain removal and at 30, 90, and 180 days. Results Among 330 patients who were randomized (mean age, 68 years; 181 [55%] women), 320 (97%) were included in the primary outcome analysis. At 90 days, the pleurodesis failure rate was 36 of 161 patients (22%) in the talc poudrage group and 38 of 159 (24%) in the talc slurry group (adjusted odds ratio, 0.91 [95% CI, 0.54-1.55]; P = .74; difference, -1.8% [95% CI, -10.7% to 7.2%]). No statistically significant differences were noted in any of the 24 prespecified secondary outcomes. Conclusions and Relevance Among patients with malignant pleural effusion, thoracoscopic talc poudrage, compared with talc slurry delivered via chest tube, resulted in no significant difference in the rate of pleurodesis failure at 90 days. However, the study may have been underpowered to detect small but potentially important differences. Trial Registration ISRCTN Identifier: ISRCTN47845793

    Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy

    Get PDF
    In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar- turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar- turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar- turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application

    Chemistry and biochemistry of Terpenoids from Curcumaand related species

    No full text
    Several curcuminoids have been identified from rhizome of the common spice Curcuma longa (Zingaberaceae) and related plant species. Curcuminoids are known to display several pharmacological properties summed up in numerous papers and reviews. In addition to curcuminoids, more than 250 mono-, sesqui- di-, and triterpenoids have been identified from curcuma species. These lipophilic compounds have better absorption than curcuminoids and also exhibit a wide spectrum of pharmacological properties. Little attention has been paid to these lipophilic compounds, which may be as physiologically active, if not more, as curcuminoids. This review focuses on Curcuma terpenoids and their physiological properties
    corecore